Hortonworks Data Platform

Apache Storm Component Guide
(October 30, 2017)

http://docs.cloudera.com

Hortonworks Data Platform October 30, 2017

Hortonworks Data Platform: Apache Storm Component Guide
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform October 30, 2017

Table of Contents

1. Analyzing Streams of Data with Apache STorm ..., 1
2. INStalling APACRE STOIMiiiiiiiiiiiiiitie ettt e et be ettt atae et ababaeaeseaesensaessnsnsnsnenen 2
3. Configuring Apache Storm for a Production Environmentccccouvviieiiieiiceiiiincnennn. 8
3.1. Configuring Storm for SUPErVIiSIONcooiiiiiiiiiiii 8

3.2. Configuring Storm ReSOUICe USAgEuuuuuuuuui s 10

3.3. Enabling Audit to HDFS for a Secure ClUStercccooiiiiiiiiii e 13

4. Developing Apache Storm Applicationsccooviiiiiiiiiiiiii e 14
L I o T =B o g ¢ I @] o el =T o £ PR 14

T A Y o T T 1 PPN 15

I I = o] £ PP 16

4.1.3. SEream GrOUPINGS ...cceiieiiieieieie ettt 17

O I B o] oTo] [e | =TSR 18

4.1.5. Processing Reliabilityccccooiiimimimii 18

4.1.6. Workers, EXecutors, and Tasksc.ccueiieuiiieiiiieeeieieeeei e e eeneeeeanss 19

4.1.7. Parallelism ..o e 19

4.1.8. Core Storm Example: RollingTopWords Topologycccceveviviiiiiiiinnnnnn. 25

R 4 e 1= A @0 Y el =T o PR 26
4.2.1. Introductory Example: Trident Word Counteeueeeeiieieinieieinneennns 26

4.2.2. Trident OPerationsccouuuuiiiiiiiiieiiiiieee e e e e e e e e e e e eeeees 28

4.2.3. Trident AQgregationscccueiiiiiiiiiiiiiiiiiii et 29

A.2.4. Trident STate .oooeeeeiie e e 31

4.2.5. Further Reading about Trident ... 33

4.3. Moving Data Into and Out of a Storm Topologyccceevviiiiiiiiiiiiiiiiiiiie, 33

4.4. Implementing Windowing Computations on Data Streamseevvvvevennnns 33
4.4.1. Understanding Sliding and Tumbling Windowsccoooeviiiiiiiiiieenenn. 34

4.4.2. Implementing Windowing in Core Stormcccceeveeiiiiiiiiiiieiiieieneeeeenn. 35

4.4.3. Implementing Windowing in Tridentuuvuiimmmmmimimiiieiiiiiiieneneenn, 39

4.5. Implementing State ManagemMeENTuuuuuuuuuuumuiiiiiiiiiiiiiiiaeeieieeeee e 43
4.5.1. CheckPOINTING ...ccoeeeeieeeeeee e 44

I (=Tl 1V =Y o RSP 45

4.5.3. GUAIANTEES ...oiieiiiiii ettt et e et e e et e e e e r e e e ra e na e 46

4.5.4. Implementing Custom Actions: IStateful Bolt HOOKScccoeeiiiiiinnnnn. 46

4.5.5. Implementing Custom Statesccccccuumuimimimiiiiie 46

4.5.6. Implementing Stateful WIindowingcccoooois 47

4.5.7. Sample Topology with Saved Stateccccoiiiiiiiiii e 48

4.6. Performance Guidelines for Developing a Storm Topologyeevveeeeeeeennns 48

5. Moving Data Into and Out of Apache Storm Using Spouts and Boltscccceuuee.... 49
5.1. Ingesting Data from Kafkaueueeiiimiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeieieeeeeeeneeeeeee 50
5.1.1. KafkaSpout Integration: Core Storm APISuciiiiiiiiiiiiiiiiiie e 50

5.1.2. KafkaSpout Integration: Trident APIScooooiiiiiiiiiii, 53

5.1.3. Tuning KafkaSpout Performanceccceeeeererimiiiiiimeiiiieeicieeeeeieeeeeeeeee 54

5.1.4. Configuring Kafka for Use with the Storm-Kafka Connector 56

5.1.5. Configuring KafkaSpout to Connect to HBase or Hivecccccuuuennnen. 56

5.2. Ingesting Data from HDFScoooiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeee et 56
5.2.1. Configuring HDFS SPOULccciiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeee e 57

5.2.2. HDFS Spout Example ..o 58

5.3. Streaming Data to Kafkauueuimimimimiiiiiiiiiiiiii 59
5.3.1. KafkaBolt Integration: Core Storm APISscccoiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeee, 59

Hortonworks Data Platform October 30, 2017

5.3.2. KafkaBolt Integration: Trident APISoooriiiieiiiiiiee e 60

5.4. Writing Data 10 HDFS ...t e e e e eeeees 62
5.4.1. Storm-HDFS: Core Storm APIS ... 62

5.4.2. Storm-HDFS: Trdent APISuuuuiiiiiiiiiiiiiiiiiiiiiieieieieeeieeeieeeneeeaeeeeeeeeeees 64

5.5. Writing Data tO HBaSEoiiiiiiiiiiiiii et 65

5.6. Writing Data 10 HiVE ..coouunuiiiiiii et e e 66
5.6.1. COre-storm APIS ... e 66

5.6.2. TrIAENT APIS ...eeeiieiiiiiieiiittttttatataeteteteeeeaetseaeeeeesesesesseesssssssesesssesesesssssnsnnes 68

5.7. Configuring Connectors for a Secure CIUSTEruvuiiiiiiiiiiiiiciee e 70
5.7.1. Configuring KafkaSpout for a Secure Kafka Clusterccccci 70

5.7.2. Configuring Storm-HDFS for a Secure Clusterc.ceuceeiieiviiiiiiiieeenennn. 70

5.7.3. Configuring Storm-HBase for a Secure ClUStereuuveieiieeieeeenneennns 72

5.7.4. Configuring Storm-Hive for a Secure Clusterccccovvviviienieeeeeeeennnnn. 74

6. Packaging STtOrm TOPOIOGIESoiieiiiieee s 75
7. Deploying and Managing Apache Storm Topologiescuuuuciiiiieeiieiiiiieee e 77
7.1. Configuring the StOrm Ulueeiiiiiiiiiiiiiiiiieiie e 77

7.2. Using the Storm Ul ... e e e e e 77

8. Monitoring and Debugging an Apache Storm Topologyueueeememimemeneniiiiiiininenens 80
8.1. Enabling Dynamic LOg LEVEIScoeuiuiiioiiiei et e e 80
8.1.1. Setting and Clearing Log Levels Using the Storm Ulovvviiiiinnnes 80

8.1.2. Setting and Clearing Log Levels Using the CLIccoeeiiiiiiiiiiiiiiiiiiieen. 81

8.2. Enabling Topology EVeNt LOGGINGuuuuuuuuummniiiiiiiiiiiiiiiiiiiiiieeineeeeseeeseeenenees 81
8.2.1. Configuring Topology Event LOgginguuieiiiiiiiiieiiiiii e eeeeeeeeiee e 81

8.2.2. Enabling Event LOGQingcccoeiiiiiiiiiiiiiiieeeeee e 82

8.2.3. VIeWING EVENT LOGS ...uiiiiiiiiiiiiiii ettt 82

8.2.4. Accessing Event Logs on a Secure Clusterccccveviiiiiiiiiiiiiiii, 83

8.2.5. Disabling EVENT LOGS ...ooveieeiiiiiiie et 84

8.2.6. Extending Event LOQQiNG ...ccceeeiiiiiiiiiiiiiiiiiiieieeeeeeeee ettt 84

8.3. Enabling Distributed Log Sarchcoooeiiiiiiiiiiei e 85

8.4. Dynamic Worker Profiling ... 85

9. Tuning an Apache Storm TOPOIOGYcevuuuuiiiiieiie i e e e e e e e e e eenens 88

Hortonworks Data Platform October 30, 2017

List of Tables

4.1.
4.2,
4.3.
4.4.
5.1.
5.2.
5.3.
6.1.
7.1.

L0010 4 T €o T Tl =T o £ PP PPPR 14
STrEAM GIrOUPINGS ..eeiiiiiu e e e e eeeieeit e e e e e e e et e e e e e e e e eesa e e e e e e eeeessn e e e aaeeeeennnneeens 17
Processing GUATANTEESccoiiiiiiiieii e 19
Storm Topology Development GUIAEliNgSccooeeiiiiiiiiiiii e, 48
HiveMIapper ArQUMENTSii it e e e et e e e e e e e e ee et e e e e e e e e eeeenaaans 66
HiveOptions Class Configuration Properties ... 67
HiveMlapper ArQUMENTSciiiiiiieeiiiiiee ettt e e e e e et e e e e e e e e eeeena e e e e e e eeeeeennaans 69
oY eTe) [oTe VA o= Tl {1 g Ve T =1 ¢ - J TR 76
Topology AdmINiStrative ACIONSeeieieieiiiiiiiiiiiieereene 78

Hortonworks Data Platform

October 30, 2017

1. Analyzing Streams of Data with

Apache Storm

The exponential increase in streams of data from real-time sources requires data processing
systems that can ingest this data, process it, and respond in real time. A typical use case
involves an automated system that responds to sensor data by sending email to support
staff or placing an advertisement on a consumer's smartphone. Apache Storm enables data-
driven, automated activity by providing a realtime, scalable, fault-tolerant, highly available,
distributed solution for streaming data.

Apache Storm is datatype-agnostic; it processes data streams of any data type. It can be
used with any programming language, and guarantees that data streams are processed

without data loss.

The following graphic illustrates a typical stream processing architecture:

Real-time

Online Data
Processing

HBase

Accumulo

—

APACHE
KAFKA

Ineal Time Stl'ﬂﬂl'l'l]
Processing

Storm

-

Sear
So

—

HDP Data Lake

Hortonworks Data Platform October 30, 2017

2. Installing Apache Storm

Before installing Storm, ensure that your cluster meets the following prerequisites:

* HDP cluster stack version 2.5.0 or later.

* (Optional) Ambari version 2.4.0 or later.

Although you can install Apache Storm on a cluster not managed by Ambari (see Installing

and Configuring Apache Storm in the Non-Ambari Cluster Installation Guide), this chapter
describes how to install Storm on an Ambari-managed cluster.

S Note

Storm is not supported on the Windows operating system.

Before you install Storm using Ambari, refer to Adding a Service in the Ambari Operations
Guide for background information about how to install HDP components using Ambari.

To install Storm using Ambari, complete the following steps.
1. Click the Ambari "Services" tab.

2. In the Ambari "Actions" menu, select "Add Service." This starts the Add Service Wizard,
displaying the Choose Services screen. Some of the services are enabled by default.

3. Scroll down through the alphabetic list of components on the Choose Services page,
select "Storm", and click "Next" to continue:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_command-line-installation/content/ch_installing_storm_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_command-line-installation/content/ch_installing_storm_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.0.0/bk_ambari-operations/content/adding_a_service_to_your_hadoop_cluster.html

Hortonworks Data Platform

October 30, 2017

Choose Services

Choosa which sorvices you wani to install on your Cluster,

[Sarvicd

0 HOFS

O YARN + MapReducad

O Tez

Ll Hiva

0 HBase

O Pig

0 Oozie

ZooHoepar
0 Falcon
¥ Slorm

L Azcurmuls

Ambar Matrics

O Aslas

[Knax

O Log Search

Varsion

2741

274

0.7.0

1.2.1000

0160

1.4.8

420

3468

0.10.0

1.041

1.5.2

1.7.0

1.0

0.7.0

G100

0.8.0

DescApbion

Apache Hadoop Distributed File System

Apache Hadoop NextGen MapRaduce (YARN)

Taz is the it genaration Hadoop Cuery Processing frsmework written on 1op o

Data warshouss system for ad-hoo querkss & analysis of larpe datassts and fabh
SOFAGE MAanagernant serdcn

A Non-relational distributed database, plus Phoenix, a high performance SOL Iy
low latency applications.

Scripting plationm for anatyzing largs datasets

Tool for transfering bullk data between Apache Hadoop and Structunsd data shoe
as relaticnal databases

System for workifiow coondination and execution of Apacha Hadoop jobs. This a
includes the installation of the opticnal Cozie Web Consols which nelies on and »
thia Ext)S Librany.

Caeniralired servica which provides highly reliable distributed coondination
Data managemant and processing platform
Apache Hadoop SIream processing iramework

A disiributed sandce for collecting, aggregating, and moving large amounts of at
data nto HOFS

Fobust, scalable, fgh pedomance datrbuteg kipivalue st

A gystemn for metrics collaction that provides storage and retieval capability for
collected trom thi clustar

Arias Metacsta and Governance plathorm

A high-ihrpughpat distributed messaging sysiom

Provides a single point of aulhentication and access for Apache Hadoop service
clusbar

Log aggregation, analysis, and visualization for Ambard managed services
SrartSenss - Hortonworks SmartSensa Toal HST) helps auicky gather configu
metrcs, logs from common HOP serdces 1hat aids 10 quek’y toubieshoo! Sups

CasAs and receig Clusier-SDhcilic BEommsnaatons.

Apache Spark is a tast and general enging for large-scale data processing.

o

Hortonworks Data Platform October 30, 2017

4. On the Assign Masters page, review node assignments for Storm components.
If you want to run Storm with high availability of nimbus nodes, select more than one
nimbus node; the Nimbus daemon automatically starts in HA mode if you select more

than one nimbus node.

Modify additional node assignments if desired, and click "Next".

CLUSTEN INSTALL WEEAHD ¥
Assign Masters
el Sinrind
L=] ARG makie companants IS hoals you want 15 mun Pam on

radnl CpEons

Fookpener Server: CB404 arminarl mhae e 0oy 7.8 GE 2 u oB40. ambar apache.ong [

ol ambar anache.org 0 GE 2 IED

TN o Cotocr J o

" Mimbusr | cf404 amban snacheoeg 28 GES I

B0 b apachs o |
Mirbuse | ciSambarapacheog EAGE: [Zockuepnr Server J it

- DEPC Sanver CEADM aminas snache.oeg 2.8 GE 2

Sasemn LN Sarver | cl0H amban anacheon (2.8 GE 2
tptrcy Colector CESED mminas_ mnsene ooy 2.8 GE 2

-

Gepfany oI amban saeche oeg O 0 GE ®

w— [Elincie

5. On the Assign Slaves and Clients page, choose the nodes that you want to run Storm
supervisors and clients:

Hortonworks Data Platform October 30, 2017

Assign Slaves and Clients

il A A il N ChiE COMBONERTES 10 Mool e WilehE
Hoeuls Ehll S BTl MU, OOTRDD Bl G5 SNOT) 'wiTh &
et wil nstall Foopemer Clent
¥ Host ol | rooene n

v ok

Storm supervisors are nodes from which the actual worker processes launch to execute
spout and bolt tasks.

Storm clients are nodes from which you can run Storm commands (j ar, | i st, and so
on).

6. Click "Next" to continue.

7. Ambari displays the Customize Services page, which lists a series of services:

Customize Services

W have come up with recommeanded configurations for the Servicas you selactad. Customize them as you See

FS MapReduced THHN ez Hive HEase o ZooKespar Storm Fluma Kafkm Spark

Group Default (1) - Manage Config Groups

For your initial configuration you should use the default values set by Ambari. If Ambari
prompts you with the message "Some configurations need your attention before you
can proceed," review the list of properties and provide the required information.

For information about optional settings that are useful in production environments, see
Configuring Apache Storm.

8. Click "Next" to continue.

9. When the wizard displays the Review page, ensure that all HDP components correspond
to HDP 2.5.0 or later:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-configure.html

Hortonworks Data Platform October 30, 2017

CLUSTER INSTALL WILLARD

I Review

Gunact Vg Tsiciett rirusires e atesn Baforn Fatalaton
el Opticrm

Cionsfiern Henita Akmin Wasra 30T

G Sardoes Chunter Mama - toxt

Agnagn sty Tokal Hosts - 2 [F newi

Agnagn Sayees and Clanby Rrg-ouionan

Cuminmire Sarvices delian’ (HDP-2.5)

HImEE AT A ST e P e e i S D e TP B DS & 00051

. el T B A

“otal, Siat and Tme el Arartsuren Sdemideee hericrmesie Corr il T 5= 1.1, 0 3 1 nagstas Sekhaan T

Basrrariy e -2 O
PR BT e DT ke ool Coe e HIDP e sl T B ILDEST 5 000851

st HOP-UTILS-1.1.0215
AT RS e DT e P ey b, e DR TS 1.0 3 il sl

pchatT P2 0y
R TR, DO e D oo, o De T IR ol e 752 PRI RS 5 DR
swchasT SP-UTILE-1,1.0.51)

R T DS, DOy O hororrennie. Corre DR UTILS- 1. 1.0 2 Uinspoaloenboa T

socii il (HDP. 3.
D) ST DR, o T oo oo D una 1 Tepdl? s IRALLERT D 0.0-850

= C

10Click "Deploy" to begin installation.

11 Ambari displays the Install, Start and Test page. Review the status bar and messages for
progress updates:

CLUSTER ISTALL WITARD

Install, Start and Test

St ‘Warmaon Pidchn wil whid U Soic b S G ribaled i ilafed

it Sibirtind

Creocds Sared Hrm InProgrens () | Wareeg)
Ao Liganees
’ Heal Brats [FEERETT]
Adciiyn B, il Tl
ol arminar apache. og I s ‘Waling by inatal Weirics Co
CuoitenTiFn Safvicsd
SEH0 SR BRGEhE. 05 l 5l reitalesy DRINC Saareeer
ey ed
= — 3 ol ruai W] - S A o | ¥ I-Fe
AT

12When the wizard presents a summary of results, click "Complete" to finish installing
Storm:

Hortonworks Data Platform October 30, 2017

summary

To validate the Storm installation, complete the following steps:

1. Point your browser to the Storm Ul URL for Ambari: htt p: // <st or m ui -
server>: 8744

You should see the Storm Ul web page.
2. Submit the following command:

stormjar /usr/hdp/current/stormclient/contrib/
stormstarter/stormstarter-topol ogies-*.jar
org. apache. storm starter. WrdCount Topol ogy wor dcount

3. The WordCount sample topology should run successfully.

Hortonworks Data Platform October 30, 2017

3. Configuring Apache Storm for a
Production Environment

This chapter covers topics related to Storm configuration:

¢ Configuring Storm to operate under supervision

* Properties to review when you place topologies into production use
* Enabling audit to HDFS for a secure cluster

Instructions are for Ambari-managed clusters.

3.1. Configuring Storm for Supervision

If you are deploying a production cluster with Storm, you should configure the Storm
components to operate under supervision.

Follow these steps to configure Storm for supervision:

1. Stop all Storm components.
a. Using Ambari Web, browse to Servi ces > Storm > Servi ce Actions.
b. Choose Stop, and wait until the Storm service completes.

2. Stop Ambari Server:
anbari -server stop

3. Change the Supervisor and Nimbus command scripts in the Stack definition.

On Ambari Server host, run:

sed -ir "s/scripts\/supervisor.py/scripts\/supervisor_prod. py/g" /var/lib/
anbari - server/resour ces/ conmon- servi ces/ STORM 0. 9. 1. 2. 1/ net ai nf 0. xm

sed -ir "s/scripts\/ninbus. py/scripts\/ninbus_prod. py/g" /var/lib/anbari -
server/resour ces/ common- servi ces/ STORM 0. 9. 1. 2. 1/ et ai nf 0. xml

4. Install super vi sor d on all Nimbus and Supervisor hosts.
* Install EPEL repository:
yuminstall epel-release -y
* Install supervisor package for super vi sor d:
yuminstall supervisor -y

* Enable super vi sor d on autostart:

8

Hortonworks Data Platform October 30, 2017

chkconfig supervisord on
¢ Change super vi sor d configuration file permissions:
chmod 600 /etc/supervisord. conf

5. Configure super vi sor d to supervise Nimbus Server and Supervisors by appending the
following to / et ¢/ super vi sor d. conf on all Supervisor host and Nimbus hosts:

[program st or m ni mbus]

comand=env PATH=$PATH: / bi n: /usr/bi n/:/usr/jdk64/jdkl.7.0_67/bin/ JAVA HOVE=
[usr/jdk64/jdkl.7.0_67 /usr/hdp/current/stormni mbus/bin/storm ni mbus
user =st orm

autostart=true

autorestart=true

startsecs=10

startretri es=999

| og_st dout =true

| og_stderr=true

| ogfil e=/var/l og/storm ni nbus. out

| ogfil e_maxbyt es=20MB

| ogfil e_backups=10

[program st or m super vi sor]

conmmand=env PATH=$PATH: / bi n: /usr/bi n/:/usr/jdk64/jdkl.7.0_67/bin/ JAVA HOVE=

[usr/jdk64/jdkl.7.0_67 /usr/hdp/current/storm supervisor/bin/storm
super vi sor

user =st orm

autostart=true

autorestart=true

startsecs=10

startretri es=999

| og_st dout =t rue

| og_stderr=true

| ogfil e=/var/| og/storm supervisor. out

| ogfi |l e_nmaxbyt es=20MB

| ogfil e_backups=10

Note

Change / usr/j dk64/j dkl. 7. 0_67 to the location of the JDK being used
by Ambari in your environment.

6. Start super vi sor d on all Supervisor and Nimbus hosts:
service supervisord start
7. Start Ambari Server:
anbari -server start
8. Start all other Storm components:
a. Using Ambari Web, browse to Servi ces > Storm > Servi ce Actions.

b. Choose St art .

Hortonworks Data Platform

October 30, 2017

3.2. Configuring Storm Resource Usage

The following settings can be useful for tuning Storm topologies in production

environments.

Instructions are for a cluster managed by Ambari. For clusters that are not managed by
Ambari, update the property in its configuration file; for example, update the value of
t opol ogy. nessage. ti neout. secs inthe st or m yanl configuration file. (Do not
update files manually if your cluster is managed by Ambari.)

Memory Allocation

Worker process max heap size:
wor ker. chi | dopts - XnX
option

Logviewer process max heap
size: | ogvi ewer. chi |l dopts
- Xnx option

Message Throughput

Maximum JVM heap size for the worker JVM. The
default Ambari value is 768 MB. On a production
system, this value should be based on workload and
machine capacity. If you observe out-of-memory errors
in the log, increase this value and fine tune it based on
throughput; 1024 MB should be a reasonable value to
start with.

To set maximum heap size for the worker JVM, navigate
to the "Advanced storm-site" category and append the

- Xnx option to worker.childopts setting. The following
option sets maximum heap size to 1 GB: - Xnx1024m

Maximum JVM heap size for the logviewer process. The
default is 128 MB. On production machines you should
consider increasing the | ogvi ewer . chi | dopts -
Xnx option to 768 MB or more (1024 MB should be a
sufficient for an upper-end value).

t opol ogy. max. spout . pendi ngMaximum number of messages that can be pending in a

spout at any time. The default is null (no limit).

The setting applies to all core Storm and Trident
topologies in a cluster:

¢ For core Storm, this value specifies the maximum
number of tuples that can be pending: tuples that
have been emitted from a spout but have not been
acked or failed yet.

¢ For Trident, which process batches in core, this
property specifies the maximum number of batches
that can be pending.

If you expect bolts to be slow in processing
tuples (or batches) and you do not want internal
buffers to fill up and temporarily stop emitting

10

Hortonworks Data Platform

October 30, 2017

tuples to downstream bolts, you should set

t opol ogy. max. spout . pendi ng to a starting value
of 1000 (for core Storm) or a value of 1 (for Trident),
and increase the value depending on your throughput
requirements.

You can override this value for a specific topology
when you submit the topology. The following example
restricts the number of pending tuples to 100 for a
topology:

$ stormjar -c
t opol ogy. max. spout . pendi ng=100 j ar
args. ..

If you plan to use windowing functionality, set this
value to null, or increase it to cover the estimated
maximum number of active tuples in a single window.
For example, if you define a sliding window with a
duration of 10 minutes and a sliding interval of 1
minute, set t opol ogy. max. spout . pendi ng to the
maximum number of tuples that you expect to receive
within an 11-minute interval.

This setting has no effect on spouts that do not anchor
tuples while emitting.

t opol ogy. message. ti meout . sil@gimum amount of time given to the topology to

Nimbus Node Resources

fully process a tuple tree from the core-storm API, or a
batch from the Trident API, emitted by a spout. If the
message is not acked within this time frame, Storm fails
the operation on the spout. The default is 30 seconds.

If you plan to use windowing functionality, set this
value based on your windowing definitions. For
example, if you define a 10 minute sliding window with
a 1 minute sliding interval, you should set this value to
at least 11 minutes.

You can also set this value at the topology level when
you submit a topology; for example:

$ stormjar -c
t opol ogy. message. ti meout . secs=660 j ar
args. ..

ni mbus. t hrift. max_buf f er _sMagimum buffer size that the Nimbus Thrift server

allocates for servicing requests. The default is 1 MB. If
you plan to submit topology files larger than 100 MB,
consider increasing this value.

11

Hortonworks Data Platform

October 30, 2017

ni nbus.thrift.threads

Number of threads to be used by the Nimbus Thrift
server. The default is 64 threads. If you have more than
ten hosts in your Storm cluster, consider increasing

this value to a minimum of 196 threads, to handle the
workload associated with multiple workers making
multiple requests on each host.

You can set this value by adding the property and its
value in the Custom storm-site category, as shown in the
following graphic:

Add Property

Type shorm-sieseml

Kiry nimbas. theift. throads

128

12

Hortonworks Data Platform October 30, 2017

Number of Workers on a Supervisor Node

supervi sor. sl ots. ports List of ports that can run workers on a supervisor node.
The length of this list defines the number of workers
that can be run on a supervisor node; there is one
communication port per worker.

Use this configuration to tune how many workers to
run on each machine. Adjust the value based on how
many resources each worker will consume, based on
the topologies you will submit (as opposed to machine
capacity).

Number of Event Logger Tasks

t opol ogy. event | ogger . execullomber of event logger tasks created for topology
event logging. The default is 0; no event logger tasks
are created.

If you enable topology event logging, you must set this
value to a number greater than zero, or to nul | :

e topol ogy. event | ogger . executors: <n>
creates n event logger tasks for the topology. A value
of 1 should be sufficient to handle most event logging
use cases.

e topol ogy. event | ogger . executors: null
creates one event logger task per worker. This is
only needed if you plan to use a high sampling
percentage, such as logging all tuples from all spouts
and bolts.

Storm Metadata Directory
storm |l ocal . dir Local directory where Storm daemons store topology metadata. You

need not change the default value, but if you do change it, set it to
a durable directory (not a directory such as /tmp).

3.3. Enabling Audit to HDFS for a Secure Cluster

To enable audit to HDFS when running Storm on a secure cluster, perform the steps listed
at the bottom of Manually Updating Ambari HDFS Audit Settings in the HDP Security
Guide.

13

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/manually_updating_ambari_hdfs_audit_settings.html

Hortonworks Data Platform

October 30, 2017

4. Developing Apache Storm Applications

This chapter focuses on several aspects of Storm application development. Throughout this
guide you will see references to core Storm and Trident. Trident is a layer of abstraction
built on top of Apache Storm, with higher-level APIs. Both operate on unbounded streams
of tuple-based data, and both address the same use cases: real-time computations on

unbounded streams of data.

Here are some examples of differences between core Storm and Trident:

* The basic primitives in core storm are bolts and spouts. The core data abstraction in

Trident is the stream.

» Core Storm processes events individually. Trident supports the concept of transactions,

and processes data in micro-batches.

* Trident was designed to support stateful stream processing, although as of Apache
Storm 1.0, core Storm also supports stateful stream processing.

» Core Storm supports a wider range of programming languages than Trident.

» Core Storm supports at-least-once processing very easily, but for exactly-once semantics,
Trident is easier (from an implementation perspective) than using core Storm primitives.

A complete introduction to the Storm API is beyond the scope of this documentation.
However, the following sections provide an overview of core Storm and Trident concepts.
See Apache Storm documentation for an extensive description of Apache Storm concepts.

4.1. Core Storm Concepts

Developing a Storm application requires an understanding of the following basic concepts.

Table 4.1. Storm Concepts

Storm Concept

Description

Tuple A named list of values of any data type. A tuple is the
native data structure used by Storm.

Stream An unbounded sequence of tuples.

Spout Generates a stream from a realtime data source.

Bolt Contains data processing, persistence, and messaging alert

logic. Can also emit tuples for downstream bolts.

Stream Grouping

Controls the routing of tuples to bolts for processing.

Topology

A group of spouts and bolts wired together into a
workflow. A Storm application.

Processing Reliability

Storm guarantee about the delivery of tuples in a
topology.

Workers A Storm process. A worker may run one or more
executors.

Executors A Storm thread launched by a Storm worker. An executor
may run one or more tasks.

Tasks A Storm job from a spout or bolt.

14

https://storm.apache.org/releases/1.1.0/index.html

Hortonworks Data Platform October 30, 2017

Storm Concept Description

Parallelism Attribute of distributed data processing that determines
how many jobs are processed simultaneously for a
topology. Topology developers adjust parallelism to tune
their applications.

Process Controller Monitors and restarts failed Storm processes. Examples
include supervisord, monit, and daemontools.

Master/Nimbus Node The host in a multi-node Storm cluster that runs a process
controller (such as supervisord) and the Storm nimbus,

ui, and other related daemons. The process controller

is responsible for restarting failed process controller
daemons on slave nodes. The Nimbus node is a thrift
service that is responsible for distributing code around the
cluster, assigning tasks to machines, and monitoring for
failures.

Slave Node A host in a multi-node Storm cluster that runs a process
controller daemon, such as supervisor, as well as the
worker processes that run Storm topologies. The process
controller daemon is responsible for restarting failed
worker processes.

The following subsections describe several of these concepts in more detail.

4.1.1. Spouts

All spouts must implement the or g. apache. st or m t opol ogy. | R chSpout interface
from the core-storm API. BaseRi chSpout is the most basic implementation, but there are
several others, including Cl oj ur eSpout , DRPCSpout , and Feeder Spout . In addition,
Hortonworks provides a Kafka spout to ingest data from a Kafka cluster. The following
example, Randonent enceSpout, is included with the st or m st art er connector
installed with Storm at/ usr/1i b/ stornfcontrib/stormstarter.

package storm starter.spout;

i nport org. apache. st or m spout . Spout Qut put Col | ect or;

i mport org. apache. storm t ask. Topol ogyCont ext ;

i mport org. apache. st orm t opol ogy. Cut put Fi el dsDecl arer;
i mport org.apache. st orm t opol ogy. base. BaseRi chSpout ;

i mport org. apache. storm tupl e. Fi el ds;

inport org.apache. stormtuple. Val ues;

i mport org.apache.stormutils.Uils;

import java.util.Mp;
import java.util.Random

publi ¢ cl ass RandonSent enceSpout extends BaseR chSpout {
Spout Cut put Col | ector _col | ector;
Random _r and;

@verride
public void open(Map conf, Topol ogyContext context, SpoutQutputColl ector
col lector) {

_collector = collector;

_rand = new Randon();

}

@verride
public void nextTuple() {

15

Hortonworks Data Platform October 30, 2017

Uils.sleep(100);

String[] sentences = new String[]{ "the cow junped over the noon", "an
appl e a day keeps the doctor away", "four score and seven years ago", "snhow
white and the seven dwarfs", "i amat two with nature" };

String sentence = sentences[_rand. nextlnt(sentences.|ength)];
_collector.enmit(new Val ues(sentence));

}

@verride

public void ack(Object id) {
}

@verride

public void fail (Object id) {
}

@verride

public void decl areQut put Fi el ds(Qut put Fi el dsDecl arer decl arer) {
decl arer. decl are(new Fi el ds("word"));

}
}

4.1.2. Bolts

All bolts must implement the | Ri chBol t interface. BaseRi chBol t is the most

basic implementation, but there are several others, including Bat chBol t Execut or,

Cd oj ureBol t, and Joi nResul t . The following example, Tot al Ranki ngsBol t . j ava,
is included with st or m st art er and installed with Storm at/usr/Ili b/ storm
contrib/stormstarter.

package storm starter. bolt;

i mport org.apache. storm tupl e. Tupl e;
i nport org. apache. | og4j . Logger;
import storm starter.tools. Ranki ngs;

/**

* This bolt nmerges incom ng {@ink Ranki ngs}.

* <p/ >

* It can be used to nmerge intermedi ate ranki ngs generated by {@i nk

I nt er medi at eRanki ngsBolt} into a final,

* consol i dated ranking. To do so, configure this bolt with a gl obal G oupi ng
on {@ink Intermedi at eRanki ngsBol t}.

*/

public final class Total Ranki ngsBolt extends Abstract RankerBolt {

private static final |ong serial VersionU D = -8447525895532302198L;
private static final Logger LOG = Logger. get Logger (Tot al Ranki ngsBol t. cl ass) ;

publ i ¢ Tot al Ranki ngsBolt () {
super () ;

publ i ¢ Tot al Ranki ngsBol t (i nt topN) {
super (t opN) ;
}

publ i ¢ Total Ranki ngsBolt(int topN, int emtFrequencyl nSeconds) {

16

Hortonworks Data Platform October 30, 2017

super (t opN, enitFrequencyl nSeconds);

@verride

voi d updat eRanki ngsWt hTupl e(Tupl e tuple) {

Ranki ngs ranki ngsToBeMer ged = (Ranki ngs) tupl e. getVal ue(0);
super . get Ranki ngs() . updat eWt h(r anki ngsToBeMer ged) ;

super . get Ranki ngs() . pr uneZer oCount s() ;

}
@verride

Logger getLogger() {
return LOG

}

4.1.3. Stream Groupings

Stream grouping allows Storm developers to control how tuples are routed to bolts in a
workflow. The following table describes the stream groupings available.

Table 4.2. Stream Groupings

Stream Grouping Description

Shuffle Sends tuples to bolts in random, round robin sequence.
Use for atomic operations, such as math.

Fields Sends tuples to a bolt based on one or more fields in the
tuple. Use to segment an incoming stream and to count
tuples of a specified type.

All Sends a single copy of each tuple to all instances of a
receiving bolt. Use to send a signal, such as clear cache or
refresh state, to all bolts.

Custom Customized processing sequence. Use to get maximum
flexibility of topology processing based on factors such as
data types, load, and seasonality.

Direct Source decides which bolt receives a tuple.

Global Sends tuples generated by all instances of a source to a
single target instance. Use for global counting operations.

Storm developers specify the field grouping for each bolt using methods on the
Topol ogyBui | der. Bol t Get t er inner class, as shown in the following excerpt from the
the Wor dCount Topol ogy. j ava example included with st or m st art er.

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

bui | der. set Spout ("spout"”, new RandonSent enceSpout (), 5);

bui | der.setBolt("split", new SplitSentence(), 8).shuffleG ouping("spout");

bui | der. setBol t ("count", new WrdCount (), 12).fieldsG ouping("split", new
Fi el ds("word"));

The first bolt uses shuffle grouping to split random sentences generated with the
RandonBSent enceSpout . The second bolt uses fields grouping to segment and perform a
count of individual words in the sentences.

17

Hortonworks Data Platform October 30, 2017

4.1.4. Topologies

The following image depicts a Storm topology with a simple workflow.

Storm topology

The Topol ogyBui | der class is the starting point for quickly writing Storm topologies
with the st or m cor e API. The class contains getter and setter methods for the spouts and
bolts that comprise the streaming data workflow, as shown in the following sample code.

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;
bui | der. set Spout ("spout 1", new BaseRi chSpout ());
bui | der . set Spout ("spout 2", new BaseRi chSpout ());
bui | der. setBolt ("bol t1", new BaseBasicBolt());
bui |l der. set Bolt ("bolt2", new BaseBasicBol t());
bui | der. set Bol t ("bol t 3", new BaseBasi cBolt());

4.1.5. Processing Reliability

Storm provides two types of guarantees when processing tuples for a Storm topology.

18

Hortonworks Data Platform October 30, 2017

Table 4.3. Processing Guarantees

Guarantee Description

At least once Reliable; Tuples are processed at least once, but may be

processed more than once. Use when subsecond latency is
required and for unordered idempotent operations.

Exactly once Reliable; Tuples are processed only once. (This feature

requires the use of a Trident spout and the Trident API.
For more information, see Trident Concepts.)

4.1.6. Workers, Executors, and Tasks

Apache Storm processes, called workers, run on predefined ports on the machine that hosts
Storm.

¢ Each worker process can run one or more executors, or threads, where each executor is a
thread spawned by the worker process.

¢ Each executor runs one or more tasks from the same component, where a component is
a spout or bolt from a topology.

Supervisor Node

Worker Process

4.1.7. Parallelism

Distributed applications take advantage of horizontally-scaled clusters by dividing

computation tasks across nodes in a cluster. Storm offers this and additional finer-grained
ways to increase the parallelism of a Storm topology:

19

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-trident-intro.html

Hortonworks Data Platform October 30, 2017

¢ Increase the number of workers
¢ Increase the number of executors

¢ Increase the number of tasks

By default, Storm uses a parallelism factor of 1. Assuming a single-node Storm cluster, a
parallelism factor of 1 means that one worker, or JVM, is assigned to execute the topology,
and each component in the topology is assigned to a single executor. The following
diagram illustrates this scenario. The topology defines a data flow with three tasks, a spout

and two bolts.

S Note
Hortonworks recommends that Storm developers store parallelism settings in
a configuration file read by the topology at runtime rather than hard-coding
the values passed to the Parallelism API. This topic describes and illustrates
the use of the API, but developers can achieve the same effect by reading the
parallelism values from a configuration file.

Worker (JVM)

Task: Task:
MySpout MyBolt1

Increasing Parallelism with Workers

Storm developers can easily increase the number of workers assigned to execute a topology
with the Conf i g. set NumWr ker s() method. This code assigns two workers to execute
the topology, as the following figure illustrates.

Config config = new Config();
confi g. set Numor kers(2);

20

Hortonworks Data Platform October 30, 2017

Worker (JVM)

Task: Task:
MySpout MyBolt1

Worker (JVM)

Adding new workers comes at a cost: additional overhead for a new JVM.

This example adds an additional worker without additional executors or tasks, but to
take full advantage of this feature, Storm developers must add executors and tasks to the
additional JVMs (described in the following examples).

Increasing Parallelism with Executors

The parallelism APl enables Storm developers to specify the number of executors for each
worker with a parallelism hint, an optional third parameter to the set Bol t () method.
The following code sample sets this parameter for the MyBolt1 topology component.

Config config = new Config();

Topol ogyBui | der bui | der = new Topol ogyBui | der () ;

bui | der . set Spout (MY_SPOUT_| D, nySpout) ;

bui |l der. setBol t (MYy_BOLT1_I D, nyBolt1, 2).shuffleG ouping(MY_SPOUT_ID);
bui | der. set Bol t (MY_BOLT2_| D, nyBol t2). shuffl eG oupi ng(My_SPOQUT_I D) ;

This code sample assigns two executors to the single, default worker for the specified
topology component, MyBolt1, as the following figure illustrates.

21

Hortonworks Data Platform October 30, 2017

Worker (JVM)

Task:
MyBolt1

Task:
MyBolt1

The number of executors is set at the level of individual topology components, so adding
executors affects the code for the specified spouts and bolts. This differs from adding
workers, which affects only the configuration of the topology.

Increasing Parallelism with Tasks

Finally, Storm developers can increase the number of tasks assigned to a single topology
component, such as a spout or bolt. By default, Storm assigns a single task to each
component, but developers can increase this number with the set Nunirasks() method
on the Bol t Decl ar er and Spout Decl ar er objects returned by the set Bol t () and
set Spout () methods.

Config config = new Config();

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

bui | der. set Spout (My_SPOUT_I D, mySpout);

bui | der. set Bol t (MY_BOLT1_I D, nyBol t1).set NunTasks(2).

shuf f | eG oupi ng(MY_SPQUT_I D) ;

bui | der. set Bol t (MY_BOLT1_I D, nyBolt2). shuffleG oupi ng(My_SPOQUT_I D) ;

This code sample assigns two tasks to execute MyBolt1, as the following figure illustrates.
This added parallelism might be appropriate for a bolt containing a large amount of data
processing logic. However, adding tasks is like adding executors because the code for the
corresponding spouts or bolts also changes.

22

Hortonworks Data Platform October 30, 2017

Worker (JVM)

Task:

MyBolt1

Task:
MyBolt1

Putting it All Together

Storm developers can fine-tune the parallelism of their topologies by combining new
workers, executors and tasks. The following code sample demonstrates all of the following:

* Split processing of the MySpout component between four tasks in two separate
executors across two workers

¢ Split processing of the MyBolt1 component between two executors across two workers

¢ Centralize processing of the MyBolt2 component in a single task in a single executor in a
single worker on a single worker

Config config = new Config();

config. set Numorkers(2);

Topol ogyBui | der bui |l der = new Topol ogyBui | der () ;

bui | der . set Spout (MY_SPQUT_I| D, nySpout, 2).setNunTasks(4);

bui |l der.setBolt (MY_BOLT1_|I D, nyBolt1, 2).setNuniTasks(2).

shuf f | eG oupi ng(MY_SPQUT_I D) ;

bui | der. set Bol t (MY_BOLT2_| D, nyBol t2). shuffl eG oupi ng(My_SPOQUT_I D) ;

23

Hortonworks Data Platform October 30, 2017

Task:
MyBolt1

Task:
MyBolt1

The degree of parallelism depicted might be appropriate for the following topology
requirements:

¢ High-volume streaming data input
¢ Moderate data processing logic
¢ Low-volume topology output

See the Storm javadocs at https://storm.apache.org/releases/1.1.0/javadocs/index.html for
more information about the Storm API.

24

https://storm.apache.org/releases/1.1.0/javadocs/index.html

Hortonworks Data Platform October 30, 2017

4.1.8. Core Storm Example: RollingTopWords Topology

The Rol | i ngTopWbr ds. j avais included with st orm starter.
package storm starter;

i mport org. apache. storm Confi g;

i mport org. apache. stormtesting. Test Wor dSpout ;
inport org.apache. storm topol ogy. Topol ogyBui | der;

i mport org.apache. stormtupl e. Fi el ds;

import stormstarter. bolt.|nternediat eRanki ngsBol t;
inmport stormstarter. bolt. RollingCountBolt;

import stormstarter. bolt. Total Ranki ngsBol t ;

inmport stormstarter.util.StornRunner;

/**

* Thi s topol ogy does a continuous conputation of the top N words that the
t opol ogy has seen in ternms of cardinality.

* The top N conputation is done in a conpletely scal able way, and a sinmlar
approach could be used to compute things

* like trending topics or trending images on Twitter.

*/

public class RollingTopWrds {

private static final int DEFAULT_RUNTI ME_| N SECONDS = 60;
private static final int TOP_N = 5;

private final Topol ogyBuil der buil der;
private final String topol ogyNane;
private final Config topol ogyConfi g;
private final int runtinelnSeconds;

public RollingTopWrds() throws InterruptedException {
bui | der = new Topol ogyBui | der () ;
t opol ogyNanme = "sl i di ngW ndowCount s";
t opol ogyConfi g = createTopol ogyConfi gurati on();
runti mel nSeconds = DEFAULT_RUNTI ME_| N_SECONDS;

wi r eTopol ogy();
}

private static Config createTopol ogyConfiguration() {
Confi g conf = new Config();
conf. set Debug(true);
return conf;

}

private void wireTopol ogy() throws InterruptedException {
String spoutld = "wordCenerator"”;
String counterld = "counter";
String internedi at eRankerld = "i nternedi at eRanker";

String total Rankerld = "final Ranker";
bui | der . set Spout (spout | d, new Test Wor dSpout (), 5);
bui | der. set Bol t (counterld, new Rol lingCountBolt(9, 3), 4).
fiel dsG oupi ng(spoutld, new Fields("word"));
bui | der . set Bol t (i nt er nedi at eRanker1d, new | nternedi at eRanki ngsBol t (TOP_N),
4).fi el dsG oupi ng(counterld, new Fields("obj"));
bui | der. set Bol t (t ot al Ranker|d, new Tot al Ranki ngsBol t (TOP_N)) .
gl obal G- oupi ng(i nt er medi at eRanker|d) ;

25

Hortonworks Data Platform October 30, 2017

}

public void run() throws InterruptedException {
St or mMRunner . runTopol ogyLocal | y(bui | der. creat eTopol ogy(), topol ogyNane,
t opol ogyConfi g, runtinel nSeconds);

public static void main(String[] args) throws Exception {
new Rol | i ngTopWords().run();

}
}

4.2. Trident Concepts

Trident is a high-level API built on top of Storm core primitives (spouts and bolts). Trident
provides join operations, aggregations, grouping, functions, and filters, as well as fault-
tolerant state management. With Trident it is possible to achieve exactly-once processing
semantics more easily than with the Storm core API.

In contrast to the Storm core API, Trident topologies process data in micro-batches. The
micro-batch approach provides greater overall throughput at the cost of a slight increase in
overall latency.

Because Trident APIs are built on top of Storm core API, Trident topologies compile to a
graph of spouts and bolts.

The Trident APl is built into Apache Storm, and does not require any additional
configuration or dependencies.

4.2.1. Introductory Example: Trident Word Count

The following code sample illustrates how to implement a simple word count program
using the Trident API:

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();
Stream wor dCounts = topol ogy. newStr ean(" spout 1", spout)
.each(new Fi el ds("sentence"), new Split(), new Fields("word"))
.parallelisnH nt(16)
. groupBy(new Fi el ds("word"))
. per si st ent Aggr egat e(new MenoryMapSt at e. Factory(), new Count (),
new Fi el ds("count™))
. newval uesSt r ean()
.parallelisnHnt(16);

Here is detailed information about lines of code in the example:

* The first line creates the Tr i dent Topol ogy object that will be used to define the
topology:

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();

* The second line creates a St r eamobject from a spout; it will be used to define
subsequent operations to be performed on the stream of data:

St ream wor dCount s = topol ogy. newSt rean("spout 1", spout)

26

Hortonworks Data Platform October 30, 2017

* The third line uses the St r eam each() method to apply the Split function on the
“sentence” field, and specifies that the resulting output contains a new field named
"word":

.each(new Fi el ds("sentence"), new Split(), new Fields("word"))

The Spl i t class is a simple Trident function that takes the first field of a tuple, tokenizes
it on the space character, and emits resulting tokens:

public class Split extends BaseFunction {
public voi d execute(Trident Tuple tuple, TridentCollector collector) {
String sentence = tuple.getString(0);

for (String word : sentence.split(" ")) {
col l ector.enit(new Val ues(word));
}

}
}

* The next two lines set the parallelism of the Spl i t function and apply a gr oupBy()
operation to ensure that all tuples with the same “word” value are grouped together in

subsequent operations.

Calling paral I el i snHi nt () before a partitioning operation applies the specified
parallelism value on the resulting bolt:

.parallelisnH nt(16)

The gr oupBy() operation is a partitioning operation; it forms the boundary between
separate bolts in the resulting topology:

. groupBy(new Fi el ds("word"))

The gr oupBy() operation results in batches of tuples being repartitioned by the value
of the “word” field.

For more information about stream operations that support partitioning, see the Stream
JavaDoc.

* The remaining lines of code aggregate the running count for individual words, update a
persistent state store, and emit the current count for each word.

The per si st ent Aggr egat e() method applies a Trident Aggregator to a stream,
updates a persistent state store with the result of the aggregation, and emits the result:

.per si st ent Aggr egat e(new Menor yMapSt at e. Factory(), new Count (),
new Fi el ds("count"))

The sample code uses an in-memory state store (Menor yMapSt at e); Storm comes with
a number of state implementations for databases such as HBase.

The Count class is a Trident Conbi ner Aggr egat or implementation that sums all
values in a batch partition of tuples:

27

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/Stream.html
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/Stream.html

Hortonworks Data Platform October 30, 2017

public class Count inplenments Conbi ner Aggr egat or <Long> {

public Long init(TridentTuple tuple) {
return 1L;

}
public Long conmbi ne(Long val 1, Long val 2) {
return val 1l + val 2;

public Long zero() {
return OL;
}

}

When applying the aggregator, Storm passes grouped partitions to the aggregator,
callingi ni t () for each tuple. It calls combi ne() repeatedly to process all tuples in the
partition. When finished, the last value returned by conbi ne() is used. If the partition is
empty, the value of zer o() is used.

The call to newal uesSt r ean() tells Storm to emit the result of the persistent
aggregation. This consists of a stream of individual word counts. The resulting stream can
be reused in other parts of a topology.

4.2.2. Trident Operations

The Trident Stream class provides a number of methods that modify the content of a
stream. The St r eam each() method is overloaded to allow the application of two types
of operations: filters and functions.

For a complete list of methods in the Stream class, see the Trident JavaDoc.
4.2.2.1. Filters

Trident filters provide a way to exclude tuples from a Stream based on specific criteria.
Implementing a Trident filter involves extending BaseFi | t er and implementing the
i skeep() method of the Filter interface:

bool ean i sKeep(Tri dent Tupl e tuple);

The i skeep() method takes a TridentTuple as input and returns a boolean. If i sKeep()
returns f al se, the tuple is dropped from the stream; otherwise the tuple is kept.

For example, to exclude words with fewer than three characters from the word count, you
could apply the following filter implementation to the stream:

public class ShortWrdFilter extends BaseFilter {
publ i ¢ bool ean i sKeep(Trident Tuple tuple) {
String word = tuple.getString(0);
return word. |l ength() > 3;

}
4.2.2.2. Functions

Trident functions are similar to Storm bolts, in that they consume individual tuples and
optionally emit new tuples. An important difference is that tuples emitted by Trident

28

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/Stream.html

Hortonworks Data Platform October 30, 2017

functions are additive. Fields emitted by Trident functions are added to the tuple and
existing fields are retained. The Spl i t function in the word count example illustrates a
function that emits additional tuples:

public class Split extends BaseFunction {

public void execute(TridentTuple tuple, TridentCollector collector) {
String sentence = tuple.getString(0);
for (String word : sentence.split(" ")) {
coll ector.emt(new Val ues(word));
}

}
}

Note that the Spl i t function always processes the first (index 0) field in the tuple.
It guarantees this because of the way that the function was applied using the
St ream each() method:

stream each(new Fi el ds("sentence"), new Split(), new Fields("word"))

The first argument to the each() method can be thought of as a field selector. Specifying
“sentence” tells Trident to select only that field for processing, thus guaranteeing that the
"sentence” field will be at index 0 in the tuple.

Similarly, the third argument names the fields emitted by the function. This behavior allows
both filters and functions to be implemented in a more generic way, without depending on
specific field naming conventions.

4.2.3. Trident Aggregations

4.2.3.1.

In addition to functions and filters, Trident defines a number of aggregator interfaces that
allow topologies to combine tuples.

There are three types of Trident aggregators:
» Combi ner Aggr egat or

* Reducer Aggr egat or

» Aggr egat or

As with functions and filters, Trident aggregations are applied to streams via
methods in the Stream class, namely aggr egat e(), partiti onAggregat e(), and
per si st ent Aggregate().

CombinerAggregator

The Conbi ner Aggr egat or interface is used to combine a set of tuples into a single field.
In the word count example the Count class is an example of a CombinerAggregator that
summed field values across a partition. The CombinerAggregator interface is as follows:

public interface Combi ner Aggr egat or <T> extends Seri al i zabl e {
T init(TridentTuple tuple);
T conbine(T val 1, T val 2);
T zero();

29

Hortonworks Data Platform October 30, 2017

4.2.3.2.

4.2.3.3.

When executing Aggr egat or, Storm callsi ni t () for each tuple, and calls conbi ne()
repeatedly to process each tuple in the partition.

When complete, the last value returned by conbi ne() is emitted. If the partition is empty,
the value of zer o() will be emitted.

ReducerAggregator

The Reducer Aggr egat or interface has the following interface definition:

public interface Reducer Aggregat or <T> extends Serializable {
Tinit();
T reduce(T curr, TridentTuple tuple);

}

When applying a Reducer Aggr egat or to a partition, Storm first calls thei ni t ()
method to obtain an initial value. It then calls the r educe() method repeatedly, to
process each tuple in the partition. The first argument to the r educe() method is the
current cumulative aggregation, which the method returns after applying the tuple to the
aggregation. When all tuples in the partition have been processed, Storm emits the last
value returned by r educe() .

Aggregator

The Aggr egat or interface represents the most general form of aggregation operations:

public interface Aggregator<T> extends Operation {
T init(Object batchld, TridentCollector collector);
voi d aggregate(T val, TridentTuple tuple, TridentCollector collector);
void conplete(T val, TridentCollector collector);

}

A key difference between Aggr egat or and other Trident aggregation interfaces is that
an instance of Tri dent Col | ect or is passed as a parameter to every method. This allows
Aggregator implementations to emit tuples at any time during execution.

Storm executes Aggr egat or instances as follows:

1. Storm calls the i ni t () method, which returns an object T representing the initial state
of the aggregation.

T is also passed to the aggr egat e() and conpl et e() methods.
2. Storm calls the aggr egat e() method repeatedly, to process each tuple in the batch.
3. Storm calls conpl et e() with the final value of the aggregation.
The word count example uses the built-in Count class that implements the

Conbi ner Aggr egat or interface. The Count class could also be implemented as an
Aggregator:

public class Count extends BaseAggregat or <Count St at e> {
static class CountState {

30

Hortonworks Data Platform October 30, 2017

| ong count = O;

}

public CountState init(Object batchld, TridentCollector collector) {
return new Count State();
}

public void aggregate(Count State state, TridentTuple tuple,
Trident Col | ector collector) {
st at e. count +=1;
}

public void conplete(CountState state, TridentCollector collector) {
col l ector.emt(new Val ues(state. count));
}

}

4.2 4. Trident State

4.2.4.1.

Trident includes high-level abstractions for managing persistent state in a topology.
State management is fault tolerant: updates are idempotent when failures and retries
occur. These properties can be combined to achieve exactly-once processing semantics.
Implementing persistent state with the Storm core APl would be more difficult.

Trident groups tuples into batches, each of which is given a unique transaction ID. When a
batch is replayed, the batch is given the same transaction ID. State updates in Trident are
ordered such that a state update for a particular batch will not take place until the state
update for the previous batch is fully processed. This is reflected in Tridents State interface
at the center of the state management API:

public interface State {
voi d begi nCommi t (Long txid);
void commit (Long txid);

}

When updating state, Trident informs the St at e implementation that a transaction is
about to begin by calling begi nConmmi t (), indicating that state updates can proceed. At
that point the St at e implementation updates state as a batch operation. Finally, when
the state update is complete, Trident calls the commi t () method, indicating that the state
update is ending. The inclusion of transaction ID in both methods allows the underlying
implementation to manage any necessary rollbacks if a failure occurs.

Implementing Trident states against various data stores is beyond the scope of this
document, but more information can be found in the Trident State documentation(https://
storm.apache.org/releases/1.1.0/Trident-state.html).

Trident Spouts

Trident defines three spout types that differ with respect to batch content, failure
response, and support for exactly-once semantics:

Non-transactional spouts Non-transactional spouts make no guarantees for the
contents of each batch. As a result, processing may
be at-most-once or at least once. It is not possible

31

https://storm.apache.org/releases/1.1.0/Trident-state.html
https://storm.apache.org/releases/1.1.0/Trident-state.html

Hortonworks Data Platform October 30, 2017

4.2.4.2.

to achieve exactly-once processing when using non-
transactional Trident spouts.

Transactional spouts Transactional spouts support exactly-once processing
in a Trident topology. They define success at the batch
level, and have several important properties that allow
them to accomplish this:

1. Batches with a given transaction ID are always
identical in terms of tuple content, even when
replayed.

2. Batch content never overlaps. A tuple can never be in
more than one batch.

3. Tuples are never skipped.

With transactional spouts, idempotent state updates
are relatively easy: because batch transaction IDs are
strongly ordered, the ID can be used to track data that
has already been persisted. For example, if the current
transaction ID is 5 and the data store contains a value
for ID 5, the update can be safely skipped.

Opaque transactional spouts Opaque transactional spouts define success at the tuple
level. Opaque transactional spouts have the following
properties:

1. There is no guarantee that a batch for a particular
transaction ID is always the same.

2. Each tuple is successfully processed in exactly one
batch, though it is possible for a tuple to fail in one
batch and succeed in another.

The difference in focus between transactional and opaque transactional spouts—success
at the batch level versus the tuple level, respectively—has key implications in terms of
achieving exactly-once semantics when combining different spouts with different state

types.
Achieving Exactly-Once Messaging in Trident

As mentioned earlier, achieving exactly-once semantics in a Trident topology require certain
combinations of spout and state types. It should also be clear why exactly-once guarantees

are not possible with non-transactional spouts and states. The table below illustrates which

combinations of spouts and states support exactly-once processing:

32

Hortonworks Data Platform

October 30, 2017

4.2.5. Further Reading about Trident

State
transaetional | TTansactional | CFRLS
n:-unacmﬂnnnl N Ho
E’ Transactional Mo Yes
w;.':cqti“;nm wao NG

For additional information about Trident, refer to the following documents:

Trident Tutorial
Trident API Overview
Trident State

Trident Spouts

4.3. Moving Data Into and Out of a Storm

Topology

There are two approaches for moving data into and out of a Storm topology:

¢ Use a spout or bolt connector to ingest or write streaming data from or to a component
such as Kafka, HDFS or HBase. For more information, see Moving Data Into and Out of

Apache Storm Using Spouts and Bolts.

¢ Use the core Storm or Trident APIs to write a spout or bolt.

4.4. Implementing Windowing Computations on

Data Streams

Windowing is one of the most frequently used processing methods for streams of data. An
unbounded stream of data (events) is split into finite sets, or windows, based on specified

33

https://storm.apache.org/releases/1.1.0/Trident-tutorial.html
https://storm.apache.org/releases/1.1.0/Trident-API-Overview.html
https://storm.apache.org/releases/1.1.0/Trident-state.html
https://storm.apache.org/releases/1.1.0/Trident-spouts.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-connectors.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-connectors.html

Hortonworks Data Platform October 30, 2017

4.4.1.

criteria, such as time. A window can be conceptualized as an in-memory table in which
events are added and removed based on a set of policies. Storm performs computations on
each window of events. An example would be to compute the top trending Twitter topic
every hour.

You can use high-level abstractions to define a window in a Storm topology, and you
can use stateful computation in conjunction with windowing. For more information, see
Implementing State Management.

This chapter includes examples that implement windowing features. For more information
about interfaces and classes, refer to the Storm 1.1.0 javadocs.

Understanding Sliding and Tumbling Windows

This subsection describes how sliding and tumbling windows work. Both types of windows
move across continuous streaming data, splitting the data into finite sets. Finite windows
are helpful for operations such as aggregations, joins, and pattern matching.

Sliding Windows

In a sliding window, tuples are grouped within a window that slides across the data

stream according to a specified interval. A time-based sliding window with a length of ten
seconds and a sliding interval of five seconds contains tuples that arrive within a ten-second
window. The set of tuples within the window are evaluated every five seconds. Sliding
windows can contain overlapping data; an event can belong to more than one sliding
window.

In the following image, the first window (w1, in the box with dashed lines) contains events
that arrived between the zeroth and tenth seconds. The second window (w2, in the box
with solid lines) contains events that arrived between the fifth and fifteenth seconds. Note
that events e3 through e6 are in both windows. When window w2 is evaluated at time t =
15 seconds, events e1 and e2 are dropped from the event queue.

Vil Wa

el e2 el ed e5 e e 28 29 e10e11 ..

lime
0 5 10 15

An example would be to compute the moving average of a stock price across the last five
minutes, triggered every second.

Tumbling Windows

In a tumbling window, tuples are grouped in a single window based on time or count. A
tuple belongs to only one window.

For example, consider a time-based tumbling window with a length of five seconds. The
first window (w1) contains events that arrived between the zeroth and fifth seconds. The
second window (w2) contains events that arrived between the fifth and tenth seconds, and
the third window (w3) contains events that arrived between tenth and fifteenth seconds.
The tumbling window is evaluated every five seconds, and none of the windows overlap;
each segment represents a distinct time segment.

34

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-state-mgmt.html
https://storm.apache.org/releases/1.1.0/javadocs/index.html

Hortonworks Data Platform October 30, 2017

W W2 W3

el e2 e3ed ebeb e7 ed ed ellel

0 5 10 15 time

An example would be to compute the average price of a stock over the last five minutes,
computed every five minutes.

4.4.2. Implementing Windowing in Core Storm

If you want to use windowing in a bolt, you can implement the bolt interface
| W ndowedBol t:

public interface | WndowedBolt extends | Conponent {
voi d prepare(Map stornConf, Topol ogyContext context, QutputCollector
col l ector);

/**

* Process tuples falling within the wi ndow and optionally emt
* new tupl es based on the tuples in the input w ndow.
*/

voi d execut e(Tupl eW ndow i nput W ndow) ;

voi d cl eanup();

}

Every time the window slides (the sliding interval elapses), Storm invokes the execut e
method.

You can use the Tupl eW ndow parameter to access current tuples in the window,
expired tuples, and tuples added since the window was last computed. You can use this
information to optimize the efficiency of windowing computations.

Bolts that need windowing support would typically extend BaseW ndowedBol t, which
has APIs for specifying type of window, window length, and sliding interval:

public class Slidi ngWndowBolt extends BaseW ndowedBolt {
private QutputCol |l ector collector;
@verride
public voi d prepare(Mp stornmConf, Topol ogyContext context, CQutputColl ector
col I ector){
this.collector = collector;
}

@verride
public voi d execut e(Tupl eW ndow i nput W ndow) {
for(Tuple tuple: inputWndow. get()) {
/! do the wi ndowi ng conputation

}

col |l ector. emt(new Val ues(conput edVal ue)) ;
}
}

You can specify window length and sliding interval as a count of the number of tuples, a
duration of time, or both. The following window configuration settings are supported:

/*
* Tupl e count based sliding window that slides after slidinglnterval nunber
of tuples

35

Hortonworks Data Platform October 30, 2017

*/
wi t hW ndow(Count w ndowLengt h, Count slidi nglnterval)

/*
* Tupl e count based wi ndow that slides with every incom ng tuple
*/

wi t hW ndow(Count wi ndowlLengt h)

/*
* Tupl e count based sliding window that slides after slidinglnterval tinme
durati on
*/

wi t hW ndow(Count w ndowLengt h, Duration slidinglnterval)

/*
* Time duration based sliding window that slides after slidinglnterval tinme
duration
*/

wi t hW ndow(Dur ati on wi ndowLengt h, Duration slidinglnterval)

/*
* Time duration based wi ndow that slides with every incoming tuple
*/

wi t hW ndow(Dur ati on wi ndowLengt h)

/*
* Tine duration based sliding window that slides after slidinglnterval nunber
of tuples
*/

wi t hW ndow(Dur ati on wi ndowlLengt h, Count slidi nglnterval)

/*
* Count based tunbling wi ndow that tunbles after the specified count of
tupl es
*/

wi t hTunbl i ngW ndow(BaseW ndowedBol t . Count count)

/*
* Time duration based tunmbling wi ndow that tunbles after the specified time
duration
*/

wi t hTunbl i ngW ndow BaseW ndowedBol t . Dur ati on durati on)

To add windowed bolts to the topology, use the TopologyBuilder (as you would with non-
windowed bolts):

Topol ogyBui | der bui | der = new Topol ogyBui | der () ;

/*
* A wi ndowed bolt that conputes sumover a sliding window with w ndow | ength
of
* 30 events that slides after every 10 events.
*/
bui | der. set Bolt ("suni', new W ndowSunBol t (). w t hW ndow Count . of (30), Count.
of (10)), 1)

. shuf f| eG oupi ng("spout");

For a sample topology that shows how to use the APIs to compute a sliding window sum
and a tumbling window average, see the Sl i di ngW ndowTopol ogy. j ava file in the
storm starter GitHub directory.

36

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/topology/TopologyBuilder.html

Hortonworks Data Platform October 30, 2017

4.4.2.1.

4.4.2.2.

For examples of tumbling and sliding windows, see the Apache document Windowing
Support in Core Storm.

The following subsections describe additional aspects of windowing calculations:
timestamps, watermarks, guarantees, and state management.

Understanding Tuple Timestamps and Out-of-Order Tuples

By default, window calculations are performed based on the processing timestamp. The
timestamp tracked in each window is the time when the tuple is processed by the bolt.

Storm can also track windows by source-generated timestamp. This can be useful for
processing events based on the time that an event occurs, such as log entries with
timestamps.

The following example specifies a source-generated timestamp field. The value for
fi el dName is retrieved from the incoming tuple, and then considered for use in
windowing calculations.

When this option is specified, all tuples are expected to contain the timestamp field.

/**

* Specify the tuple field that represents the tinmestanp as a | ong value. If
this field

* is not present in the incomng tuple, an {@ink ||l egal Argunent Excepti on}

will be thrown.
*

* @aram fiel dName the name of the field that contains the tinestanp
*/
publ i ¢ BaseW ndowedBolt withTi nest anpFiel d(String fiel dNanme)

Note: If the timestamp field is not present in the tuple, an exception is thrown and the
topology terminates. To resolve this issue, remove the erroneous tuple manually from the
source (such as Kafka), and then restart the topology.

In addition to using the timestamp field to trigger calculations, you can specify a time lag
parameter that indicates the maximum time limit for tuples with out-of-order timestamps:
/**

* Specify the maximumtine |ag of the tuple tinmestanp in mllis. The tuple

ti nest anps

* cannot be out of order by nobre than this anount.
*

* @aramduration the max |ag duration
*/
publ i ¢ BaseW ndowedBolt withLag(Duration duration)

For example, if the lag is five seconds and tuple t1 arrives with timestamp 06:00:05,

no tuples can arrive with tuple timestamps earlier than 06:00:00. If a tuple arrives with
timestamp 05:59:59 after t1 and the window has moved past t1, the tuple is considered
late and is not processed; late tuples are ignored and are logged in the worker log files at
the INFO level.

Understanding Watermarks

When processing tuples using a timestamp field, Storm computes watermarks based on
the timestamp of an incoming tuple. Each watermark is the minimum of the latest tuple

37

https://storm.apache.org/releases/1.1.0/Windowing.html
https://storm.apache.org/releases/1.1.0/Windowing.html

Hortonworks Data Platform October 30, 2017

timestamps (minus the lag) across all the input streams. At a higher level, this is similar to
the watermark concept used by Google's MillWheel for tracking event-based timestamps.

Periodically (by default, every second), Storm emits watermark timestamps, which are used
as the “clock tick” for the window calculation when tuple-based timestamps are in use. You
can change the interval at which watermarks are emitted by using the following API:

/**

* Specify the watermark event generation interval. Watermark events
* are used to track the progress of tine

*
* @araminterval the interval at which watermark events are generated
*/

publ i c BaseW ndowedBol t wi t hWat er mar kI nt erval (Dur ati on interval)

When a watermark is received, all windows up to that timestamp are evaluated.

For example, consider tuple timestamp-based processing with the following window
parameters:

* Window length equals 20 seconds, sliding interval equals 10 seconds, watermark emit
frequency equals 1 second, max lag equals 5 seconds.

 Current timestamp equals 09:00:00.

* Tuples e1(6:00:03), e2(6:00:05), €3(6:00:07), e4(6:00:18), e5(6:00:26), e6(6:00:36) arrive
between 9:00:00 and 9:00:01.

At time t equals 09:00:01, the following actions occur:
1. Storm emits watermark w1 at 6:00:31, because no tuples earlier than 6:00:31 can arrive.
2. Three windows are evaluated.

The first window ending timestamp (06:00:10) is computed by taking the earliest event
timestamp (06:00:03) and computing the duration based on the sliding interval (10
seconds):

¢ 5:59:50 to 06:00:10 with tuples e1, e2, e3
¢ 6:00:00 to 06:00:20 with tuples e1, e2, €3, e4
¢ 6:00:10 to 06:00:30 with tuples e4, e5

3. Tuple e6 is not evaluated, because watermark timestamp 6:00:31 is less than tuple
timestamp 6:00:36.

4. Tuples e7(8:00:25), €8(8:00:26), €9(8:00:27), e10(8:00:39) arrive between 9:00:01 and
9:00:02.

At time t equals 09:00:02, the following actions occur:

1. Storm emits watermark w2 at 08:00:34, because no tuples earlier than 8:00:34 can
arrive.

2. Three windows are evaluated:

38

https://research.google.com/pubs/pub41378.html

Hortonworks Data Platform October 30, 2017

4.4.2.3.

4.4.2.4.

4.4.3.

* 6:00:20 to 06:00:40, with tuples e5 and e6 (from an earlier batch)
¢ 6:00:30 to 06:00:50, with tuple e6 (from an earlier batch)
¢ 8:00:10 to 08:00:30, with tuples e7, €8, and e9

3. Tuple e10 is not evaluated, because the tuple timestamp 8:00:39 is beyond the
watermark time 8:00:34.

The window calculation considers the time gaps and computes the windows based on the
tuple timestamp.

Understanding the “at-least-once” Guarantee

The windowing functionality in Storm core provides an “at-least-once” guarantee.

Values emitted from a bolt’'s execut e(Tupl eW ndow i nput W ndow) method are
automatically anchored to all tuples in i nput W ndow. Downstream bolts are expected

to acknowledge the received tuple (the tuple emitted from the windowed bolt) to
complete the tuple tree. If not acknowledged, the tuples are replayed and the windowing
computation is reevaluated.

Tuples in a window are automatically acknowledged when they exit the window

after wi ndowlLengt h + sl i di ngl nt erval . Note that the configuration

t opol ogy. message. ti neout . secs should be more than wi ndowLengt h +

sl i di ngl nt erval fortime-based windows; otherwise, the tuples expire and are
replayed, which can result in duplicate evaluations. For count-based windows, you should
adjust the configuration so that wi ndowlLengt h + sl i di ngl nt erval tuples can be
received within the timeout period.

Saving the Window State

One issue with windowing is that tuples cannot be acknowledged until they exit the
window.

For example, consider a one-hour window that slides every minute. The tuples in the
window are evaluated (passed to the bol t execute method) every minute, but tuples that
arrived during the first minute are acknowledged only after one hour and one minute. If
there is a system outage after one hour, Storm replays all tuples from the starting point
through the sixtieth minute. The bolt’s execute method is invoked with the same set of
tuples 60 times; every window is reevaluated. One way to avoid this is to track tuples that
have already been evaluated, save this information in an external durable location, and use
this information to trim duplicate window evaluation during recovery.

For more information about state management and how it can be used to avoid duplicate
window evaluations, see Implementing State Management.

Implementing Windowing in Trident

Trident processes a stream in batches of tuples for a defined topology. As with core Storm,
Trident supports tumbling and sliding windows. Either type of window can be based on
processing time, tuple count, or both.

Windowing API for Trident

39

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-state-mgmt.html

Hortonworks Data Platform October 30, 2017

The common windowing API takes W ndowConf i g for any supported windowing
configuration. It returns a stream of aggregated results based on the given window
configuration.

public Stream wi ndow(W ndowConfi g wi ndowConfi g,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functionFi el ds)

wi ndowConf i g can be any of the following:
* Sli di ngCount W ndow of (i nt wi ndowCount, int slidingCount)

* Sli di ngDurati onW ndow of (BaseW ndowedBol t. Dur ati on
wi ndowDur ati on,

BaseW ndowedBol t. Durati on slidi ngDuration)
e Tunbl i ngCount W ndow of (i nt wi ndowLengt h)
e Tunbl i ngDur at i onW ndow of (BaseW ndowedBol t . Durati on wi ndowLengt h)

Trident windowing APIs also need to implement W ndows St or eFact or y, to store
received tuples and aggregated values.

Implementing a Tumbling Window

For a tumbling window implementation, tuples are grouped in a single window based
on processing time or count. Any tuple belongs to only one window. Here is the API for a
tumbling window:

/**
* Returns a stream of tuples which are aggregated results of a tunbling
wi ndow W t h
every {@ode w ndowCount} of tuples.
*/
public Stream tunbli ngW ndow i nt wi ndowCount ,
W ndows St or eFact ory wi ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functi onFi el ds)
/**
* Returns a stream of tuples which are aggregated results of a w ndow
that tunbles at
duration of {@ode wi ndowDurati on}
*/

public Stream tunbli ngW ndow BaseW ndowedBol t. Dur ati on wi ndowDur at i on,
W ndows St or eFact ory wi ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functionFi el ds)

Implementing a Sliding Window

For a sliding window implementation, tuples are grouped in windows that slide for every
sliding interval. A tuple can belong to more than one window. Here is the API for a sliding
window:

/**

40

Hortonworks Data Platform October 30, 2017

4.4.3.1.

* Returns a stream of tuples which are aggregated results of a sliding
wi ndow Wit h
every {@ode wi ndowCount} of tuples and slides the w ndow after
{@ode slideCount}.
*/
public Stream slidi ngW ndowi nt wi ndowCount ,
int slideCount,
W ndows St or eFact ory wi ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functionFi el ds)
/**
* Returns a stream of tuples which are aggregated results of a w ndow which
slides at
duration of {@ode slidinglnterval}
* and conpletes a wi ndow at {@ode w ndowDur ati on}
*/
public Stream slidi ngW ndow BaseW ndowedBol t.
Dur ati on wi ndowDur at i on,
BaseW ndowedBol t. Dur ati on slidingl nterval,
W ndows St or eFact ory wi ndowSt or eFact ory,
Fi el ds i nput Fi el ds,
Aggr egat or aggr egat or,
Fi el ds functi onFi el ds)

Trident Windowing Implementation Details

For information about or g. apache. storm tri dent. St r eam see the Apache javadoc
for Trident streams.

The following example shows a basic implementation of W ndowSt or eFact or y for
HBase, using HBaseW ndows St or eFact or y and HBaseW ndows St or e. It can be
extended to address other use cases.

/**

* Factory to create instances of {@ode W ndowsStore}.

*/

public interface W ndowsStoreFactory extends Serializable {
public WndowsStore create();

}

/**

* Store for storing window related entities |ike wi ndowed tuples,
triggers etc.
*

*/
public interface WndowsStore extends Serializable {

public Object get(String key);

public Iterabl e<Object> get(List<String> keys);
public Iterabl e<String> get Al |l Keys();

public void put(String key, Cbject val ue);
public void putAll (Collection<Entry> entries);

public void renove(String key);

41

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/class-use/Stream.html
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/class-use/Stream.html

Hortonworks Data Platform October 30, 2017

4.4.3.2.

public void renmoveAl |l (Coll ection<String> keys);

public void shutdown();

/**

* This class waps key and val ue obj ects which can be passed to { @ode
put Al 1} nethod.
*/
public static class Entry inplenents Serializable {
public final String key;
public final Object val ue;

A windowing operation in a Trident stream is a Tr i dent Pr ocessor implementation with
the following lifecycle for each batch of tuples received:

/1 This is invoked when a new batch of tuples is received.
voi d startBatch(Processor Cont ext processor Cont ext);

/[l This is invoked for each tuple of a batch.
voi d execut e(Processor Cont ext processorContext, String stream d, TridentTuple
tupl e);

/1 This is invoked for a batch to make it conplete. Al the tuples of this
bat ch

woul d have been al ready i nvoked w th #execut e(Processor Cont ext

processor Context, String streamd, TridentTuple tuple)

voi d fi ni shBat ch(Processor Cont ext processor Cont ext) ;

Each tuple is received in window operation through

W ndowTr i dent Processor #execute (Processor Cont ext

processor Context, String stream d, TridentTuple tuple).Thesetuplesare
accumulated for each batch.

When a batch is finished, associated tuple information is added to the window, and tuples
are saved in the configured W ndows St or e. Bolts for respective window operations fire

a trigger according to the specified windowing configuration (like tumbling/sliding count
or time). These triggers compute the aggregated result according to the given Aggregator.
Results are emitted as part of the current batch, if it exists.

When a trigger is fired outside W ndowTr i dent Pr ocessor #f i ni shBat ch invocation,
those triggers are stored in the given W ndows St or e, and are emitted as part of the next
immediate batch from that window’s processor.

Sample Trident Application with Windowing

Here is an example that uses HBaseW ndowSt or eFact or y for windowing:

/1 define argunents

Map<String, Object> config = new HashMap<>();

String tabl eName = "w ndow- st ate";

byte[] columFam |y = “cf”.getBytes(“UTF-8");

byte[] columQualifier = “tuples”. getBytes(“UTF-8");

/1 wi ndowstate table should already be created with cf:tuples col um
HBaseW ndows St or eFact ory wi ndowSt or eFactory = new
HBaseW ndows St or eFact ory(confi g, tabl ename, columFam |y, columQualifier);

42

Hortonworks Data Platform October 30, 2017

Fi xedBat chSpout spout = new Fi xedBat chSpout (new Fi el ds("sentence"), 3, new
Val ues("the cow junped over the noon"),
new Val ues("the man went to the store and bought sone candy"), new
Val ues("four score and seven years ago"),
new Val ues("how many apples can you eat"), new Values("to be or
not to be the person"));

spout . set Cycl e(true);
Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();

Stream stream = topol ogy. newSt rean("spout 1", spout).parallelisnH nt(16).
each(new Fi el ds("sent ence"),
new Split(), new Fields("word"))
.tunbl i ngW ndow(1000, wi ndowSt or eFactory, new Fi el ds("word"), new
Count AsAggregator (), new Fields("count"))
. peek(new Consuner () {

@verride

public voi d accept (Tri dent Tupl e input) {
LOG i nfo("Received tuple: [{}]", input);

}

1)
St or nifopol ogy st or mfopol ogy = topol ogy. bui l d();

For additional examples that use Trident windowing APIs, see
TridentHBaseWindowingStoreTopology and TridentWindowinglnmemoryStoreTopology.

4.5. Implementing State Management

This subsection describes state management APIs and architecture for core Storm.

Stateful abstractions allow Storm bolts to store and retrieve the state of their
computations. The state management framework automatically, periodically snapshots the
state of bolts across a topology. There is a default in-memory-based state implementation,
as well as a Redis-backed implementation that provides state persistence.

Bolts that require state to be managed and persisted by the framework should implement
the | St at ef ul Bol t interface or extend BaseSt at ef ul Bol t, and implement the
void initState(T state) method. Thei nit St at e method is invoked by the
framework during bolt initialization. It contains the previously saved state of the bolt.
Invoke i ni t St at e after pr epar e, but before the bolt starts processing any tuples.

Currently the only supported State implementation is KeyVal ueSt at e, which provides
key-value mapping.

The following example describes how to implement a word count bolt that uses the key-
value state abstraction for word counts:

publi ¢ class WordCount Bol t
ext ends BaseSt at ef ul Bol t <KeyVal ueSt at e<String, |nteger>> {
private KeyVal ueState<String, | nteger> wordCounts;

@verride

public void initState(KeyVal ueState<String,Integer> state) {
wor dCounts = state;

}

@verride

43

http://github.com/apache/storm/blob/v1.0.1/examples/storm-starter/src/jvm/org/apache/storm/starter/trident/TridentHBaseWindowingStoreTopology.java
http://github.com/apache/storm/blob/v1.0.1/examples/storm-starter/src/jvm/org/apache/storm/starter/trident/TridentWindowingInmemoryStoreTopology.java

Hortonworks Data Platform October 30, 2017

public void execute(Tuple tuple) {
String word = tuple.getString(0);
I nt eger count = wordCounts. get(word, 0);
count ++;
wor dCount s. put (word, count);
collector.enmt(tuple, new Val ues(word, count));
col | ector. ack(tuple);

j .
1. Extend the BaseSt at ef ul Bol t and type parameterize it with KeyVal ueSt at e, to
store the mapping of word to count.

2. Inthe i ni t method, initialize the bolt with its previously saved state: the word count
last committed by the framework during the previous run.

3. In the execut e method, update the word count.

The framework periodically checkpoints the state of the bolt (default
every second). The frequency can be changed by setting the storm config
t opol ogy. st at e. checkpoi nt.interval . ns.

For state persistence, use a state provider that supports persistence by setting

the topology.state.provider in the storm config. For example, for Redis based

key-value state implementation, you can sett opol ogy. st at e. provi der to

or g. apache. stormredi s. st at e. Redi skeyVal ueSt at eProvi der in

st or m yani . The provider implementation .jar should be in the class path, which in this
case means placing the st or m r edi s- * .jar in the ext | i b directory.

You can override state provider properties by setting
t opol ogy. st at e. provi der. confi g. For Redis state this is a JSON configuration with
the following properties:

{
"keyC ass": "Optional fully qualified class nane of the Key type.",
"val ued ass": "Optional fully qualified class nane of the Value type.",
"keySerializerC ass": "Optional Key serializer inplenmentation class.",
"val ueSerializerd ass": "Optional Value Serializer inplenentation class.",
"j edi sPool Config": {
"host": "l ocal host",
"port": 6379,
"timeout": 2000,
"dat abase": O,
"password": "xyz"
}
}

4.5.1. Checkpointing

Checkpointing is triggered by an internal checkpoint spout at the interval specified by
t opol ogy. st at e. checkpoi nt. i nterval . ms. If there is at least one IStatefulBolt in
the topology, the checkpoint spout is automatically added by the topology builder .

For stateful topologies, the topology builder wraps the | St at ef ul Bol t ina
St at ef ul Bol t Execut or, which handles the state commits on receiving the checkpoint
tuples. Non-stateful bolts are wrapped in a Checkpoi nt Tupl eFor war der, which

44

Hortonworks Data Platform October 30, 2017

simply forwards the checkpoint tuples so that the checkpoint tuples can flow through the
topology directed acyclic graph (DAG).

Checkpoint tuples flow through a separate internal stream called $checkpoi nt . The
topology builder wires the checkpoint stream across the whole topology, with the
checkpoint spout at the root.

- default [“Stmet | default -y | default [siatetu
P +*Boltl] - [» | Bolt2

: l—'-— Schipl Schkpt B

! ACK

| Agker |weeeeee e eeeeeeesseacciecciescseceeeaaas u !

At specified checkpoint intervals, the checkpoint spout emits checkpoint tuples. Upon
receiving a checkpoint tuple, the state of the bolt is saved and the checkpoint tuple is
forwarded to the next component. Each bolt waits for the checkpoint to arrive on all of
its input streams before it saves its state, so state is consistent across the topology. Once
the checkpoint spout receives an ack from all bolts, the state commit is complete and the
transaction is recorded as committed by the checkpoint spout.

This checkpoint mechanism builds on Storm's existing acking mechanism to replay the
tuples. It uses concepts from the asynchronous snapshot algorithm used by Flink, and from
the Chandy-Lamport algorithm for distributed snapshots. Internally, checkpointing uses a
three-phase commit protocol with a prepare and commit phase, so that the state across the
topology is saved in a consistent and atomic manner.

4.5.2. Recovery

The recovery phase is triggered for the following conditions:
* When a topology is started for the first time.

* If the previous transaction was not prepared successfully, a rollback message is sent
across the topology to indicate that if a bolt has some prepared transactions it can be
discarded.

* If the previous transaction was prepared successfully but not committed, a commit
message is sent across the topology so that the prepared transactions can be
committed.

After these steps finish, bolts are initialized with the state.

* When a bolt fails to acknowledge the checkpoint message; for example, if a worker
crashes during a transaction.

45

http://arxiv.org/abs/1506.08603
http://research.microsoft.com/en-us/um/people/lamport/pubs/chandy.pdf

Hortonworks Data Platform October 30, 2017

When the worker is restarted by the supervisor, the checkpoint mechanism ensures that
the bolt is initialized with its previous state. Checkpointing continues from the point
where it left off.

4.5.3. Guarantees

Storm relies on the acking mechanism to replay tuples in case of failures. It is possible

that the state is committed but the worker crashes before acking the tuples. In this

case the tuples are replayed causing duplicate state updates. Also currently the

St at ef ul Bol t Execut or continues to process the tuples from a stream after it has
received a checkpoint tuple on one stream while waiting for checkpoint to arrive on other
input streams for saving the state. This can also cause duplicate state updates during
recovery.

The state abstraction does not eliminate duplicate evaluations and currently provides only
at-least once guarantee.

To provide the at-least-once guarantee, all bolts in a stateful topology are expected to
anchor the tuples while emitting and ack the input tuples once it is processed. For non-
stateful bolts, the anchoring and acking can be automatically managed by extending the
BaseBasi cBol t . Stateful bolts are expected to anchor tuples while emitting and ack
the tuple after processing like in the Wor dCount Bol t example in the State management
subsection.

4.5.4. Implementing Custom Actions: IStateful Bolt Hooks

The IStateful bolt interface provides hook methods through which stateful bolts can
implement custom actions. This feature is optional; stateful bolts are not expected to
provide an implementation. The feature is provided so that other system-level components
can be built on top of stateful abstractions; for example, to implement actions before the
state of the stateful bolt is prepared, committed or rolled back.

/**

* This is a hook for the conponent to perform sone actions just before the
* framework conmits its state.

*/

voi d preCommit (Il ong txid);

/**

* This is a hook for the conponent to perform some actions just before the
* framework prepares its state.

*/

voi d prePrepare(long txid);

/**

* This is a hook for the conponent to perform some actions just before the
* framework rolls back the prepared state.

*/

voi d preRol | back();

4.5.5. Implementing Custom States

Currently the only kind of State implementation supported is KeyVal ueSt at e, which
provides key-value mapping.

46

Hortonworks Data Platform October 30, 2017

4.5.6.

Custom state implementations should provide implementations for the methods defined
in the St at e interface. These are the voi d prepareConmmi t (1 ong txid),void
commi t(long txid),androll back() methods. The conmi t () method is optional; it
is useful if the bolt manages state on its own. This is currently used only by internal system
bolts (such as Checkpoi nt Spout).

KeyVal ueSt at e implementations should also implement the methods defined in the
KeyVal ueSt at e interface.

The framework instantiates state through the corresponding St at ePr ovi der
implementation. A custom state should also provide a St at ePr ovi der implementation
that can load and return the state based on the namespace.

Each state belongs to a unique namespace. The namespace is typically unique to a task,
so that each task can have its own state. The StateProvider and corresponding State
implementation should be available in the class path of Storm, by placing them in the
ext|i b directory.

Implementing Stateful Windowing

The windowing implementation in core Storm acknowledges tuples in a window only when
they fall out of the window.

For example, consider a window configuration with a window length of 5 minutes and a
sliding interval of 1 minute. The tuples that arrived between 0 and 1 minutes are acked only
when the window slides past one minute (for example, at the 6th minute).

WH W2 W3

el e2 e3 ed ed eb ef ed ..

tirme

last expired =e2
last evaluated = a7

If the system crashes, tuples e1 to e8 are replayed, assuming that the ack for e1 and e2 did
not reach the acker. Tuples w1, w2 and w3 will be reevaluated.

Stateful windowing tries to minimize duplicate window evaluations by saving the last
evaluated state and the last expired state of the window. Stateful windowing expects

a monotonically increasing message ID to be part of the tuple, and uses the stateful
abstractions discussed previously to save the last expired and last evaluated message IDs.

During recovery, Storm uses the last expired and last evaluated message IDs to avoid
duplicate window evaluations:

* Tuples with message IDs lower than the last expired ID are discarded.

* Tuples with message IDs between the last expired and last evaluated message IDs are fed
into the system without activating any triggers.

47

Hortonworks Data Platform

October 30, 2017

¢ Tuples beyond the last evaluated message ids are processed as usual.

State support in windowing is provided by | St at ef ul W ndowedBol t . User bolts should
typically extend BaseSt at ef ul W ndowedBol t for windowings operation that use the
Storm framework to automatically manage the state of the window.

4.5.7. Sample Topology with Saved State

A sample topology in st orm st art er, St at ef ul W ndowi ngTopol ogy, demonstrates
the use of | St at ef ul W ndowedBol t to save the state of a windowing operation and
avoid recomputation in case of failures. The framework manages window boundaries
internally; it does not invoke execut e(Tupl eW ndow i nput W ndow) for already-
evaluated windows if there is a restart after a failure.

4.6. Performance Guidelines for Developing a

Storm Topology

The following table lists several general performance-related guidelines for developing

Storm topologies.

Table 4.4. Storm Topology Development Guidelines

Guideline

Description

Read topology configuration parameters from a file.

Rather than hard coding configuration information in your
Storm application, read the configuration parameters,
including parallelism hints for specific components,

from a file inside the mai n() method of the topology.
This speeds up the iterative process of debugging by
eliminating the need to rewrite and recompile code for
simple configuration changes.

Use a cache.

Use a cache to improve performance by eliminating
unnecessary operations over the network, such as making
frequent external service or lookup calls for reference data
needed for processing.

Tighten code in the execut e() method.

Every tuple is processed by the execut e() method, so
verify that the code in this method is as tight and efficient
as possible.

Perform benchmark testing to determine latencies.

Perform benchmark testing of the critical points in the
network flow of your topology. Knowing the capacity of
your data "pipes" provides a reliable standard for judging
the performance of your topology and its individual
components.

48

Hortonworks Data Platform October 30, 2017

5. Moving Data Into and Out of Apache
Storm Using Spouts and Bolts

This chapter focuses on moving data into and out of Apache Storm through the use of
spouts and bolts. Spouts read data from external sources to ingest data into a topology.
Bolts consume input streams and process the data, emit new streams, or send results to
persistent storage. This chapter focuses on bolts that move data from Storm to external
sources.

The following spouts are available in HDP 2.5:

» Kafka spout based on Kafka 0.7.x/0.8.x, plus a new Kafka consumer spout available as a
technical preview (not for production use)

* HDFS

* EventHubs

* Kinesis (technical preview)
The following bolts are available in HDP 2.5:
» Kafka

* HDFS

* EventHubs

* HBase

* Hive

* JDBC (supports Phoenix)

* Solr

» Cassandra

* MongoDB

* ElasticSearch

* Redis

* OpenTSDB (technical preview)

Supported connectors are located at/ usr/ | i b/ st ornf cont ri b. Each contains a .jar file
containing the connector's packaged classes and dependencies, and another .jar file with
javadoc reference documentation.

This chapter describes how to use the Kafka spout, HDFS spout, Kafka bolt, Storm-
HDFS connector, and Storm-HBase connector APIs. For information about connecting
to components on a Kerberos-enabled cluster, see Configuring Connectors for a Secure
Cluster.

49

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-connectors-secure.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-connectors-secure.html

Hortonworks Data Platform October 30, 2017

5.1. Ingesting Data from Kafka

5.1.1.

KafkaSpout reads from Kafka topics. To do so, it needs to connect to the Kafka broker,
locate the topic from which it will read, and store consumer offset information (using the
ZooKeeper root and consumer group ID). If a failure occurs, KafkaSpout can use the offset
to continue reading messages from the point where the operation failed.

The st or m kaf ka components include a core Storm spout and a fully transactional
Trident spout. Storm-Kafka spouts provide the following key features:

* 'Exactly once' tuple processing with the Trident API
» Dynamic discovery of Kafka brokers and partitions

You should use the Trident APl unless your application requires sub-second latency.

KafkaSpout Integration: Core Storm APIs

The core-storm API represents a Kafka spout with the Kaf kaSpout class.

To initialize Kaf kaSpout , define a Spout Conf i g subclass instance of the Kaf kaConfi g
class, representing configuration information needed to ingest data from a Kafka cluster.
Kaf kaSpout requires an instance of the Br oker Host s interface.

Br oker Host s Interface

The Br oker Host interface maps Kafka brokers to topic partitions. Constructors

for Kaf kaSpout (and, for the Trident API, Tr i dent Kaf kaConf i g) require an
implementation of the Br oker Host s interface.

The st or m kaf ka component provides two implementations of Br oker Host s,
ZkHost s and St ati cHost s:

* Use ZkHost s if you want to track broker-to-partition mapping dynamically.This class
uses Kafka's ZooKeeper entries to track mapping.

You can instantiate an object as follows:

public ZkHosts(String brokerzkStr, String brokerzkPat h)
public ZkHosts(String brokerZkStr)

where:

e broker ZkSt r isthe | P: port address for the ZooKeeper host; for example,
| ocal host: 2181.

¢ br oker ZkPat h is the root directory under which topics and partition information are
stored. By default this is /br oker s, which is the default used by Kafka.

By default, broker-partition mapping refreshes every 60 seconds. If you want to change
the refresh frequency, set host . r ef r eshFr eqSecs to your chosen value.

50

Hortonworks Data Platform October 30, 2017

» Use St at i cHost s for static broker-to-partition mapping. To construct an instance of
this class, you must first construct an instance of @ obal Partiti onl nf or mati on; for
example:

Broker brokerForPartition0 = new Broker ("l ocal host");//| ocal host: 9092
Br oker brokerForPartitionl = new Broker ("l ocal host", 9092);//| ocal host: 9092
but we specified the port explicitly
Broker brokerForPartition2 = new Broker ("l ocal host: 9092");//1 ocal host: 9092
speci fied as one string.
d obal Partitionlnfornation partitionlnfo = new d obal Partitionlnformation();
partitionl nfo.add(0, brokerForPartitionQ)//mpping formpartition O to
br oker For Partiti onO
partitionlnfo.add(1l, brokerForPartitionl)//mpping formpartition 1 to
br oker For Partitionl
partitionlnfo.add(2, brokerForPartition2)//mapping formpartition 2 to
br oker For Partiti on2
StaticHosts hosts = new StaticHosts(partitionlnfo);

Kaf kaConf i g Class and Spout Conf i g Subclass
Next, define a Spout Conf i g subclass instance of the Kaf kaConf i g class.

Kaf kaConf i g contains several fields used to configure the behavior of a Kafka spout in
a Storm topology; Spout conf i g extends Kaf kaConf i g, supporting additional fields for
ZooKeeper connection info and for controlling behavior specific to Kaf kaSpout .

Kaf kaConf i g implements the following constructors, each of which requires an
implementation of the Br oker Host s interface:

publ i ¢ Kaf kaConfi g(Broker Hosts hosts, String topic)
publ i ¢ Kaf kaConfi g(BrokerHosts hosts, String topic, String clientld)

Kaf kaConf i g Parameters

host s One or more hosts that are Kafka ZooKeeper broker
nodes (see "Br oker Host s Interface").

t opi c Name of the Kafka topic that KafkaSpout will consume
from.

clientld Optional parameter used as part of the ZooKeeper
path, specifying where the spout's current offset is
stored.

Kaf kaConf i g Fields

fetchSi zeByt es Number of bytes to attempt to fetch in one request to a
Kafka server. The default is 1MB.

socket Ti neout Ms Number of milliseconds to wait before a socket fails
an operation with a timeout. The default value is 10
seconds.

buf f er Si zeByt es Buffer size (in bytes) for network requests. The default
is TMB.

schene The interface that specifies how a Byt eBuf f er from a

Kafka topic is transformed into a Storm tuple.

51

Hortonworks Data Platform

October 30, 2017

i gnoreZKOf f set s

start Of f set Ti ne

The default, Mul ti Schene, returns a tuple and no
additional processing.

The API provides many implementations of the Schene
class, including:

e storm kaf ka. St ri ngSchene
e st orm kaf ka. KeyVal ueScheneAsMul ti Schene
e storm kaf ka. St ri ngKeyVal ueSchene

e st orm kaf ka. KeyVal ueScheneAsMul ti Schene

c Important

In Apache Storm versions prior to 1.0,

Mul ti Scheme methods accepted

a byt e[] parameter instead of a

Byt eBuf f er . In Storm version 1.0,

Mul t i Scheme and related scheme APIs
changed; they now accept a Byt eBuf f er
instead of abyte[].

As a result, Kafka spouts built with Storm
versions earlier than 1.0 do not work with
Storm versions 1.0 and later. When running
topologies with Storm version 1.0 and

later, ensure that your version of st or m
kaf ka is at least 1.0. Rebuild pre-1.0 shaded
topology .jar files that bundle st or m

kaf ka classes with st or m kaf ka version
1.0 before running them in clusters with
Storm 1.0 and later.

To force the spout to ignore any consumer

state information stored in ZooKeeper, set

i gnoreZkOf f set s totrue. Ift rue, the spout
always begins reading from the offset defined by
start O f set Ti me. For more information, see "How
KafkaSpout stores offsets of a Kafka topic and recovers
in case of failures."

Controls whether streaming for a topic starts from the
beginning of the topic or whether only new messages
are streamed. The following are valid values:

e kaf ka. api . O f set Request . Earl i est Ti me()
starts streaming from the beginning of the topic

e kaf ka. api . O f set Request . Lat est Ti me()
streams only new messages

52

https://github.com/apache/storm/tree/master/external/storm-kafka#multischeme
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures

Hortonworks Data Platform October 30, 2017

maxf f set Behi nd Specifies how long a spout attempts to retry the
processing of a failed tuple. If a failing tuple's offset is
less than maxCf f set Behi nd, the spout stops retrying
the tuple. The default is LONG. MAX_VALUE.

useStart O f set Ti nef O f set @uitchIRavigther a spout streams messages from
the beginning of a topic when the spout throws an
exception for an out-of-range offset. The default value
is true.

met ri csTi meBucket Si zel nSecGontrols the time interval at which Storm reports spout-
related metrics. The default is 60 seconds.

Instantiate Spout Conf i g as follows:

publ i ¢ Spout Confi g(BrokerHosts hosts, String topic, String zkRoot, String
nodel d)

Spout Conf i g Parameters

hosts One or more hosts that are Kafka ZooKeeper broker nodes (see "Br oker Host s
Interface").

topi ¢ Name of the Kafka topic that KafkaSpout will consume from.

zkr oot Root directory in ZooKeeper under which KafkaSpout consumer offsets are
stored. The defaultis / br okers.

nodel d ZooKeeper node under which KafkaSpout stores offsets for each topic-partition.
The node ID must be unique for each Topology. The topology uses this path to
recover in failure scenarios, or when there is maintenance that requires killing
the topology.

zkr oot and nodel d are used to construct the ZooKeeper path where Storm stores the
Kafka offset. You can find offsets at zkr oot +"/ " +nodel d.

To start processing messages from where the last operation left off, use the
same zkr oot and nodel d. To start from the beginning of the Kafka topic, set
Kaf kaConfi g. i gnoreZKO f sets totrue.

Example

The following example illustrates the use of the Kaf kaSpout class and related interfaces:

Br oker Host s hosts = new ZkHost s(zkConnStri ng);

Spout Confi g spout Config = new Spout Confi g(hosts, topicNane, "/" + zkrootDir,
node) ;

spout Confi g. scheme = new SchenmeAsMil ti Schene(new StringSchene());

Kaf kaSpout kaf kaSpout = new Kaf kaSpout (spout Confi g) ;

5.1.2. KafkaSpout Integration: Trident APIs

The Trident API represents a Kafka spout with the OpaqueTr i dent Kaf kaSpout class.

To initialize OpaqueTr i dent Kaf kaSpout , define a Tr i dent Kaf kaConf i g subclass
instance of the Kaf kaConf i g class, representing configuration information needed to
ingest data from a Kafka cluster.

53

Hortonworks Data Platform October 30, 2017

Kaf kaConfi g Class and Tr i dent Kaf kaConf i g Subclass

Both the core-storm and Trident APIs use Kaf kaConf i g, which contains several
parameters and fields used to configure the behavior of a Kafka spout in a Storm topology.
For more information, see "Kaf kaConf i g Class" in KafkaSpout Configuration Settings:
Core Storm API.

Instantiate a Tr i dent Kaf kaConf i g subclass instance of the Kaf kaConf i g class. Use
one of the following constructors, each of which requires an implementation of the

Br oker Host s interface. For more information about Br oker Host s, see "Br oker Host s
Interface" in KafkaSpout Configuration Settings: Core Storm APIs.

publi ¢ Tri dent Kaf kaConfi g(Br oker Hosts hosts, String topic)
publ i c Tri dent Kaf kaConfi g(Br oker Hosts hosts, String topic, String id)

Tri dent Kaf kaConf i g Parameters

host s One or more hosts that are Kafka ZooKeeper broker nodes (see
"Br oker Host s Interface").

topic Name of the Kafka topic.
clientid Unique identifier for this spout.
Example

The following example illustrates the use of the OpaqueTr i dent Kaf kaSpout class and
related interfaces:

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy() ;

Broker Hosts zk = new ZkHosts("| ocal host");

Tri dent Kaf kaConfi g spout Conf = new Tri dent Kaf kaConfi g(zk, "test-topic");
spout Conf . schenme = new SchemeAsMul ti Scherme(new StringScheme());
OpaqueTri dent Kaf kaSpout spout = new QpaqueTri dent Kaf kaSpout (spout Conf) ;

c Important
In Apache Storm versions prior to 1.0, Mul t i Scheme methods accepted
a byt e[] parameter instead of a Byt eBuf f er . In Storm version 1.0,
Mul ti Scherre and related scheme APIs changed; they now accept a
Byt eBuf f er instead of abyte[].

As a result, Kafka spouts built with Storm versions earlier than 1.0 do not work
with Storm versions 1.0 and later. When running topologies with Storm version
1.0 and later, ensure that your version of st or m kaf ka is at least 1.0. Rebuild
pre-1.0 shaded topology .jar files that bundle st or m kaf ka classes with

st or m kaf ka version 1.0 before running them in clusters with Storm 1.0 and

later.

5.1.3. Tuning KafkaSpout Performance

KafkaSpout provides two internal parameters to control performance:

» of fset. commi t. peri od. s specifies the period of time (in milliseconds) after
which the spout commits to Kafka. To set this parameter, use the KafkaSpoutConfig set
method setOffsetCommitPeriodMs.

54

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-kafkaspout-config-core.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-kafkaspout-config-core.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-kafkaspout-config-core.html
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L189-L193

Hortonworks Data Platform October 30, 2017

e max. unconmi tt ed. of f set s defines the maximum number of polled offsets (records)
that can be pending commit before another poll can take place. When this limit is
reached, no more offsets can be polled until the next succesful commit sets the number
of pending offsets below the threshold. To set this parameter, use the KafkaSpoutConfig
set method setMaxUncommittedOffsets.

Note that these two parameters trade off memory versus time:

* When of f set . conmmi t. peri od. s is set to a low value, the spout commits to Kafka
more often. When the spout is committing to Kafka, it is not fetching new records nor
processing new tuples.

* When max. uncomm tt ed. of f set s increases, the memory footprint increases. Each
offset uses eight bytes of memory, which means that a value of 10000000 (10MB) uses
about 80MB of memory.

It is possible to achieve good performance with a low commit period and small memory
footprint (a small value for max. unconmi t t ed. of f set s), as well as with a larger
commit period and larger memory footprint. However, you should avoid using large values
for of f set. conmi t. peri od. ms with a low value for max. unconmi tt ed. of f set s.

Kafka consumer configuration parameters can also have an impact on the KafkaSpout
performance. The following Kafka parameters are most likely to have the strongest impact
on KafkaSpout performance:

» The Kafka Consumer poll timeout specifies the time (in milliseconds) spent polling if
data is not available. To set this parameter, use the KafkaSpoutConfig set method
setPollTimeoutMs.

» Kafka consumer parameter f et ch. i n. byt es specifies the minimum amount of
data the server returns for a fetch request. If the minimum amount is not available, the
request waits until the minimum amount accumulates before answering the request.

» Kafka consumer parameter f et ch. max. wai t . ms specifies the maximum amount of
time the server will wait before answering a fetch request, when there is not sufficient
data to satisfy f et ch. mi n. byt es.

2 Important

For HDP 2.5.0 clusters in production use, you should override the
default values of KafkaSpout parameters of f set . commi t . peri od
and nmax. unconmmi tt ed. of f set s, and Kafka consumer parameter
pol | . ti meout. ns, as follows:

* Setpol | .timeout. s to 200.
» Setof fset.comit. peri od. ms to 30000 (30 seconds).
» Set nax. unconmmi tt ed. of f set s to 10000000 (ten million).

Performance also depends on the structure of your Kafka cluster, the distribution of the
data, and the availability of data to poll.

Log Level Performance Impact

55

https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L211-L217
http://kafka.apache.org/documentation.html#consumerconfigs
http://kafka.apache.org/0100/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L180-L184

Hortonworks Data Platform October 30, 2017

Storm supports several logging levels, including Trace, Debug, Info, Warn, and Error.
Trace-level logging has a significant impact on performance, and should be avoided in
production. The amount of log messages is proportional to the number of records fetched
from Kafka, so a lot of messages are printed when Trace-level logging is enabled.

Trace-level logging is most useful for debugging pre-production environments under mild
load. For debugging, if necessary, you can throttle how many messages are polled from
Kafka by setting the max. partiti on. f et ch. byt es parameter to a low number that is
larger than than the largest single message stored in Kafka.

Logs with Debug level will have slightly less performance impact than Trace-level logs, but
still generate a lot of messages. This setting can be useful for assessing whether the Kafka
spout is properly tuned.

For general information about Apache Storm logging features, see Monitoring and
Debugging an Apache Storm Topology.

5.1.4. Configuring Kafka for Use with the Storm-Kafka
Connector

Before using the st or m kaf ka connector, you must modify your Apache Kafka
configuration: add a zookeeper . connect property, with hostnames and port numbers
of HDP ZooKeeper nodes, to the Kafka server. properti es file.

5.1.5. Configuring KafkaSpout to Connect to HBase or Hive

Before connecting to HBase or Hive, add the following exclusions to your POM file for the
curator framework:

<excl usi on>
<gr oupl d>or g. apache. cur at or </ gr oupl d>
<artifactld>curator-client</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. apache. cur at or </ gr oupl d>
<artifactld>curator-recipes</artifactld>
</ excl usi on>
<excl usi on>
<gr oupl d>or g. apache. cur at or </ gr oupl d>
<artifactld>apache-curator</artifactld>
</ excl usi on>

5.2. Ingesting Data from HDFS

The HDFS spout actively monitors a specified HDFS directory and consumes any new files
that appear in the directory, feeding data from HDFS to Storm.

2 Important

HDFS spout assumes that files visible in the monitored directory are not actively
being updated. Only after a file is completely written should it be made visible
to the spout. Following are two approaches for ensuring this:

56

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-topology-debugging.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-topology-debugging.html

Hortonworks Data Platform October 30, 2017

* Write the file to another directory. When the write operation is finished,
move the file to the monitored directory.

* Create the file in the monitored directory with an '.ignore' suffix; HDFS spout
ignores files with an ".ignore' suffix. When the write operation is finished,
rename the file to omit the suffix.

When the spout is actively consuming a file, it renames the file with an . i npr ogr ess
suffix. After consuming all contents in the file, the file is moved to a configurable done
directory and the . i npr ogr ess suffix is dropped.

Concurrency

If multiple spout instances are used in the topology, each instance consumes a different file.
Synchronization among spout instances relies on lock files created in a subdirectory called

. I ock (by default) under the monitored directory. A file with the same name as the file
being consumed (without the . i npr ogr ess suffix) is created in the lock directory. Once
the file is completely consumed, the corresponding lock file is deleted.

Recovery from failure

Periodically, the spout records information about how much of the file has been consumed
in the lock file. If the spout instance crashes or there is a force kill of topology, another
spout can take over the file and resume from the location recorded in the lock file.

Certain error conditions (such as a spout crash) can leave residual lock files. Such a stale lock
file indicates that the corresponding input file has not been completely processed. When
detected, ownership of such stale lock files will be transferred to another spout.

The hdf sspout . | ock. ti meout . sec property specifies the duration of inactivity after
which lock files should be considered stale. The default timeout is five minutes. For lock

file ownership transfer to succeed, the HDFS lease on the file (from the previous lock
owner) should have expired. Spouts scan for stale lock files before selecting the next file for
consumption.

Lock on .lock Directory

HDFS spout instances create a DI RLOCK file in the . | ock directory to coordinate certain
accesses to the .lock directory itself. A spout will try to create it when it needs access to
the .lock directory, and then delete it when done. In error conditions such as a topology
crash, force kill, or untimely death of a spout, this file may not be deleted. Future instances
of the spout will eventually recover the file once the DI RLOCK file becomes stale due to
inactivity for hdf sspout . | ock. ti meout . sec seconds.

API Support

HDFS spout supports core Storm, but does not currently support Trident.

5.2.1. Configuring HDFS Spout

The following member functions are required for Hdf sSpout :

. set Reader Type() Specifies which file reader to use:

57

Hortonworks Data Platform October 30, 2017

* To read sequence files, set thisto ' seq' .
* To read text files, set thisto ' t ext ' .

* If you want to use a custom file
reader class that implements interface
or g. apache. st orm hdf s. spout . Fi | eReader, set this
to the fully qualified class name.

. W thQut put Fi el ds() Specifies names of output fields for the spout. The number of
fields depends upon the reader being used.

For convenience, built-in reader types expose a static member
called def aul t Fi el ds that can be used for setting this.

.setHdf sUri () Specifies the HDFS URI for HDFS NameNode; for example:
hdf s: / / nanenodehost : 8020.

. set SourceDir () Specifies the HDFS directory from which to read files; for
example, / dat a/ i nputdir.

.set ArchiveDir() Specifies the HDFS directory to move a file after the file is
completely processed; for example, / dat a/ done.

If this directory does not exist, it will be created automatically.

.setBadFil esDir () Specifies a directory to move a file if there is an error parsing
the contents of the file; for example, / dat a/ badfi | es.

If this directory does not exist it will be created automatically.

For additional configuration settings, see Apache HDFS spout Configuration Settings.

5.2.2. HDFS Spout Example

The following example creates an HDFS spout that reads text files from HDFS path
hdfs://1 ocal host: 54310/ sour ce.

/1 Instantiate spout to read text files
Hdf sSpout t ext Reader Spout = newHdf sSpout (). set Reader Type("text")
. Wi t hQut put Fi el ds(Text Fi | eReader .
def aul t Fi el ds)
.setHdf sUri ("hdfs://
| ocal host: 54310") // reqd
.set SourceDir("/datalin")

/'l reqd

.set Archi veDir ("/dat a/ done")
/1 reqd

.setBadFi | esDi r ("/data/ badfil es");
/1 required

/1 1f using Kerberos

HashMap hdfsSetti ngs = new HashMap();

hdf sSetti ngs. put ("hdfs. keytab. file", "/path/to/keytab");

hdf sSet ti ngs. put (" hdf s. ker beros. pri nci pal ", "user @&XAMPLE. cont') ;

58

https://github.com/apache/storm/tree/master/external/storm-hdfs#configuration-settings

Hortonworks Data Platform October 30, 2017

t ext Reader Spout . set HIf sCl i ent Setti ngs(hdf sSetti ngs);

/] Create topol ogy

Topol ogyBui | der bui | der = new Topol ogyBui | der () ;

bui | der . set Spout (" hdf sspout", textReader Spout, SPOUT_NUM ;

/1 Set up bolts and wire up topol ogy

/1 Submit topology with config

Confi g conf = new Config();

St or nSubni t t er. subm t Topol ogyW t hPr ogr essBar ("t opol ogyNane", conf, buil der.
creat eTopol ogy());

A sample topology Hdf sSpout Topol ogy is provided in the st or m st art er module.

5.3. Streaming Data to Kafka

Storm provides a Kafka Bolt for both the core-storm and Trident APIs that publish data to
Kafka topics. Use the following procedure to add a Storm component to your topology
that writes data to a Kafka cluster:

1. Instantiate a Kafka Bolt.

2. Configure the Kafka Bolt with a Tuple-to-Message mapper.
3. Configure the Kafka Bolt with a Kafka Topic Selector.

4. Configure the Kafka Bolt with Kafka Producer properties.

The following code samples illustrate the construction of a simple Kafka bolt.

5.3.1. KafkaBolt Integration: Core Storm APIs

To use Kaf kaBol t, create an instance of

or g. apache. st or m kaf ka. bol t . Kaf kaBol t and attach it as a component to your
topology. The following example shows construction of a Kafka bolt using core Storm APIs,
followed by details about the code:

Topol ogyBui | der bui | der = new Topol ogyBui | der () ;

Fields fields = new Fi el ds("key", "nessage");
Fi xedBat chSpout spout = new Fi xedBat chSpout (fi el ds, 4,
new Val ues("stornf, "1"),

new Val ues("trident", "1"),
new Val ues("needs", "1"),
new Val ues("javadoc", "1")

ik

spout . set Cycl e(true);

bui | der . set Spout ("spout"”, spout, 5);
[/ set producer properties.
Properties props = new Properties();

props. put ("boot strap. servers", "local host:9092");
props. put ("acks", "1");
props. put ("key. serializer", "org.apache. kaf ka. conmon. seri alizati on.

StringSerializer");

59

Hortonworks Data Platform October 30, 2017

props. put ("val ue. serializer", "org.apache. kaf ka. cormon. seri al i zati on.
StringSerializer");

Kaf kaBol t bolt = new Kaf kaBol t ()

. W t hProducer Properties(props)

.wi t hTopi cSel ect or (new Def aul t Topi cSel ector("test"))

.wi t hTupl eToKaf kaMvapper (new Fi el dNaneBasedTupl eToKaf kaMapper ());

bui | der. set Bol t ("f orwar dToKaf ka", bolt, 8).shuffleG ouping("spout");

Config conf = new Config();

St or mSubni tt er. submi t Topol ogy(" kaf kabol t Test", conf, buil der.
creat eTopol ogy());

1. Instantiate a Kaf kaBol t .

The core-storm API uses the st or m kaf ka. bol t . Kaf kaBol t class to instantiate a
Kafka Bolt:

Kaf kaBolt bolt = new Kaf kaBol t () ;
2. Configure the KafkaBolt with a Tuple-to-Message Mapper.

The Kaf kaBol t maps Storm tuples to Kafka messages. By default,

KafkaBolt looks for fields named "key" and "message." Storm provides the

storm kaf ka. tri dent. mapper. Fi el dNameBasedTupl eToKaf kaMapper class
to support this default behavior and provide backward compatibility. The class is used by
both the core-storm and Trident APIs.

Kaf kaBolt bolt = new Kaf kaBol t ()
. Wi t hTri dent Tupl eToKaf kaMapper (new Fi el dNaneBasedTupl eToKaf kaMapper ()) ;

3. Configure the Kafka Bolt with a Kafka Topic Selector.

3 Note
To ignore a message, return NULL from the get Topi cs() method.

Kaf kaBol t bolt = new KafkaBolt().w thTupl eToKaf kaMapper (new
Fi el dNameBasedTupl eToKaf kaMapper ())
. W t hTopi cSel ect or (new Def aul t Topi cSel ector());

If you need to write to multiple Kafka topics, you can write your own implementation of
the Kaf kaTopi cSel ect or interface .
4. Configure the Kafka Bolt with Kafka Producer properties.

You can specify producer properties in your Storm topology by calling
Kaf kaBol t . wi t hProducer Properti es() . See the Apache Producer Configs
documentation for more information.

5.3.2. KafkaBolt Integration: Trident APIs

To use Kaf kaBol t, create an instance of
org. apache. storm kaf ka.trident. Tri dent St at e and
org. apache. storm kaf ka. tri dent. Tri dent St at eFact or y, and attach them to

60

http://kafka.apache.org/documentation.html#producerconfigs

Hortonworks Data Platform October 30, 2017

your topology. The following example shows construction of a Kafka bolt using Trident
APIs, followed by details about the code:

Fields fields = new Fi el ds("word", "count");

Fi xedBat chSpout spout = new Fi xedBat chSpout (fi el ds, 4,
new Val ues("storni, "1"),

new Val ues("trident", "1"),

new Val ues("needs", "1"),

new Val ues("javadoc", "1")

)
spout . set Cycl e(true);

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy() ;
Stream stream = t opol ogy. newSt rean(" spout 1", spout);

//set producer properties.
Properties props = new Properties();

props. put (" boot st rap. servers", "l ocal host:9092");

props. put ("acks", "1");

props. put ("key. serializer", "org.apache. kaf ka. common. seri ali zati on.
StringSerializer");

props. put ("val ue. serializer", "org.apache. kaf ka. conmon. seri al i zati on.

StringSerializer");

Tri dent Kaf kaSt at eFact ory stateFactory = new Tri dent Kaf kaSt at eFact ory()
. Wi t hProducer Properti es(props)
. Wi t hKaf kaTopi cSel ect or (new Def aul t Topi cSel ector ("test"))
. Wi t hTri dent Tupl eToKaf kaMapper (new
Fi el dNameBasedTupl eToKaf kaMapper ("word", "count"));
stream partitionPersist(stateFactory, fields, new Trident Kaf kaUpdater (), new
Fields());

Config conf = new Config();
St or mSubni t t er. submni t Topol ogy(" kaf kaTri dent Test", conf, topol ogy. build());

1. Instantiate a KafkaBolt.

The Trident API uses a combination of the
storm kaf ka. tri dent. Tri dent St at eFact ory and
storm kaf ka. trident. Tri dent Kaf kaSt at eFact or y classes.

Tri dent Topol ogy topol ogy = new Tri dent Topol ogy();
Stream stream = t opol ogy. newSt r ean(" spout ") ;
Tri dent Kaf kaSt at eFact ory stateFactory = new Tri dent Kaf kaSt at eFactory();
stream partitionPersist(stateFactory, fields, new Trident Kaf kaUpdater (),
new Fi el ds());

2. Configure the KafkaBolt with a Tuple-to-Message Mapper.

The KafkaBolt must map Storm tuples to Kafka messages. By default,

KafkaBolt looks for fields named "key" and "message." Storm provides the

storm kaf ka. tri dent. mapper. Fi el dNaneBasedTupl eToKaf kaMapper class
to support this default behavior and provide backward compatibility. The class is used by
both the core-storm and Trident APIs.

Tri dent Kaf kaSt at eFactory stateFactory = new Tri dent Kaf kaSt at eFact ory()
.w t hTri dent Tupl eToKaf kaMapper (new Fi el dNanmeBasedTupl eToKaf kaMapper (" word",
"count"));

61

Hortonworks Data Platform October 30, 2017

You must specify the field names for the Storm tuple key and the Kafka message for any
implementation of the Tr i dent Kaf kaSt at e in the Trident API. This interface does not
provide a default constructor.

However, some Kafka bolts may require more than two fields. You can write your own
implementation of the Tupl eToKaf kaMapper and Tri dent Tupl eToKaf kaMapper
interfaces to customize the mapping of Storm tuples to Kafka messages. Both interfaces
define two methods:

K get KeyFr omTupl e(Tupl e/ Tri dent Tupl e tupl e);

V get MessageFr onTupl e(Tupl e/ Tri dent Tupl e tupl e);

3. Configure the Kaf kaBol t with a Kafka Topic Selector.

3 Note

To ignore a message, return NULL from the get Topi cs() method.

Tri dent Kaf kaSt at eFactory stateFactory = new Tri dent Kaf kaSt at eFact ory()
.wi t hKaf kaTopi cSel ect or (new Def aul t Topi cSel ector("test"))
. W t hTri dent Tupl eToKaf kaMapper (new Fi el dNaneBasedTupl eToKaf kaMapper (" word",
"count"));

If you need to write to multiple Kafka topics, you can write your own implementation of
the Kaf kaTopi cSel ect or interface; for example:

public interface KafkaTopi cSel ector {
String get Topi cs(Tupl e/ Tri dent Tupl e tuple);

}

4. Configure the Kaf kaBol t with Kafka Producer properties.

You can specify producer properties in your Storm topology by calling
Tri dent Kaf kaSt at eFact ory. wi t hProducer Properti es() . See the Apache
Producer Configs documentation for more information.

5.4. Writing Data to HDFS

The st or m hdf s connector supports core Storm and Trident APIs. You should use the
trident API unless your application requires sub-second latency.

5.4.1. Storm-HDFS: Core Storm APIs

The primary classes of the st or m hdf s connector are Hdf sBol t and

SequenceFi | eBol t, both located in the or g. apache. st orm hdf s. bol t package.
Use the Hdf sBol t class to write text data to HDFS and the SequenceFi | eBol t class to
write binary data.

For more information about the Hdf sBol t class, refer to the Apache Storm HdfsBolt
documentation.

Specify the following information when instantiating the bolt:

62

http://kafka.apache.org/documentation.html#producerconfigs
https://github.com/apache/storm/tree/master/external/storm-hdfs#hdfs-bolt

Hortonworks Data Platform October 30, 2017

Hdf sBol t Methods
Wt hFsUr | Specifies the target HDFS URL and port number.

wi t hRecor dFor mat Specifies the delimiter that indicates a boundary
between data records. Storm developers can
customize by writing their own implementation of the
org. apache. st orm hdfs. f or mat . Recor dFor nat
interface. Use the provided
org. apache. storm hdf s. f or nat .
Del i m t edRecor dFor mat class as a convenience class for
writing delimited text data with delimiters such as tabs, comma-
separated values, and pipes. The st or m hdf s bolt uses the
Recor dFor mat implementation to convert tuples to byte
arrays, so this method can be used with both text and binary
data.

wi t hRot ati onPol i cy Specifies when to stop writing to a data file and
begin writing to another. Storm developers can
customize by writing their own implementation of the
org. apache. storm hdfs.rotation. Fil eSi zeRot ati onSi zePol i cy
interface.

wi t hSyncPol i cy Specifies how frequently to flush buffered data to
the HDFS filesystem. This action enables other HDFS
clients to read the synchronized data, even as the Storm
client continues to write data. Storm developers can
customize by writing their own implementation of the
or g. apache. st orm hdf s. sync. SyncPol i cy interface.

wi t hFi | eNanmeFor mat Specifies the name of the data file. Storm developers
can customize by writing their own interface of the
org. apache. storm hdf s. format . Fi | eNanmeFor mat
interface. The provided
or g. apache. storm hdf s. f or mat . Def aul t Fi | eNanmeFor mat
creates file names with the following naming format:
{prefix}-{conponent|d}-{taskld}-{rotati onNun}-
{tinest anp}-{extension}.

Example: MyBol t - 5- 7- 1390579837830. t xt .
Example: Cluster Without High Availability ("HA")

The following example writes pipe-delimited files to the HDFS path hdf s: //

| ocal host: 8020/ f 00. After every 1,000 tuples it will synchronize with the filesystem,
making the data visible to other HDFS clients. It will rotate the files when they reach 5 MB
in size.

Note that the HdfsBolt is instantiated with an HDFS URL and port number.

" 7java

/1 use "|" instead of "," for field delimter

RecordFormat format = new Del i m t edRecor dFor mat ()
.withFieldDelimter("|");

63

Hortonworks Data Platform October 30, 2017

/1 Synchroni ze the fil esystem after every 1000 tupl es
SyncPol i cy syncPolicy = new Count SyncPol i cy(1000);

// Rotate data files when they reach 5 MB
Fi | eRotati onPolicy rotationPolicy = new Fil eSi zeRot ati onPol i cy(5.0f, Units.
MB) ;

/'l Use default, Stormgenerated file nanes
Fi | eNameFormat fil eNaneFormat = new Def aul t Fi | eNanmeFor mat ()
.Wi thPath("/fool");

/1 Instantiate the HdfsBolt

Hdf sBolt bolt = new Hdf sBolt ()
.wW thFsUrl ("hdfs://| ocal host: 8020")
. Wi t hFi | eNameFor mat (fi | eNaneFor mat)
. W t hRecor dFor mat (f or mat)
. W t hRot at i onPol i cy(rotationPolicy)
.w t hSyncPol i cy(syncPol i cy) ;

Example: HA-Enabled Cluster

The following example shows how to modify the previous example for an HA-enabled
cluster.

Here the HdfsBolt is instantiated with a nameservice ID, instead of using an HDFS URL and
port number.

Hdf sBolt bolt = new Hdf sBolt ()
W t hFsSURL(" hdf s:// nyNanmeservi cel D")
. W t hFi | eNanmeFor mat (fi | eNanef or nat)
. W t hRecor dFor mat (f or mat)
. W t hRot ati onPol i cy(rotationPolicy)
. W t hSyncPol i cy(syncPol i cy) ;

To obtain the nameservice ID, check the df s. nameser vi ces property in your hdf s-
site. xm file; nnha in the following example:

<property>
<nane>df s. naneser vi ces</ name>
<val ue>nnha</ val ue>

</ property>

5.4.2. Storm-HDFS: Trident APIs

The Trident APl implements a St at eFact or y class with an API that resembles the
methods from the st or m code API, as shown in the following code sample:

Fiel ds hdfsFields = new Fields("fieldl", "field2");

Fi | eNameFor mat fil eNaneFormat = new Def aul t Fi | eNanmeFor mat ()
Wi thPrefix("trident")
. W t hExt ensi on(".txt")
.w thPath("/trident");

64

Hortonworks Data Platform October 30, 2017

Recor dFor mat recordFormat = new Del i m t edRecor dFor mat ()
. Wi t hFi el ds(hdf sFi el ds) ;

Fil eRotationPolicy rotationPolicy = new Fil eSi zeRot ati onPol i cy(5. Of ,
Fi | eSi zeRot ati onPol i cy. Units. MB);

Hdf sSt at e. Opti ons options = new Hdf sSt at e. HAdf sFi | eOpti ons()
. W t hFi | eNameFor mat (fi | eNameFor nat)
. Wi t hRecor dFor mat (r ecor dFor mat)
. W t hRot ati onPol i cy(rotationPolicy)
.wWi thFsUrl ("hdfs://I ocal host: 8020");

StateFactory factory = new Hdf sSt at eFactory().w thOpti ons(options);

TridentState state = stream partitionPersist(factory, hdfsFields, new
Hdf sUpdat er (), new Fields());

See the javadoc for the Trident API, included with the st or m hdf s connector, for more
information.

Limitations

Directory and file names changes are limited to a prepackaged file name format based on a
timestamp.

5.5. Writing Data to HBase

The st or m hbase connector enables Storm developers to collect several PUTS in a single
operation and write to multiple HBase column families and counter columns. A PUT is

an HBase operation that inserts data into a single HBase cell. Use the HBase client's write
buffer to automatically batch: hbase. client.wite. buffer.

The primary interface in the st or m hbase connector is the

or g. apache. st orm hbase. bol t. mapper . HBaseMapper interface. However,
the default implementation, Si npl eHBaseMapper , writes a single column family.
Storm developers can implement the HBaseMapper interface themselves or extend
Si mpl eHBaseMapper if they want to change or override this behavior.

Si npl eHBaseMapper Methods

wi t hRowKeyFi el d Specifies the row key for the target HBase row. A row key
uniquely identifies a row in HBase

wi t hCol umFi el ds Specifies the target HBase column.

wi t hCount er Fi el ds Specifies the target HBase counter.

wi t hCol umFanmi |y Specifies the target HBase column family.
Example

The following example specifies the 'word' tuple as the row key, adds an HBase column for
the tuple 'word' field, adds an HBase counter column for the tuple 'count’ field, and writes
data to the 'cf' column family.

Si npl eHBaseMapper mapper = new Si npl eHBaseMapper ()

65

Hortonworks Data Platform October 30, 2017

. Wi t hRowKeyFi el d("word")

. W t hCol umFi el ds(new Fi el ds("word"))

. W t hCount er Fi el ds(new Fi el ds("count"))
. W t hCol umFam | y("cf");

5.6. Writing Data to Hive

Core Storm and Trident APIs support streaming data directly to Apache Hive using Hive
transactions. Data committed in a transaction is immediately available to Hive queries
from other Hive clients. You can stream data to existing table partitions, or configure the
streaming Hive bolt to dynamically create desired table partitions.

Use the following steps to perform this procedure:
1. Instantiate an implementation of the Hi veMapper Interface.
2. Instantiate a Hi veOpt i ons class with the Hi veMapper implementation.

3. Instantiate a Hi veBol t with the Hi veOpt i ons class.

S Note
Currently, data may be streamed only into bucketed tables using the ORC file
format.

5.6.1. Core-storm APIs

The following example constructs a Kafka bolt using core Storm APIs:

Del i m t edRecor dH veMapper napper = new Del i mi t edRecor dHi veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes)) ;

Hi veOpti ons hiveOpti ons = new

Hi veOpti ons(et aSt or eURI , dbNane, t bl Nanme, mapper) ;

Hi veBolt hiveBolt = new Hi veBolt (hiveOptions);

1. Instantiate an Implementation of HiveMapper Interface.

The st or m hi ve streaming bolt uses the H veMapper interface to map the

names of tuple fields to the names of Hive table columns. Storm provides two
implementations: Del i m t edRecor dHi veMapper and JsonRecor dH veMapper .
Both implementations take the same arguments.

Table 5.1. HiveMapper Arguments

Argument Data Type Description

wi t hCol umFi el ds org. apache. storm tupl e. Fi el d¥he name of the tuple fields that you
want to map to table column names.

wi t hPartitionFiel ds or g. apache. storm tupl e. Fi el d3he name of the tuple fields that you
want to map to table partitions.

wit hTi neAsPartitionField String Requests that table partitions be
created with names set to system
time. Developers can specify any
Java-supported date format, such as
"YYYY/MM/DD".

The following sample code illustrates how to use Del i m t edRecor dH veMapper :

66

Hortonworks Data Platform October 30, 2017

Del i m t edRecor dH veMapper nmapper = new Del i nmitedRecor dH veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes))
.withPartitionFiel ds(new Fi el ds(part Nanmes)) ;

Del i m t edRecor dHi veMapper mapper = new Del i m t edRecor dH veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes))
.w t hTi nreAsPartitionField("YYYY WM DD");

2. Instantiate a Hi veQpt i ons Class with the Hi veMapper Implementation. The
Hi veOpt i ons class configures transactions used by Hive to ingest the streaming data:

Hi veOpti ons hiveOpti ons = new H veOpti ons(met aSt or eURI, dbNane, t bl Nane,
napper)

. Wi t hTxnsPer Bat ch(10)

.wi t hBat chSi ze(1000)

.wi t hl dl eTi meout (10) ;

The following table describes all configuration properties for the Hi veOpt i ons class.

Table 5.2. HiveOptions Class Configuration Properties

HiveOptions Configuration Property | Data Type Description

met aSt or eURI String Hive Metastore URI. Storm developers
can find this value in hi ve-
site.xm.

dbNane String Database name

t bl Nare String Table name

mapper Mapper Two properties that start with

"org.apache.storm.hive.bolt.":
mapper . Del i m t edRecor dHi veMapper

mapper JsonRecor dH veMapper

wi t hTxnsPer Bat ch I nt eger Configures the number of desired
transactions per transaction batch.
Data from all transactions in a single
batch form a single compaction

file. Storm developers use this
property in conjunction with the

wi t hBat chSi ze property to control
the size of compaction files. The
default value is 100.

Hive stores data in base files that
cannot be updated by HDFS. Instead,
Hive creates a set of delta files for
each transaction that alters a table
or partition and stores them in a
separate delta directory. Occasionally,
Hive compacts, or merges, the base
and delta files. Hive performs all
compactions in the background
without affecting concurrent reads
and writes of other Hive clients. See
Transactions for more information
about Hive compactions.

67

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_data-access/content/hive-013-feature-transactions.html

Hortonworks Data Platform October 30, 2017

HiveOptions Configuration Property | Data Type Description

wi t hMaxOpenConnecti ons I nt eger Specifies the maximum number of
open connections. Each connection
is to a single Hive table partition.
The default value is 500. When

Hive reaches this threshold, an

idle connection is terminated for
each new connection request. A
connection is considered idle if no
data is written to the table partition
to which the connection is made.

wi t hBat chSi ze I nt eger Specifies the maximum number of
Storm tuples written to Hive in a
single Hive transaction. The default
value is 15000 tuples.

wi t hCal | Ti meout I nt eger Specifies the interval in seconds
between consecutive heartbeats
sent to Hive. Hive uses heartbeats

to prevent expiration of unused
transactions. Set this value to 0 to
disable heartbeats. The default value
is 240.

wi t hAut oCr eat ePartitions Bool ean Indicates whether HiveBolt should
automatically create the necessary
Hive partitions needed to store
streaming data. The default value is
true.

wi t hKer ber osPri ni ci pal String Kerberos user principal for accessing a
secured Hive installation.

wi t hKer ber osKeyt ab String Kerberos keytab for accessing a
secured Hive installation.

3. Instantiate the HiveBolt with the HiveOptions class:

Hi veBol t hiveBolt = new Hi veBol t (hi veQpti ons);

4. Before building your topology code, add the following dependency to your topology
pom xm file:

<dependency>
<gr oupl d>or g. apache. ht t pconponent s</ gr oupl d>
<artifactld>httpclient</artifactld>
<ver si on>4. 3. 3</ ver si on>

</ dependency>

5.6.2. Trident APIs

The following example shows construction of a Kafka bolt using core Storm APIs, followed
by details about the code:

Del i m t edRecor dH veMapper nmapper = new Del i mi t edRecor dHi veMapper ()
. W t hCol umFi el ds(new Fi el ds(col Nanes))
. Wi thTi meAsPartitionField("YYYY MM DD");

Hi veOpti ons hiveQOpti ons = new Hi veOpti ons(net aSt or eURI, dbNane, t bl Nane, mapper)
. W t hTxnsPer Bat ch(10)
. Wi t hBat chSi ze(1000)
.wi t hldl eTi meout (10)

68

Hortonworks Data Platform

October 30, 2017

new Hi veSt at eFact ory().w t hOpt
stream partitionPersist(factory,

StateFactory factory
Trident State state

Hi veUpdat er (),
new Fi el ds());

1. Instantiate an Implementation of HiveMapper Interface

i ons(hi veOptions);
hi veFi el ds, new

The st or m hi ve streaming bolt uses the Hi veMapper interface to map the
names of tuple fields to the names of Hive table columns. Storm provides two
implementations: Del i mi t edRecor dHi veMapper and JsonRecor dH veMapper .

Both implementations take the same arguments.

Table 5.3. HiveMapper Arguments

Argument Data Type

Description

wi t hCol umFi el ds org.apache.stormtupl e. Fi el ¢

$he name of the tuple fields that you
want to map to table column names.

withPartitionFields org. apache.stormtupl e. Fi el ¢

$he name of the tuple fields that you
want to map to table partitions.

wi t hTi neAsPartitionField String

Requests that table partitions be
created with names set to system
time. Developers can specify any
Java-supported date format, such as
"YYYY/MM/DD".

The following sample code illustrates how to use Del i m t edRecor dH veMapper :

Del i m t edRecor dHi veMapper mapper
. W t hCol umFi el ds(new Fi el ds(col Nanes))
.withPartitionFields(new Fi el ds(part Nanmes));

Del i m t edRecor dH veMapper mapper =

. W t hCol umFi el ds(new Fi el ds(col Nanes))

Wi thTi meAsPartitionField("YYYY MM DD");

new Del i m t edRecor dHi veMapper ()

new Del i m t edRecor dH veMapper ()

2. Instantiate a Hi veQpt i ons class with the Hi veMapper Implementation
Use the Hi veQpt i ons class to configure the transactions used by Hive to ingest the
streaming data, as illustrated in the following code sample.
Hi veOpti ons hi veOpti ons = new H veOpti ons(net aSt or eURI, dbNane, t bl Nane,
mapper)
. W t hTxnsPer Bat ch(10)
.wi t hBat chSi ze(1000)
.wi t hl dl eTi meout (10) ;
See "HiveOptions Class Configuration Properties" for a list of configuration properties for
the Hi veOpt i ons class.
3. Instantiate the Hi veBol t with the Hi veQpt i ons class:

St at eFactory factory

new Hi veSt at eFactory().w t hOpti ons(hi veOpti ons);

69

Hortonworks Data Platform October 30, 2017

TridentState state = streampartitionPersist(factory, hiveFields, new
H veUpdater (),
new Fi el ds());

4. Before building your topology code, add the following dependency to your topology
pom xmi file:

<dependency>
<gr oupl d>or g. apache. ht t pconponent s</ gr oupl d>
<artifactld>httpclient</artifactld>
<ver si on>4. 3. 3</ ver si on>

</ dependency>

5.7. Configuring Connectors for a Secure Cluster

If your topology uses KafkaSpout, Storm-HDFS, Storm-HBase, or Storm-Hive to access
components on a Kerberos-enabled cluster, complete the associated configuration steps
listed in this subsection.

5.7.1. Configuring KafkaSpout for a Secure Kafka Cluster

To connect to a Kerberized Kafka topic:

1. Code: Add spout Confi g. securityProt ocol =PLAI NTEXTSASL to your Kafka
Spout configuration.

2. Configuration: Add a Kaf kad i ent section (excerpted from/ usr/ hdp/ current/
kaf ka- br oker/ confi g/ kaf ka_j aas. conf)to/usr/ hdp/current/storm
supervisor/conf/stormjaas. conf:

Kaf kaCl i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e required
useKeyTab=t r ue
keyTab="/et c/ security/ keyt abs/ st ornusr. servi ce. keyt ab"
st or eKey=t r ue
useTi cket Cache=f al se
servi ceName="kaf ka"
princi pal ="st or nusr/ host . name @XAMPLE. COM';
J: 5

3. Setup: Add a Kafka ACL for the topic. For example:

bi n/ kaf ka- acl s. sh --aut hori zer

kaf ka. security. aut h. Si npl eAcl Aut hori zer --authorizer-properties
zookeeper. connect =l ocal host: 2181 --add --all ow pri nci pal
user:stornusr --allowhosts * --operations Read --topic TEST

5.7.2. Configuring Storm-HDFS for a Secure Cluster

To use the st or m hdf s connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Confi g
object that you pass into the topology must contain the storm keytab file and principal
name.

70

Hortonworks Data Platform October 30, 2017

2. Specify an HdfsBolt conf i gKey, using the method
Hdf sBol t . wi t hConf i gKey (" sonekey") . The value map of this key should have the
following two properties:

hdf s. keytab.fil e: "<path-to-keytab>"

hdf s. ker beros. pri nci pal : "<princi pal >@host >"

where

<pat h- t o- keyt ab> specifies the path to the keytab file on the supervisor hosts

<pri nci pal >@host > specifies the user and domain; for example, st or m
adm n@XAMPLE. com

For example:

Config config = new Config();
confi g. put (Hdf sSecurityUtil.STORM KEYTAB _FI LE _KEY, "$keytab");
confi g. put (Hdf sSecurityUtil.STORM USER_NAME KEY, "$principal");

St or nBubmi tt er. submi t Topol ogy (" $t opol ogyNane", config, buil der.
creat eTopol ogy());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

3 Note

For more information about the Hdf sBol t class, refer to the Apache Storm
HdfsBolt API documentation.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HDFS, typically the Storm
service keytab, st or m The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster thisis / et ¢/ securi ty/ keyt abs/
storm servi ce. keyt ab (the " pat h-t o- keyt ab"), where the worker runs under
storm

4. If you set super vi sor. run. wor ker. as. user totr ue (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the st or mkeytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

S Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

71

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hdfs/bolt/HdfsBolt.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html

Hortonworks Data Platform October 30, 2017

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HDFS
connector (see Writing Data to HDFS for a more extensive example):

Hdf sBolt bolt = new Hdf sBolt ()
.withFsUrl ("hdfs:/ /I ocal host: 8020")
. W t hFi | eNarmeFor mat (fi | eNaneFor mat)
.wi t hRecor dFor mat (f or mat)
.wi t hRot ati onPol i cy(rotationPolicy)
.wi t hSyncPol i cy(syncPol i cy);
.wi t hConf i gKey("hdfs. config");

Map<String, Object> map = new HashMap<Stri ng, Qbj ect >();
map. put ("hdfs. keytab.file","/etc/securityl/keytabs/storm service. keytab");
map. put (" hdf s. ker beros. pri nci pal ", " st or mM@EST. HORTONWORKS. COM') ;

Config config = new Config();
config. put("hdfs.config", map);

St or mSubmi t t er. submi t Topol ogy(" $t opol ogyNane", confi g, bui | der.
creat eTopol ogy());

2 Important

For the Storm-HDFS connector, you must package hdf s- site. xm and
core-site.xm (from your cluster configuration) in the topology .jar file.

In addition, include any configuration files for HDP components used in your
Storm topology, such as hive-site.xml and hbase-site.xml. This fulfills the

requirement that all related configuration files appear in the CLASSPATH of
your Storm topology at runtime.

5.7.3. Configuring Storm-HBase for a Secure Cluster

To use the st or m hbase connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Confi g
object that you pass into the topology must contain the storm keytab file and principal
name.

2. Specify an HBaseBolt conf i gKey, using the method
HBaseBol t . wi t hConf i gKey("sonekey") . The value map of this key should have
the following two properties:
storm keytab.file: "<path-to-keytab-file>"

storm ker beros. principal: "<principal >@host >"

For example:

72

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-write-to-hdfs.html

Hortonworks Data Platform October 30, 2017

Config config = new Config();
confi g. put (HBaseSecurityUtil.STORM KEYTAB FI LE KEY, "$keytab");
confi g. put (HBaseSecurityUtil.STORM USER NAVE KEY, "$principal");

St or nSubmi tt er. subm t Topol ogy(" $t opol ogyNane", config, buil der.
creat eTopol ogy());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

3 Note

For more information about the HBaseBol t class, refer to the Apache
Storm HBaseBolt APl documentation.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HBase, typically the Storm
service keytab, st or m The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster thisis/ et ¢/ securi ty/ keyt abs/
storm servi ce. keyt ab (the " pat h-t o- keyt ab"), where the worker runs under
storm

4. If you set super vi sor. run. wor ker . as. user totr ue (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the st or mkeytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

3 Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HBase
connector:

73

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hbase/bolt/HBaseBolt.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html

Hortonworks Data Platform October 30, 2017

HBaseBolt hbase = new HBaseBol t ("WrdCount"”, mapper).w t hConfi gKey("hbase.
config");

Map<Stri ng, Object> mapHbase = new HashMap<Stri ng, Cbj ect>();

mapHbase. put ("storm keytab.file","/etc/security/keytabs/storm service.
keyt ab");

mapHbase. put (" st orm ker ber os. pri nci pal ", " st or M@EST. HORTONWORKS. COM') ;

Config config = new Config();
confi g. put ("hbase. confi g", mapHbase) ;

St or rSubmi t t er . submi t Topol ogy(" $t opol ogyNare", confi g, bui | der.
creat eTopol ogy());

c Important

For the Storm-HBase connector, you must package hdf s-si te. xm , cor e-
site. xm , and hbase-si te. xm (from your cluster configuration) in the
topology .jar file.

In addition, include any other configuration files for HDP components used in
your Storm topology, such as hive-site.xml. This fulfills the requirement that all
related configuration files appear in the CLASSPATH of your Storm topology at
runtime.

5.7.4. Configuring Storm-Hive for a Secure Cluster

The Storm-Hive connector accepts configuration settings as part of the HiveOptions class.
For more information about the HiveBolt and HiveOptions classes, see the Apache Storm
HiveOptions and HiveBolt APl documentation.

There are two required settings for accessing secure Hive:

* wi t hKer ber osPri nci pal , the Kerberos principal for accessing Hive:
public Hi veOptions withKerberosPrincipal (String kerberosPrincipal)
* wi t hKer ber osKeyt ab, the Kerberos keytab for accessing Hive:

public Hi veOpti ons w t hKer ber osKeyt ab(String kerber osKeyt ab)

74

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hive/common/HiveOptions.html
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hive/bolt/HiveBolt.html

Hortonworks Data Platform October 30, 2017

6. Packaging Storm Topologies

Storm developers should verify that the following conditions are met when packaging their
topology into a .jar file:

* Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

* Include a dependency for the Hadoop version used in the Hadoop cluster.

* Include both of the Hadoop configuration files, hdf s-si te. xm andcore-site. xn,
in the .jar file. In addition, include any configuration files for HDP components used
in your Storm topology, such as hi ve-si t e. xm and hbase-si t e. xn . This is the
easiest way to meet the requirement that all required configuration files appear in the
CLASSPATH of your Storm topology at runtime.

Maven Shade Plugin

Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

Use the following Maven configuration file to package your topology:

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifact| d>maven-shade- pl ugi n</artifact!| d>
<ver si on>1. 4</ ver si on>
<confi guration>
<cr eat eDependencyReducedPon®t r ue</ cr eat eDependencyReducedPon®
</ configuration>
<executi ons>
<executi on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
<confi guration>
<transf or mer s>
<transforner inplenentation="org.apache. maven.
pl ugi ns. shade. r esour ce. Servi cesResour ceTr ansf orner"/ >
<transforner inplenentati on="org.apache. maven.
pl ugi ns. shade. r esour ce. Mani f est Resour ceTr ansf or ner " >
<mai nCl ass></ mai nCl ass>
</ transfor mer >
</transforners>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>

Hadoop Dependency

Include a dependency for the Hadoop version used in the Hadoop cluster; for example:

<dependency>

75

Hortonworks Data Platform

October 30, 2017

<gr oupl d>or g. apache. hadoop</ gr oupl d>
<artifactl d>hadoop-client</artifactld>
<version>2.7.1.2.3.2.0-2950</ versi on>

<excl usi ons>
<excl usi on>

<gr oupl d>or g. sl f 4j </ gr oupl d>
<artifactld>slf4j-1og4j12</artifactld>

</ excl usi on>
</ excl usi ons>
</ dependency>

Troubleshooting

The following table describes common packaging errors.

Table 6.1. Topology Packing Errors

Error

Description

com googl e. pr ot obuf.
I nval i dPr ot ocol Buf f er Excepti on: Protoco
nessage contained an invalid tag (zero)

Hadoop client version incompatibility

java. |l ang. Runti meException: Error
preparing Hdf sBolt: No FileSystem for
scheme: hdfs

The .jar manifest files have not properly merged in the
topology.jar

76

Hortonworks Data Platform October 30, 2017

7. Deploying and Managing Apache
Storm Topologies

Use the command line interface to deploy a Storm topology after packaging it in a .jar file.

For example, you can use the following command to deploy Wor dCount Topol ogy from
thestorm st arter jar:

stormjar stormstarter-<starter_versi on>storm <stormversion>.jar storm
starter.WrdCount Topol ogy WordCount -c ni nbus. host =sandbox. hort onwor ks. com

The remainder of this chapter describes the Storm Ul, which shows diagnostics for a cluster
and topologies, allowing you to monitor and manage deployed topologies.

7.1. Configuring the Storm Ul

If Ambari is running on the same node as Apache Storm, ensure that Ambari and Storm use
different ports. Both processes use port 8080 by default, so you might need to configure
Apache Storm to use a different port.

If you want to use the Storm Ul on a Kerberos-enabled cluster, ensure that your browser
is configured to use authentication for the Storm Ul. For example, complete the following
steps to configure Firefox:

1. Go to the about : conf i g configuration page.

2. Search for the net wor k. negot i at e- aut h. t rust ed- uri s configuration option.
3. Double-click on the option.

4. An "Enter string value" dialog box opens.

5. In this box, enter the value ht t p: / / st or m+ ui - host nane: 8080.

6. Click OK to finish.

7. Close and relaunch the browser.

If your cluster is not managed by Ambari, refer to the Ul/Logviewer section of Apache
Storm security documentation for additional configuration guidelines.

7.2. Using the Storm Ul

To access the Storm Ul, point a browser to the following URL:
http://<stormui-server>: 8080

In the following image, no workers, executors, or tasks are running. However, the status of
the topology remains active and the uptime continues to increase. Storm topologies, unlike
traditional applications, remain active until an administrator deactivates or kills them.

77

https://github.com/apache/storm/blob/master/SECURITY.md#uilogviewer

Hortonworks Data Platform October 30, 2017

Storm UI

Cluster Summary

Topology summary

Supervisor summary

Mimbus Configuration

LE

Storm administrators use the Storm Ul to perform the following administrative actions:

Table 7.1. Topology Administrative Actions

Topology Administrative Action Description

Activate Return a topology to active status after it has been
deactivated.

Deactivate Set the status of a topology to inactive. Topology uptime
is not affected by deactivation.

Rebalance Dynamically increase or decrease the number of worker
processes and/or executors. The administrator does not
need to restart the cluster or the topology.

Kill Stop the topology and remove it from Apache Storm.
The topology no longer appears in the Storm Ul, and
the administrator must deploy the application again to
activate it.

Click any topology in the Topology Summary section to launch the Topology Summary
page. To perform any of the topology actions in the preceding table, you can click the
corresponding button (shown in the following image):

78

Hortonworks Data Platform October 30, 2017

Storm Ul

Topology summary

Topology actions

Topology stats

F=

Spouts (All time)
Bolts (All tme)

Topology Configuration

The "Executors" field in the Spouts and Bolts sections shows all running Storm threads,
including the host and port. If a bolt is experiencing latency issues, review this field to
determine which executor has reached capacity. Click the port number to display the log
file for the corresponding executor.

79

Hortonworks Data Platform October 30, 2017

8. Monitoring and Debugging an Apache
Storm Topology

Debugging Storm applications can be challenging due to the number of moving parts
across a large number of nodes in a cluster. Tracing failures to a particular component or a
node in the system requires collection and analysis of log files and analysis of debug/trace
processes running in the cluster. The following subsections describe features designed to
facilitate the process of debugging a storm topology.

8.1. Enabling Dynamic Log Levels

Storm allows users and administrators to dynamically change the log level settings of

a running topology. You can change log level settings from either the Storm Ul or the
command line. No Storm processes need to be restarted for the settings to take effect. The
resulting log files are searchable from the Storm Ul and logviewer service.

Standard log4j levels include DEBUG, INFO, WARN, ERROR, and FATAL, specifying logging
of coarse or finer-grained levels of informational messages and error events. Inheritance is
consistent with log4j behavior. For example, if you set the log level of a parent logger, the
child loggers start using that level (unless the children have a more restrictive level defined
for them).

8.1.1. Setting and Clearing Log Levels Using the Storm Ul

To set log level from the Storm Ul:
1. Click on a running topology.

2. Click on “"Change Log Level” in the Topology Actions section:

Topology actions

Change Log Level

L I el Tirraparidi (i | [s &

3. For an existing logger, select the desired log level for the logger. Alternately, add a
logger and set the desired log level.

4. Optionally, specify a timeout value in seconds, after which changes will be reverted
automatically. Specify 0 if no timeout is needed.

80

Hortonworks Data Platform October 30, 2017

5. Click "Apply".

The preceding example sets the log4j log level to ERROR for the root logger, and to DEBUG
for st orm st art er . Logging for the root logger will be limited to error events, and finer-
grained informational events (useful for debugging the application) will be recorded for
storm st arter packages.

To clear (reset) a log level setting using the Storm Ul, click on the “Clear” button. This
reverts the log level back to what it was before you added the setting. The log level line will
disappear from the Ul.

8.1.2. Setting and Clearing Log Levels Using the CLI

To set log level from the command line, use the following command:

./bin/stormset_log_| evel [topol ogy nane] -1 [l|ogger nane]=[LEVEL]:[TI MEQOUT]

The following example sets the ROOT logger to DEBUG for 30 seconds:

./bin/stormset _|og | evel ny_topol ogy -I ROOT=DEBUG 30

To clear (reset) the log level using the CLI, use the following command. This reverts the log
level back to what it was before you added the setting.

./bin/stormset _|og |evel [topology nane] -r [l ogger nane]

The following example clears the ROOT logger dynamic log level, resetting it to its original
value:

./bin/stormset_|og | evel ny_topol ogy -r ROOT

For more information, see Apache STORM-412.

8.2. Enabling Topology Event Logging

The topology event inspector lets you view tuples as they flow through different stages of
a Storm topology. This tool is useful for inspecting tuples emitted from a spout or a bolt in
the topology pipeline while the topology is running; you do not need to stop or redeploy

the topology to use the event inspector. The normal flow of tuples from spouts to bolts is
not affected by turning on event logging.

8.2.1. Configuring Topology Event Logging

Event logging sends events (tuples) from each component to an internal eventlogger bolt.

Event logging is disabled by default, due to a slight performance degradation associated
with eventlogger tasks.

To enable event logging, set the t opol ogy. event | ogger . execut or s property
to a non-zero value when submitting your topology. You can set the property globally
in the st or m yan file, or use the command line. For more information about

t opol ogy. event | ogger . execut or s and other property settings, see Configuring
Apache Storm for Production Environments.

81

https://issues.apache.org/jira/browse/STORM-412
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-configure.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-configure.html

Hortonworks Data Platform October 30, 2017

8.2.2. Enabling Event Logging

To log events for an entire topology, click the "Debug" button under "Topology actions" in
the topology view. This setting logs tuples from all spouts and bolts in a topology at the
specified sampling percentage.

Topology aclions

D sy

h I . bt ddrayet B iy
Topelogy stats G e

Lo " BTl

=
To log events at a specific spout or bolt level, navigate to the corresponding component
page and click "Debug" under component actions:
Storm Ul
Coamporsent wrmmary

‘. :
Camporsnt adliona C]

| o= |

8.2.3. Viewing Event Logs

Prerequisite: The Storm "logviewer" process should be running so that you can view the

logged tuples. If it is not already running, start the log viewer by running the following
command from the storm installation directory:

bi n/ st orm | ogvi ewer
To view tuples:
1. From the Storm Ul, navigate to the specific spout or bolt component page.

2. Click on the "events" link in the Debug column of the component summary. This will
open a view similar to the following:

82

Hortonworks Data Platform October 30, 2017

test-topology-1-1459147817/6702/event:

Semthtmsﬂm1 IEemﬁh
(test-topology-1-1459147817/6702/eventsog [Switch file
Prev First Last Next

Download Full File

Mon Mar 28 12:20:38 IST 2016,word,13,, [mike]
Mon Mar 28 12:20:38 IST 2016,word,21,, [goldal
Mon Mar 28 12:20:38 IST 2@016,word,14,, [golda]
Mon Mar 28 12:20:38 IST 2016,word,15,, [mike]
Mon Mar 28 12:28:38 IST 2016,word,12,, [bertels]
Mon Mar 28 12:20:38 IST 2016,word,15,, [nathan]
Mon Mar 28 12:20:38 IST 2016,word,13,, [goldal
Mon Mar 28 12:20:39 IST 2016,word,12,, [nathan]
Mon Mar 28 12:20:39 IST 2016,word,15,, [jackson]

Each line in the event log contains an entry corresponding to a tuple emitted from a
specific spout or bolt, presented in a comma-separated format:

Ti mest anp, Conponent nane, Conponent task-id, Messageld (incase of
anchoring), List of enmtted val ues

3. Navigate between different pages to view logged events.

8.2.4. Accessing Event Logs on a Secure Cluster

If you want to view logs in secure mode, ensure that your browser is configured to use
authentication with all supervisor nodes running logviewer. This process is similar to
the process used to configure access to the Storm Ul on a secure cluster (described in
Configuring the Storm Ul).

Add domains to the white list by setting net wor k. negot i at e-auth. trusted-uri s to
a comma-separated list containing one or more domain names and URLs. For example, the
following steps configure Firefox to use authentication with two nodes:

1. Go to the about : conf i g configuration page.
2. Search for the net wor k. negot i at e- aut h. t rust ed- uri s configuration option.

3. Double-click on the option.

83

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/config-storm-ui.html

Hortonworks Data Platform October 30, 2017

4. An "Enter string value" dialog box opens.

5. In this box, enter the values htt p: / / nodel. exanpl e.com http://
node2. exanpl e. com

6. Click OK to finish.
7. Close and relaunch the browser.

If your cluster is not managed by Ambari, refer to the Ul/Logviewer section of Apache
Storm security documentation for additional configuration guidelines.

8.2.5. Disabling Event Logs

8.2.6.

To disable event logging for a component or for a topology, click "Stop Debug" under the
Component actions or Topology actions page (respectively) in the Storm Ul.

The following example disables topology "test-topology":

Topology actions

Topology stats

-

Extending Event Logging

The Storm eventlogger bolt uses the IEventLogger interface to log events. The default
implementation is aFi | eBasedEvent Logger, which logs events to a log file at | ogs/
wor kers-artifacts/<topol ogy-i d>/ <worker - port>/events. | og.

To extend event logging functionality (for example, to build a search index or log events to
a database), add an alternate implementation of the | Event Logger interface.

/**
* Event Logger interface for |ogging the event info to a sink |like |og
file or db
* for inspecting the events via U for debugging.
*/public interface |EventLogger {
voi d prepare(Mp stornConf, Topol ogyContext context);
/**
* | nvoked when the {@ink EventlLoggerBolt} receives a tuple fromthe
spouts or bolts that
* have event | oggi ng enabl ed.
*
* @arame the event
*/
voi d | og(Eventinfo e);
/**
* | nvoked when the event |ogger bolt is cleaned up
*/
voi d cl ose();

}
See JIRA STORM-954 for more details.

84

https://github.com/apache/storm/blob/master/SECURITY.md#uilogviewer
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/metric/IEventLogger.html
https://issues.apache.org/jira/browse/STORM-954

Hortonworks Data Platform

October 30, 2017

8.3. Enabling Distributed Log Search

The distributed log search capability allows users to search across log files (including
archived logs) to find information and events for a specific topology. Results include
matches from all supervisor nodes.

This feature is useful when searching for patterns across workers or supervisors of a
topology. (A similar log search is supported within specific worker log files via the Storm

ulL.)
(T ¥ BE

as e

182,168,684 16701

1G2.168.64.1:67

[=]

16821 68.84. 16702

162168684, 1:6702

TR 1B G4, 1A

182 168,84, 18703

letalFaat

e

1-14EMGTAT

Match

2016-05-03 15:32: 41,6488 5. 0.4.d. wdrker [INFO] Launching worker Tor excl=1=14800E97047T o efSfoafiT-4ced
simple=acl; uders, comnands™ ||, “drpt. roguett. t1eeout. seci™ G}

2016-05-003 15:32: 41,7 G, 6.9.8.0.8. 6. 1. L. CuratorFrasewarklapl [INPG] Starting

2016-05-83 19032040, 80 0,005,508, 7. Tookeeper [INFO] Client environment :zooleeper. versionmd. 4, h-1%5
20160500 15:32:41. 844 o, 8.5 . doworker |INFO] Lsunching worker for excl-1-148338574T cn elSfcdlT-Lced
simple-acl, users, conngnds™), “drpf.regueil.tiseout. seci™ 680}

2016-05-03 15132140, 78% oudu S5 0adie o folCuratorFraseworkInpl [INFQ] Starting

F16=-85-83 1513248, 79) 0. 8.5.5.0-8.7. Tookeeper [IMFO] Client environment:zookseper.wersionsd. 4. 6=15%
2016-85-83 15:33:41.63F o.d.5.d.worker [INFO] Launching worker for eacl-1-14633&5T4T on o651 cdBT-4oed
simple-acl.users. commands™ [}, “drpc.request.tiseout.secs™ G8a}

2016-0%-83 15:32:40. 776 o.8.5. 5.0 8. c. 1. L. CuratorFrameworkInpl [INFO] Startimg

THLI6=05=03 15:33:48,. 787 5. 8. 8. 8.0.8. F. IopEeeper [INFO] Clignt environssnt: iosiedoer . wirilone] 4 6=15%6

For more information about log search capabilities, see Apache JIRA STORM-902.

8.4. Dynamic Worker Profiling

You can request the following types of worker profile data directly from the Storm Ul ,
without restarting the topologies:

¢ Heap dumps

¢ JStack output

85

https://issues.apache.org/jira/browse/STORM-902

Hortonworks Data Platform October 30, 2017

* JProfile recordings
To access this feature:
1. Navigate to the “Profiling and Debugging” section on the Spout/Bolt component

summary page. There you will see buttons to request JStack output or generate a Heap
dump:

Profiling and Debugging

Gty ¢ Thmeeut Mruten Bstimnn

Executors (All time)

Note that you can also restart worker processes from this page.

2. To view output, click the “files” link under “Actions”.

86

Hortonworks Data Platform October 30, 2017

excl-1-1462269747/6703/jstack-94556-20160503-160122.txt

Saparch this I'|H:|:- I Sparch |
[pael-1- 16 BT TA0TA PO A ftach - D LA DO IESEHS- 0801 22 1n Switch fila |

Frew | First Last | Mot
Doremiboad Full Fike

2816-25-83 16:81:23
Full thread dusg Java HotSpot{TH] &4-04t Server 'Y (24.79-082 mixed mode):

“Attach Listencr™ daeson prips=5 tid=@xB2087fe4E1828880 nid=8xladf waiting om condition [BxRaoSapddganeaan]
lan, lang. Thread. Stata: RURMABLE

“DestroylavaVM" prig=5 tid=x00@07(e4B5005808 nid=0x1003 waiting on condition [GwdQoeaiepRadenal
jawa. lang. Thread. State; RUMHABLE

"WorkerBackpressureThread" daeson prio=5 tid=0:30007 fedBl016808 nid=0x9f83% in Object.waitl) [BxiQdaToSdEE0C]
jawa. lang. Thread. State: TINED_ WAITING [on object monitaor)
at jawva.lang.Object.wait{Mative Method)
at org.apache.storm.utils.WorkerBackpressureThread. run(WorkerBackpressureThread. java:&l)
= locked <RxRH8S00R7d115c8d0= (a clojure. Lang. Atea)

"Thréad=1B=disruptar=wnrker=t ransfer=gueue™ prioss tid=9:<@pea7rfc485005000 nid=@x%i03 walting on conditlion [
jowa. lamg. Thread. State: TIMED WAITIMG [parking)
at sun,misc.nsale. park(Native Method)
- parking to wait for <0x0000BQ0TAlldaends (& jAvh.util.concurfent.lecks.AbstractfuesedSynchronizer
at java.util.concursent. locks. LockSupport. parkiancs [LockSupport. java: 2260
at java.util.concurrent. locks.AbstractluevedSynchronizersConditionlbject . awaitianos (Abst ractluevedsy
at com. lmax.disruptor.TiseoutBlackingWaitStrategy.waitFori Tiseout8lockingWaitStrategy. java: 37)
at com. Imax.disruptor. FrocessingSeguenceBarrier.waitFor{FrocessingSequenceBarrier. java: 53]
at org.apache.storm. uti is5.0 Lsruptorfoces. consuscBatchnhenAval Lab leibis ruptorijeeue. java:41a b

3. To download output for offline analysis, click the associated link under the "Actions"
column on the Profiling and Debugging page, or click "Download Full File" on the output

page.
See Apache JIRA STORM-1157 for more information.

87

https://issues.apache.org/jira/browse/STORM-1157

Hortonworks Data Platform October 30, 2017

9. Tuning an Apache Storm Topology

Because Storm topologies operate on streaming data (rather than data at rest, as in HDFS)
they are sensitive to data sources. When tuning Storm topologies, consider the following
questions:

* What are my data sources?

* At what rate do these data sources deliver messages?

* What size are the messages?

* What is my slowest data sink?

In a Storm cluster, most of the computational burden typically falls on the Supervisor and
Worker nodes. The Nimbus node usually has a lighter load. For this reason, Hortonworks
recommends that organizations save their hardware resources for the relatively burdened
Supervisor and Worker nodes.

The performance of a Storm topology degrades when it cannot ingest data fast enough to
keep up with the data source. The velocity of incoming streaming data changes over time.
When the data flow of the source exceeds what the topology can process, memory buffers

fill up. The topology suffers frequent timeouts and must replay tuples to process them.

Use the following techniques to identify and overcome poor topology performance due to
mismatched data flow rates between source and application:

1. ldentify the bottleneck.

a. In the Storm UI, click Show Visualization to display a visual representation of your
topology and find the data bottleneck in your Storm application.

* Thicker lines between components denote larger data flows.

* A blue component represents the the first component in the topology, such as the
spout below from the WordCountTopology included with st orm st art er.

* The color of the other topology components indicates whether the component is
exceeding cluster capacity: red components denote a data bottleneck and green
components indicate components operating within capacity.

88

Hortonworks Data Platform

October 30, 2017

Topolegy Visualization

Note

In addition to bolts defined in your topology, Storm uses its own bolts to
perform background work when a topology component acknowledges
that it either succeeded or failed to process a tuple. The names of these
"acker" bolts are prefixed with an underscore in the visualization, but they

do not appear in the default view.

To display component-specific data about successful acknowledgements,
select the _ack_ack checkbox. To display component-specific data about
failed acknowledgements, select the _ack_f ai | checkbox.

b. To verify that you have found the topology bottleneck, rewrite the execut e()
method of the target bolt or spout so that it performs no operations. If the
performance of the topology improves, you have found the bottleneck.

Alternately, turn off each topology component, one at a time, to find the component

responsible for the bottleneck.

2. Refer to "Performance Guidelines for Developing a Storm Topology" for several

performance-related development guidelines.

3. Adjust topology configuration settings. For more information, see Configuring Storm
Resource Usage.

4. Increase the parallelism for the target spout or bolt. Parallelism units are a useful
conceptual tool for determining how to distribute processing tasks across a distributed

application.

89

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/config-storm-settings.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/config-storm-settings.html

Hortonworks Data Platform October 30, 2017

Hortonworks recommends using the following calculation to determine the total
number of parallelism units for a topology.

(nunber of worker nodes in cluster * nunber cores per worker node) - (numnber
of acker tasks)

Acker tasks are topology components that acknowledge a successfully processed tuple.

The following example assumes a Storm cluster with ten worker nodes, 16 CPU cores
per worker node, and ten acker tasks in the topology. This Storm topology has 150 total
parallelism units:

(10 * 16) - 10 = 150

Storm developers can mitigate the increased processing load associated with data
persistence operations, such as writing to HDFS and generating reports, by distributing
the most parallelism units to topology components that perform data persistence
operations.

90

	Hortonworks Data Platform
	Table of Contents
	1. Analyzing Streams of Data with Apache Storm
	2. Installing Apache Storm
	3. Configuring Apache Storm for a Production Environment
	3.1. Configuring Storm for Supervision
	3.2. Configuring Storm Resource Usage
	3.3. Enabling Audit to HDFS for a Secure Cluster

	4. Developing Apache Storm Applications
	4.1. Core Storm Concepts
	4.1.1. Spouts
	4.1.2. Bolts
	4.1.3. Stream Groupings
	4.1.4. Topologies
	4.1.5. Processing Reliability
	4.1.6. Workers, Executors, and Tasks
	4.1.7. Parallelism
	4.1.8. Core Storm Example: RollingTopWords Topology

	4.2. Trident Concepts
	4.2.1. Introductory Example: Trident Word Count
	4.2.2. Trident Operations
	4.2.2.1. Filters
	4.2.2.2. Functions

	4.2.3. Trident Aggregations
	4.2.3.1. CombinerAggregator
	4.2.3.2. ReducerAggregator
	4.2.3.3. Aggregator

	4.2.4. Trident State
	4.2.4.1. Trident Spouts
	4.2.4.2. Achieving Exactly-Once Messaging in Trident

	4.2.5. Further Reading about Trident

	4.3. Moving Data Into and Out of a Storm Topology
	4.4. Implementing Windowing Computations on Data Streams
	4.4.1. Understanding Sliding and Tumbling Windows
	4.4.2. Implementing Windowing in Core Storm
	4.4.2.1. Understanding Tuple Timestamps and Out-of-Order Tuples
	4.4.2.2. Understanding Watermarks
	4.4.2.3. Understanding the “at-least-once” Guarantee
	4.4.2.4. Saving the Window State

	4.4.3. Implementing Windowing in Trident
	4.4.3.1. Trident Windowing Implementation Details
	4.4.3.2. Sample Trident Application with Windowing

	4.5. Implementing State Management
	4.5.1. Checkpointing
	4.5.2. Recovery
	4.5.3. Guarantees
	4.5.4. Implementing Custom Actions: IStateful Bolt Hooks
	4.5.5. Implementing Custom States
	4.5.6. Implementing Stateful Windowing
	4.5.7. Sample Topology with Saved State

	4.6. Performance Guidelines for Developing a Storm Topology

	5. Moving Data Into and Out of Apache Storm Using Spouts and Bolts
	5.1. Ingesting Data from Kafka
	5.1.1. KafkaSpout Integration: Core Storm APIs
	5.1.2. KafkaSpout Integration: Trident APIs
	5.1.3. Tuning KafkaSpout Performance
	5.1.4. Configuring Kafka for Use with the Storm-Kafka Connector
	5.1.5. Configuring KafkaSpout to Connect to HBase or Hive

	5.2. Ingesting Data from HDFS
	5.2.1. Configuring HDFS Spout
	5.2.2. HDFS Spout Example

	5.3. Streaming Data to Kafka
	5.3.1. KafkaBolt Integration: Core Storm APIs
	5.3.2. KafkaBolt Integration: Trident APIs

	5.4. Writing Data to HDFS
	5.4.1. Storm-HDFS: Core Storm APIs
	5.4.2. Storm-HDFS: Trident APIs

	5.5. Writing Data to HBase
	5.6. Writing Data to Hive
	5.6.1. Core-storm APIs
	5.6.2. Trident APIs

	5.7. Configuring Connectors for a Secure Cluster
	5.7.1. Configuring KafkaSpout for a Secure Kafka Cluster
	5.7.2. Configuring Storm-HDFS for a Secure Cluster
	5.7.3. Configuring Storm-HBase for a Secure Cluster
	5.7.4. Configuring Storm-Hive for a Secure Cluster

	6. Packaging Storm Topologies
	7. Deploying and Managing Apache Storm Topologies
	7.1. Configuring the Storm UI
	7.2. Using the Storm UI

	8. Monitoring and Debugging an Apache Storm Topology
	8.1. Enabling Dynamic Log Levels
	8.1.1. Setting and Clearing Log Levels Using the Storm UI
	8.1.2. Setting and Clearing Log Levels Using the CLI

	8.2. Enabling Topology Event Logging
	8.2.1. Configuring Topology Event Logging
	8.2.2. Enabling Event Logging
	8.2.3. Viewing Event Logs
	8.2.4. Accessing Event Logs on a Secure Cluster
	8.2.5. Disabling Event Logs
	8.2.6. Extending Event Logging

	8.3. Enabling Distributed Log Search
	8.4. Dynamic Worker Profiling

	9. Tuning an Apache Storm Topology

