
Hortonworks Data Platform

 (October 30, 2017)

Apache Storm Component Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform October 30, 2017

ii

Hortonworks Data Platform: Apache Storm Component Guide
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform October 30, 2017

iii

Table of Contents
1. Analyzing Streams of Data with Apache Storm .. 1
2. Installing Apache Storm ... 2
3. Configuring Apache Storm for a Production Environment .. 8

3.1. Configuring Storm for Supervision ... 8
3.2. Configuring Storm Resource Usage .. 10
3.3. Enabling Audit to HDFS for a Secure Cluster .. 13

4. Developing Apache Storm Applications .. 14
4.1. Core Storm Concepts .. 14

4.1.1. Spouts .. 15
4.1.2. Bolts ... 16
4.1.3. Stream Groupings ... 17
4.1.4. Topologies .. 18
4.1.5. Processing Reliability ... 18
4.1.6. Workers, Executors, and Tasks .. 19
4.1.7. Parallelism .. 19
4.1.8. Core Storm Example: RollingTopWords Topology 25

4.2. Trident Concepts ... 26
4.2.1. Introductory Example: Trident Word Count .. 26
4.2.2. Trident Operations ... 28
4.2.3. Trident Aggregations ... 29
4.2.4. Trident State .. 31
4.2.5. Further Reading about Trident ... 33

4.3. Moving Data Into and Out of a Storm Topology ... 33
4.4. Implementing Windowing Computations on Data Streams 33

4.4.1. Understanding Sliding and Tumbling Windows 34
4.4.2. Implementing Windowing in Core Storm .. 35
4.4.3. Implementing Windowing in Trident .. 39

4.5. Implementing State Management ... 43
4.5.1. Checkpointing .. 44
4.5.2. Recovery ... 45
4.5.3. Guarantees ... 46
4.5.4. Implementing Custom Actions: IStateful Bolt Hooks 46
4.5.5. Implementing Custom States .. 46
4.5.6. Implementing Stateful Windowing ... 47
4.5.7. Sample Topology with Saved State ... 48

4.6. Performance Guidelines for Developing a Storm Topology 48
5. Moving Data Into and Out of Apache Storm Using Spouts and Bolts 49

5.1. Ingesting Data from Kafka .. 50
5.1.1. KafkaSpout Integration: Core Storm APIs ... 50
5.1.2. KafkaSpout Integration: Trident APIs .. 53
5.1.3. Tuning KafkaSpout Performance .. 54
5.1.4. Configuring Kafka for Use with the Storm-Kafka Connector 56
5.1.5. Configuring KafkaSpout to Connect to HBase or Hive 56

5.2. Ingesting Data from HDFS ... 56
5.2.1. Configuring HDFS Spout ... 57
5.2.2. HDFS Spout Example .. 58

5.3. Streaming Data to Kafka .. 59
5.3.1. KafkaBolt Integration: Core Storm APIs .. 59

Hortonworks Data Platform October 30, 2017

iv

5.3.2. KafkaBolt Integration: Trident APIs .. 60
5.4. Writing Data to HDFS ... 62

5.4.1. Storm-HDFS: Core Storm APIs ... 62
5.4.2. Storm-HDFS: Trident APIs ... 64

5.5. Writing Data to HBase .. 65
5.6. Writing Data to Hive ... 66

5.6.1. Core-storm APIs .. 66
5.6.2. Trident APIs .. 68

5.7. Configuring Connectors for a Secure Cluster .. 70
5.7.1. Configuring KafkaSpout for a Secure Kafka Cluster 70
5.7.2. Configuring Storm-HDFS for a Secure Cluster .. 70
5.7.3. Configuring Storm-HBase for a Secure Cluster 72
5.7.4. Configuring Storm-Hive for a Secure Cluster .. 74

6. Packaging Storm Topologies .. 75
7. Deploying and Managing Apache Storm Topologies .. 77

7.1. Configuring the Storm UI .. 77
7.2. Using the Storm UI ... 77

8. Monitoring and Debugging an Apache Storm Topology ... 80
8.1. Enabling Dynamic Log Levels ... 80

8.1.1. Setting and Clearing Log Levels Using the Storm UI 80
8.1.2. Setting and Clearing Log Levels Using the CLI 81

8.2. Enabling Topology Event Logging ... 81
8.2.1. Configuring Topology Event Logging .. 81
8.2.2. Enabling Event Logging .. 82
8.2.3. Viewing Event Logs .. 82
8.2.4. Accessing Event Logs on a Secure Cluster .. 83
8.2.5. Disabling Event Logs .. 84
8.2.6. Extending Event Logging .. 84

8.3. Enabling Distributed Log Search .. 85
8.4. Dynamic Worker Profiling ... 85

9. Tuning an Apache Storm Topology .. 88

Hortonworks Data Platform October 30, 2017

v

List of Tables
4.1. Storm Concepts ... 14
4.2. Stream Groupings ... 17
4.3. Processing Guarantees ... 19
4.4. Storm Topology Development Guidelines .. 48
5.1. HiveMapper Arguments .. 66
5.2. HiveOptions Class Configuration Properties ... 67
5.3. HiveMapper Arguments .. 69
6.1. Topology Packing Errors .. 76
7.1. Topology Administrative Actions ... 78

Hortonworks Data Platform October 30, 2017

1

1. Analyzing Streams of Data with
Apache Storm

The exponential increase in streams of data from real-time sources requires data processing
systems that can ingest this data, process it, and respond in real time. A typical use case
involves an automated system that responds to sensor data by sending email to support
staff or placing an advertisement on a consumer's smartphone. Apache Storm enables data-
driven, automated activity by providing a realtime, scalable, fault-tolerant, highly available,
distributed solution for streaming data.

Apache Storm is datatype-agnostic; it processes data streams of any data type. It can be
used with any programming language, and guarantees that data streams are processed
without data loss.

The following graphic illustrates a typical stream processing architecture:

Hortonworks Data Platform October 30, 2017

2

2. Installing Apache Storm
Before installing Storm, ensure that your cluster meets the following prerequisites:

• HDP cluster stack version 2.5.0 or later.

• (Optional) Ambari version 2.4.0 or later.

Although you can install Apache Storm on a cluster not managed by Ambari (see Installing
and Configuring Apache Storm in the Non-Ambari Cluster Installation Guide), this chapter
describes how to install Storm on an Ambari-managed cluster.

Note

Storm is not supported on the Windows operating system.

Before you install Storm using Ambari, refer to Adding a Service in the Ambari Operations
Guide for background information about how to install HDP components using Ambari.

To install Storm using Ambari, complete the following steps.

1. Click the Ambari "Services" tab.

2. In the Ambari "Actions" menu, select "Add Service." This starts the Add Service Wizard,
displaying the Choose Services screen. Some of the services are enabled by default.

3. Scroll down through the alphabetic list of components on the Choose Services page,
select "Storm", and click "Next" to continue:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_command-line-installation/content/ch_installing_storm_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_command-line-installation/content/ch_installing_storm_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.6.0.0/bk_ambari-operations/content/adding_a_service_to_your_hadoop_cluster.html

Hortonworks Data Platform October 30, 2017

3

Hortonworks Data Platform October 30, 2017

4

4. On the Assign Masters page, review node assignments for Storm components.

If you want to run Storm with high availability of nimbus nodes, select more than one
nimbus node; the Nimbus daemon automatically starts in HA mode if you select more
than one nimbus node.

Modify additional node assignments if desired, and click "Next".

5. On the Assign Slaves and Clients page, choose the nodes that you want to run Storm
supervisors and clients:

Hortonworks Data Platform October 30, 2017

5

Storm supervisors are nodes from which the actual worker processes launch to execute
spout and bolt tasks.

Storm clients are nodes from which you can run Storm commands (jar, list, and so
on).

6. Click "Next" to continue.

7. Ambari displays the Customize Services page, which lists a series of services:

For your initial configuration you should use the default values set by Ambari. If Ambari
prompts you with the message "Some configurations need your attention before you
can proceed," review the list of properties and provide the required information.

For information about optional settings that are useful in production environments, see
Configuring Apache Storm.

8. Click "Next" to continue.

9. When the wizard displays the Review page, ensure that all HDP components correspond
to HDP 2.5.0 or later:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-configure.html

Hortonworks Data Platform October 30, 2017

6

10.Click "Deploy" to begin installation.

11.Ambari displays the Install, Start and Test page. Review the status bar and messages for
progress updates:

12.When the wizard presents a summary of results, click "Complete" to finish installing
Storm:

Hortonworks Data Platform October 30, 2017

7

To validate the Storm installation, complete the following steps:

1. Point your browser to the Storm UI URL for Ambari: http://<storm-ui-
server>:8744

You should see the Storm UI web page.

2. Submit the following command:

storm jar /usr/hdp/current/storm-client/contrib/
storm-starter/storm-starter-topologies-*.jar
org.apache.storm.starter.WordCountTopology wordcount

3. The WordCount sample topology should run successfully.

Hortonworks Data Platform October 30, 2017

8

3. Configuring Apache Storm for a
Production Environment

This chapter covers topics related to Storm configuration:

• Configuring Storm to operate under supervision

• Properties to review when you place topologies into production use

• Enabling audit to HDFS for a secure cluster

Instructions are for Ambari-managed clusters.

3.1. Configuring Storm for Supervision
If you are deploying a production cluster with Storm, you should configure the Storm
components to operate under supervision.

Follow these steps to configure Storm for supervision:

1. Stop all Storm components.

a. Using Ambari Web, browse to Services > Storm > Service Actions.

b. Choose Stop, and wait until the Storm service completes.

2. Stop Ambari Server:

ambari-server stop

3. Change the Supervisor and Nimbus command scripts in the Stack definition.

On Ambari Server host, run:

sed -ir "s/scripts\/supervisor.py/scripts\/supervisor_prod.py/g" /var/lib/
ambari-server/resources/common-services/STORM/0.9.1.2.1/metainfo.xml

sed -ir "s/scripts\/nimbus.py/scripts\/nimbus_prod.py/g" /var/lib/ambari-
server/resources/common-services/STORM/0.9.1.2.1/metainfo.xml

4. Install supervisord on all Nimbus and Supervisor hosts.

• Install EPEL repository:

yum install epel-release -y

• Install supervisor package for supervisord:

yum install supervisor -y

• Enable supervisord on autostart:

Hortonworks Data Platform October 30, 2017

9

chkconfig supervisord on

• Change supervisord configuration file permissions:

chmod 600 /etc/supervisord.conf

5. Configure supervisord to supervise Nimbus Server and Supervisors by appending the
following to /etc/supervisord.conf on all Supervisor host and Nimbus hosts:

[program:storm-nimbus]
command=env PATH=$PATH:/bin:/usr/bin/:/usr/jdk64/jdk1.7.0_67/bin/ JAVA_HOME=
/usr/jdk64/jdk1.7.0_67 /usr/hdp/current/storm-nimbus/bin/storm nimbus
user=storm
autostart=true
autorestart=true
startsecs=10
startretries=999
log_stdout=true
log_stderr=true
logfile=/var/log/storm/nimbus.out
logfile_maxbytes=20MB
logfile_backups=10

[program:storm-supervisor]
command=env PATH=$PATH:/bin:/usr/bin/:/usr/jdk64/jdk1.7.0_67/bin/ JAVA_HOME=
/usr/jdk64/jdk1.7.0_67 /usr/hdp/current/storm-supervisor/bin/storm
 supervisor
user=storm
autostart=true
autorestart=true
startsecs=10
startretries=999
log_stdout=true
log_stderr=true
logfile=/var/log/storm/supervisor.out
logfile_maxbytes=20MB
logfile_backups=10

Note

Change /usr/jdk64/jdk1.7.0_67 to the location of the JDK being used
by Ambari in your environment.

6. Start supervisord on all Supervisor and Nimbus hosts:

service supervisord start

7. Start Ambari Server:

ambari-server start

8. Start all other Storm components:

a. Using Ambari Web, browse to Services > Storm > Service Actions.

b. Choose Start.

Hortonworks Data Platform October 30, 2017

10

3.2. Configuring Storm Resource Usage
The following settings can be useful for tuning Storm topologies in production
environments.

Instructions are for a cluster managed by Ambari. For clusters that are not managed by
Ambari, update the property in its configuration file; for example, update the value of
topology.message.timeout.secs in the storm.yaml configuration file. (Do not
update files manually if your cluster is managed by Ambari.)

Memory Allocation

Worker process max heap size:
worker.childopts -XmX
option

Maximum JVM heap size for the worker JVM. The
default Ambari value is 768 MB. On a production
system, this value should be based on workload and
machine capacity. If you observe out-of-memory errors
in the log, increase this value and fine tune it based on
throughput; 1024 MB should be a reasonable value to
start with.

To set maximum heap size for the worker JVM, navigate
to the "Advanced storm-site" category and append the
-Xmx option to worker.childopts setting. The following
option sets maximum heap size to 1 GB: -Xmx1024m

Logviewer process max heap
size: logviewer.childopts
-Xmx option

Maximum JVM heap size for the logviewer process. The
default is 128 MB. On production machines you should
consider increasing the logviewer.childopts -
Xmx option to 768 MB or more (1024 MB should be a
sufficient for an upper-end value).

Message Throughput

topology.max.spout.pendingMaximum number of messages that can be pending in a
spout at any time. The default is null (no limit).

The setting applies to all core Storm and Trident
topologies in a cluster:

• For core Storm, this value specifies the maximum
number of tuples that can be pending: tuples that
have been emitted from a spout but have not been
acked or failed yet.

• For Trident, which process batches in core, this
property specifies the maximum number of batches
that can be pending.

If you expect bolts to be slow in processing
tuples (or batches) and you do not want internal
buffers to fill up and temporarily stop emitting

Hortonworks Data Platform October 30, 2017

11

tuples to downstream bolts, you should set
topology.max.spout.pending to a starting value
of 1000 (for core Storm) or a value of 1 (for Trident),
and increase the value depending on your throughput
requirements.

You can override this value for a specific topology
when you submit the topology. The following example
restricts the number of pending tuples to 100 for a
topology:

$ storm jar -c
topology.max.spout.pending=100 jar
args...

If you plan to use windowing functionality, set this
value to null, or increase it to cover the estimated
maximum number of active tuples in a single window.
For example, if you define a sliding window with a
duration of 10 minutes and a sliding interval of 1
minute, set topology.max.spout.pending to the
maximum number of tuples that you expect to receive
within an 11-minute interval.

This setting has no effect on spouts that do not anchor
tuples while emitting.

topology.message.timeout.secsMaximum amount of time given to the topology to
fully process a tuple tree from the core-storm API, or a
batch from the Trident API, emitted by a spout. If the
message is not acked within this time frame, Storm fails
the operation on the spout. The default is 30 seconds.

If you plan to use windowing functionality, set this
value based on your windowing definitions. For
example, if you define a 10 minute sliding window with
a 1 minute sliding interval, you should set this value to
at least 11 minutes.

You can also set this value at the topology level when
you submit a topology; for example:

$ storm jar -c
topology.message.timeout.secs=660 jar
args...

Nimbus Node Resources

nimbus.thrift.max_buffer_sizeMaximum buffer size that the Nimbus Thrift server
allocates for servicing requests. The default is 1 MB. If
you plan to submit topology files larger than 100 MB,
consider increasing this value.

Hortonworks Data Platform October 30, 2017

12

nimbus.thrift.threads Number of threads to be used by the Nimbus Thrift
server. The default is 64 threads. If you have more than
ten hosts in your Storm cluster, consider increasing
this value to a minimum of 196 threads, to handle the
workload associated with multiple workers making
multiple requests on each host.

You can set this value by adding the property and its
value in the Custom storm-site category, as shown in the
following graphic:

Hortonworks Data Platform October 30, 2017

13

Number of Workers on a Supervisor Node

supervisor.slots.ports List of ports that can run workers on a supervisor node.
The length of this list defines the number of workers
that can be run on a supervisor node; there is one
communication port per worker.

Use this configuration to tune how many workers to
run on each machine. Adjust the value based on how
many resources each worker will consume, based on
the topologies you will submit (as opposed to machine
capacity).

Number of Event Logger Tasks

topology.eventlogger.executorsNumber of event logger tasks created for topology
event logging. The default is 0; no event logger tasks
are created.

If you enable topology event logging, you must set this
value to a number greater than zero, or to null:

• topology.eventlogger.executors: <n>
creates n event logger tasks for the topology. A value
of 1 should be sufficient to handle most event logging
use cases.

• topology.eventlogger.executors: null
creates one event logger task per worker. This is
only needed if you plan to use a high sampling
percentage, such as logging all tuples from all spouts
and bolts.

Storm Metadata Directory

storm.local.dir Local directory where Storm daemons store topology metadata. You
need not change the default value, but if you do change it, set it to
a durable directory (not a directory such as /tmp).

3.3. Enabling Audit to HDFS for a Secure Cluster
To enable audit to HDFS when running Storm on a secure cluster, perform the steps listed
at the bottom of Manually Updating Ambari HDFS Audit Settings in the HDP Security
Guide.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/manually_updating_ambari_hdfs_audit_settings.html

Hortonworks Data Platform October 30, 2017

14

4. Developing Apache Storm Applications
This chapter focuses on several aspects of Storm application development. Throughout this
guide you will see references to core Storm and Trident. Trident is a layer of abstraction
built on top of Apache Storm, with higher-level APIs. Both operate on unbounded streams
of tuple-based data, and both address the same use cases: real-time computations on
unbounded streams of data.

Here are some examples of differences between core Storm and Trident:

• The basic primitives in core storm are bolts and spouts. The core data abstraction in
Trident is the stream.

• Core Storm processes events individually. Trident supports the concept of transactions,
and processes data in micro-batches.

• Trident was designed to support stateful stream processing, although as of Apache
Storm 1.0, core Storm also supports stateful stream processing.

• Core Storm supports a wider range of programming languages than Trident.

• Core Storm supports at-least-once processing very easily, but for exactly-once semantics,
Trident is easier (from an implementation perspective) than using core Storm primitives.

A complete introduction to the Storm API is beyond the scope of this documentation.
However, the following sections provide an overview of core Storm and Trident concepts.
See Apache Storm documentation for an extensive description of Apache Storm concepts.

4.1. Core Storm Concepts
Developing a Storm application requires an understanding of the following basic concepts.

Table 4.1. Storm Concepts

Storm Concept Description

Tuple A named list of values of any data type. A tuple is the
native data structure used by Storm.

Stream An unbounded sequence of tuples.

Spout Generates a stream from a realtime data source.

Bolt Contains data processing, persistence, and messaging alert
logic. Can also emit tuples for downstream bolts.

Stream Grouping Controls the routing of tuples to bolts for processing.

Topology A group of spouts and bolts wired together into a
workflow. A Storm application.

Processing Reliability Storm guarantee about the delivery of tuples in a
topology.

Workers A Storm process. A worker may run one or more
executors.

Executors A Storm thread launched by a Storm worker. An executor
may run one or more tasks.

Tasks A Storm job from a spout or bolt.

https://storm.apache.org/releases/1.1.0/index.html

Hortonworks Data Platform October 30, 2017

15

Storm Concept Description

Parallelism Attribute of distributed data processing that determines
how many jobs are processed simultaneously for a
topology. Topology developers adjust parallelism to tune
their applications.

Process Controller Monitors and restarts failed Storm processes. Examples
include supervisord, monit, and daemontools.

Master/Nimbus Node The host in a multi-node Storm cluster that runs a process
controller (such as supervisord) and the Storm nimbus,
ui, and other related daemons. The process controller
is responsible for restarting failed process controller
daemons on slave nodes. The Nimbus node is a thrift
service that is responsible for distributing code around the
cluster, assigning tasks to machines, and monitoring for
failures.

Slave Node A host in a multi-node Storm cluster that runs a process
controller daemon, such as supervisor, as well as the
worker processes that run Storm topologies. The process
controller daemon is responsible for restarting failed
worker processes.

The following subsections describe several of these concepts in more detail.

4.1.1. Spouts
All spouts must implement the org.apache.storm.topology.IRichSpout interface
from the core-storm API. BaseRichSpout is the most basic implementation, but there are
several others, including ClojureSpout, DRPCSpout, and FeederSpout. In addition,
Hortonworks provides a Kafka spout to ingest data from a Kafka cluster. The following
example, RandomSentenceSpout, is included with the storm-starter connector
installed with Storm at /usr/lib/storm/contrib/storm-starter.

package storm.starter.spout;

import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;

import java.util.Map;
import java.util.Random;

public class RandomSentenceSpout extends BaseRichSpout {
 SpoutOutputCollector _collector;
 Random _rand;

 @Override
 public void open(Map conf, TopologyContext context, SpoutOutputCollector
 collector) {
 _collector = collector;
 _rand = new Random();
 }

 @Override
 public void nextTuple() {

Hortonworks Data Platform October 30, 2017

16

 Utils.sleep(100);
 String[] sentences = new String[]{ "the cow jumped over the moon", "an
 apple a day keeps the doctor away", "four score and seven years ago", "snow
 white and the seven dwarfs", "i am at two with nature" };
 String sentence = sentences[_rand.nextInt(sentences.length)];
 _collector.emit(new Values(sentence));
 }

 @Override
 public void ack(Object id) {
 }

 @Override
 public void fail(Object id) {
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }

}

4.1.2. Bolts

All bolts must implement the IRichBolt interface. BaseRichBolt is the most
basic implementation, but there are several others, including BatchBoltExecutor,
ClojureBolt, and JoinResult. The following example, TotalRankingsBolt.java,
is included with storm-starter and installed with Storm at /usr/lib/storm/
contrib/storm-starter.

package storm.starter.bolt;

import org.apache.storm.tuple.Tuple;
import org.apache.log4j.Logger;
import storm.starter.tools.Rankings;

/**
 * This bolt merges incoming {@link Rankings}.
 * <p/>
 * It can be used to merge intermediate rankings generated by {@link
 IntermediateRankingsBolt} into a final,
 * consolidated ranking. To do so, configure this bolt with a globalGrouping
 on {@link IntermediateRankingsBolt}.
 */
public final class TotalRankingsBolt extends AbstractRankerBolt {

 private static final long serialVersionUID = -8447525895532302198L;
 private static final Logger LOG = Logger.getLogger(TotalRankingsBolt.class);

 public TotalRankingsBolt() {
 super();
 }

 public TotalRankingsBolt(int topN) {
 super(topN);
 }

 public TotalRankingsBolt(int topN, int emitFrequencyInSeconds) {

Hortonworks Data Platform October 30, 2017

17

 super(topN, emitFrequencyInSeconds);
 }

 @Override
 void updateRankingsWithTuple(Tuple tuple) {
 Rankings rankingsToBeMerged = (Rankings) tuple.getValue(0);
 super.getRankings().updateWith(rankingsToBeMerged);
 super.getRankings().pruneZeroCounts();
 }

 @Override
 Logger getLogger() {
 return LOG;
 }

}

4.1.3. Stream Groupings

Stream grouping allows Storm developers to control how tuples are routed to bolts in a
workflow. The following table describes the stream groupings available.

Table 4.2. Stream Groupings

Stream Grouping Description

Shuffle Sends tuples to bolts in random, round robin sequence.
Use for atomic operations, such as math.

Fields Sends tuples to a bolt based on one or more fields in the
tuple. Use to segment an incoming stream and to count
tuples of a specified type.

All Sends a single copy of each tuple to all instances of a
receiving bolt. Use to send a signal, such as clear cache or
refresh state, to all bolts.

Custom Customized processing sequence. Use to get maximum
flexibility of topology processing based on factors such as
data types, load, and seasonality.

Direct Source decides which bolt receives a tuple.

Global Sends tuples generated by all instances of a source to a
single target instance. Use for global counting operations.

Storm developers specify the field grouping for each bolt using methods on the
TopologyBuilder.BoltGetter inner class, as shown in the following excerpt from the
the WordCountTopology.java example included with storm-starter.

...
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);
builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new
 Fields("word"));
...

The first bolt uses shuffle grouping to split random sentences generated with the
RandomSentenceSpout. The second bolt uses fields grouping to segment and perform a
count of individual words in the sentences.

Hortonworks Data Platform October 30, 2017

18

4.1.4. Topologies

The following image depicts a Storm topology with a simple workflow.

The TopologyBuilder class is the starting point for quickly writing Storm topologies
with the storm-core API. The class contains getter and setter methods for the spouts and
bolts that comprise the streaming data workflow, as shown in the following sample code.

...
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout1", new BaseRichSpout());
builder.setSpout("spout2", new BaseRichSpout());
builder.setBolt("bolt1", new BaseBasicBolt());
builder.setBolt("bolt2", new BaseBasicBolt());
builder.setBolt("bolt3", new BaseBasicBolt());
...

4.1.5. Processing Reliability

Storm provides two types of guarantees when processing tuples for a Storm topology.

Hortonworks Data Platform October 30, 2017

19

Table 4.3. Processing Guarantees

Guarantee Description

At least once Reliable; Tuples are processed at least once, but may be
processed more than once. Use when subsecond latency is
required and for unordered idempotent operations.

Exactly once Reliable; Tuples are processed only once. (This feature
requires the use of a Trident spout and the Trident API.
For more information, see Trident Concepts.)

4.1.6. Workers, Executors, and Tasks

Apache Storm processes, called workers, run on predefined ports on the machine that hosts
Storm.

• Each worker process can run one or more executors, or threads, where each executor is a
thread spawned by the worker process.

• Each executor runs one or more tasks from the same component, where a component is
a spout or bolt from a topology.

4.1.7. Parallelism

Distributed applications take advantage of horizontally-scaled clusters by dividing
computation tasks across nodes in a cluster. Storm offers this and additional finer-grained
ways to increase the parallelism of a Storm topology:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-trident-intro.html

Hortonworks Data Platform October 30, 2017

20

• Increase the number of workers

• Increase the number of executors

• Increase the number of tasks

By default, Storm uses a parallelism factor of 1. Assuming a single-node Storm cluster, a
parallelism factor of 1 means that one worker, or JVM, is assigned to execute the topology,
and each component in the topology is assigned to a single executor. The following
diagram illustrates this scenario. The topology defines a data flow with three tasks, a spout
and two bolts.

Note

Hortonworks recommends that Storm developers store parallelism settings in
a configuration file read by the topology at runtime rather than hard-coding
the values passed to the Parallelism API. This topic describes and illustrates
the use of the API, but developers can achieve the same effect by reading the
parallelism values from a configuration file.

Increasing Parallelism with Workers

Storm developers can easily increase the number of workers assigned to execute a topology
with the Config.setNumWorkers() method. This code assigns two workers to execute
the topology, as the following figure illustrates.

...
Config config = new Config();
config.setNumWorkers(2);
...

Hortonworks Data Platform October 30, 2017

21

Adding new workers comes at a cost: additional overhead for a new JVM.

This example adds an additional worker without additional executors or tasks, but to
take full advantage of this feature, Storm developers must add executors and tasks to the
additional JVMs (described in the following examples).

Increasing Parallelism with Executors

The parallelism API enables Storm developers to specify the number of executors for each
worker with a parallelism hint, an optional third parameter to the setBolt() method.
The following code sample sets this parameter for the MyBolt1 topology component.

...
Config config = new Config();
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(MY_SPOUT_ID, mySpout);
builder.setBolt(MY_BOLT1_ID, myBolt1, 2).shuffleGrouping(MY_SPOUT_ID);
builder.setBolt(MY_BOLT2_ID, myBolt2).shuffleGrouping(MY_SPOUT_ID);
...

This code sample assigns two executors to the single, default worker for the specified
topology component, MyBolt1, as the following figure illustrates.

Hortonworks Data Platform October 30, 2017

22

The number of executors is set at the level of individual topology components, so adding
executors affects the code for the specified spouts and bolts. This differs from adding
workers, which affects only the configuration of the topology.

Increasing Parallelism with Tasks

Finally, Storm developers can increase the number of tasks assigned to a single topology
component, such as a spout or bolt. By default, Storm assigns a single task to each
component, but developers can increase this number with the setNumTasks() method
on the BoltDeclarer and SpoutDeclarer objects returned by the setBolt() and
setSpout() methods.

...
Config config = new Config();
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(MY_SPOUT_ID, mySpout);
builder.setBolt(MY_BOLT1_ID, myBolt1).setNumTasks(2).
shuffleGrouping(MY_SPOUT_ID);
builder.setBolt(MY_BOLT1_ID, myBolt2).shuffleGrouping(MY_SPOUT_ID);
...

This code sample assigns two tasks to execute MyBolt1, as the following figure illustrates.
This added parallelism might be appropriate for a bolt containing a large amount of data
processing logic. However, adding tasks is like adding executors because the code for the
corresponding spouts or bolts also changes.

Hortonworks Data Platform October 30, 2017

23

Putting it All Together

Storm developers can fine-tune the parallelism of their topologies by combining new
workers, executors and tasks. The following code sample demonstrates all of the following:

• Split processing of the MySpout component between four tasks in two separate
executors across two workers

• Split processing of the MyBolt1 component between two executors across two workers

• Centralize processing of the MyBolt2 component in a single task in a single executor in a
single worker on a single worker

...
Config config = new Config();
config.setNumWorkers(2);
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(MY_SPOUT_ID, mySpout, 2).setNumTasks(4);
builder.setBolt(MY_BOLT1_ID, myBolt1, 2).setNumTasks(2).
shuffleGrouping(MY_SPOUT_ID);
builder.setBolt(MY_BOLT2_ID, myBolt2).shuffleGrouping(MY_SPOUT_ID);
...

Hortonworks Data Platform October 30, 2017

24

The degree of parallelism depicted might be appropriate for the following topology
requirements:

• High-volume streaming data input

• Moderate data processing logic

• Low-volume topology output

See the Storm javadocs at https://storm.apache.org/releases/1.1.0/javadocs/index.html for
more information about the Storm API.

https://storm.apache.org/releases/1.1.0/javadocs/index.html

Hortonworks Data Platform October 30, 2017

25

4.1.8. Core Storm Example: RollingTopWords Topology

The RollingTopWords.java is included with storm-starter.

package storm.starter;

import org.apache.storm.Config;
import org.apache.storm.testing.TestWordSpout;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;
import storm.starter.bolt.IntermediateRankingsBolt;
import storm.starter.bolt.RollingCountBolt;
import storm.starter.bolt.TotalRankingsBolt;
import storm.starter.util.StormRunner;

/**
* This topology does a continuous computation of the top N words that the
 topology has seen in terms of cardinality.
* The top N computation is done in a completely scalable way, and a similar
 approach could be used to compute things
* like trending topics or trending images on Twitter.
*/
public class RollingTopWords {

 private static final int DEFAULT_RUNTIME_IN_SECONDS = 60;
 private static final int TOP_N = 5;

 private final TopologyBuilder builder;
 private final String topologyName;
 private final Config topologyConfig;
 private final int runtimeInSeconds;

 public RollingTopWords() throws InterruptedException {
 builder = new TopologyBuilder();
 topologyName = "slidingWindowCounts";
 topologyConfig = createTopologyConfiguration();
 runtimeInSeconds = DEFAULT_RUNTIME_IN_SECONDS;

 wireTopology();
 }

 private static Config createTopologyConfiguration() {
 Config conf = new Config();
 conf.setDebug(true);
 return conf;
 }

 private void wireTopology() throws InterruptedException {
 String spoutId = "wordGenerator";
 String counterId = "counter";
 String intermediateRankerId = "intermediateRanker";
 String totalRankerId = "finalRanker";
 builder.setSpout(spoutId, new TestWordSpout(), 5);
 builder.setBolt(counterId, new RollingCountBolt(9, 3), 4).
fieldsGrouping(spoutId, new Fields("word"));
 builder.setBolt(intermediateRankerId, new IntermediateRankingsBolt(TOP_N),
 4).fieldsGrouping(counterId, new Fields("obj"));
 builder.setBolt(totalRankerId, new TotalRankingsBolt(TOP_N)).
globalGrouping(intermediateRankerId);

Hortonworks Data Platform October 30, 2017

26

 }

 public void run() throws InterruptedException {
 StormRunner.runTopologyLocally(builder.createTopology(), topologyName,
 topologyConfig, runtimeInSeconds);
 }

 public static void main(String[] args) throws Exception {
 new RollingTopWords().run();
 }
}

4.2. Trident Concepts
Trident is a high-level API built on top of Storm core primitives (spouts and bolts). Trident
provides join operations, aggregations, grouping, functions, and filters, as well as fault-
tolerant state management. With Trident it is possible to achieve exactly-once processing
semantics more easily than with the Storm core API.

In contrast to the Storm core API, Trident topologies process data in micro-batches. The
micro-batch approach provides greater overall throughput at the cost of a slight increase in
overall latency.

Because Trident APIs are built on top of Storm core API, Trident topologies compile to a
graph of spouts and bolts.

The Trident API is built into Apache Storm, and does not require any additional
configuration or dependencies.

4.2.1. Introductory Example: Trident Word Count

The following code sample illustrates how to implement a simple word count program
using the Trident API:

TridentTopology topology = new TridentTopology();
 Stream wordCounts = topology.newStream("spout1", spout)
 .each(new Fields("sentence"), new Split(), new Fields("word"))
 .parallelismHint(16)
 .groupBy(new Fields("word"))
 .persistentAggregate(new MemoryMapState.Factory(), new Count(),
 new Fields("count"))
 .newValuesStream()
 .parallelismHint(16);

Here is detailed information about lines of code in the example:

• The first line creates the TridentTopology object that will be used to define the
topology:

TridentTopology topology = new TridentTopology();

• The second line creates a Stream object from a spout; it will be used to define
subsequent operations to be performed on the stream of data:

Stream wordCounts = topology.newStream("spout1", spout)

Hortonworks Data Platform October 30, 2017

27

• The third line uses the Stream.each() method to apply the Split function on the
“sentence” field, and specifies that the resulting output contains a new field named
“word”:

.each(new Fields("sentence"), new Split(), new Fields("word"))

The Split class is a simple Trident function that takes the first field of a tuple, tokenizes
it on the space character, and emits resulting tokens:

public class Split extends BaseFunction {

 public void execute(TridentTuple tuple, TridentCollector collector) {
 String sentence = tuple.getString(0);
 for (String word : sentence.split(" ")) {
 collector.emit(new Values(word));
 }
 }
 }

• The next two lines set the parallelism of the Split function and apply a groupBy()
operation to ensure that all tuples with the same “word” value are grouped together in
subsequent operations.

Calling parallelismHint() before a partitioning operation applies the specified
parallelism value on the resulting bolt:

.parallelismHint(16)

The groupBy() operation is a partitioning operation; it forms the boundary between
separate bolts in the resulting topology:

.groupBy(new Fields("word"))

The groupBy() operation results in batches of tuples being repartitioned by the value
of the “word” field.

For more information about stream operations that support partitioning, see the Stream
JavaDoc.

• The remaining lines of code aggregate the running count for individual words, update a
persistent state store, and emit the current count for each word.

The persistentAggregate() method applies a Trident Aggregator to a stream,
updates a persistent state store with the result of the aggregation, and emits the result:

.persistentAggregate(new MemoryMapState.Factory(), new Count(),
new Fields("count"))

The sample code uses an in-memory state store (MemoryMapState); Storm comes with
a number of state implementations for databases such as HBase.

The Count class is a Trident CombinerAggregator implementation that sums all
values in a batch partition of tuples:

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/Stream.html
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/Stream.html

Hortonworks Data Platform October 30, 2017

28

 public class Count implements CombinerAggregator<Long> {

 public Long init(TridentTuple tuple) {
 return 1L;
 }
 public Long combine(Long val1, Long val2) {
 return val1 + val2;
 }
 public Long zero() {
 return 0L;
 }
 }

When applying the aggregator, Storm passes grouped partitions to the aggregator,
calling init() for each tuple. It calls combine() repeatedly to process all tuples in the
partition. When finished, the last value returned by combine() is used. If the partition is
empty, the value of zero() is used.

The call to newValuesStream() tells Storm to emit the result of the persistent
aggregation. This consists of a stream of individual word counts. The resulting stream can
be reused in other parts of a topology.

4.2.2. Trident Operations
The Trident Stream class provides a number of methods that modify the content of a
stream. The Stream.each() method is overloaded to allow the application of two types
of operations: filters and functions.

For a complete list of methods in the Stream class, see the Trident JavaDoc.

4.2.2.1. Filters

Trident filters provide a way to exclude tuples from a Stream based on specific criteria.
Implementing a Trident filter involves extending BaseFilter and implementing the
isKeep() method of the Filter interface:

boolean isKeep(TridentTuple tuple);

The isKeep() method takes a TridentTuple as input and returns a boolean. If isKeep()
returns false, the tuple is dropped from the stream; otherwise the tuple is kept.

For example, to exclude words with fewer than three characters from the word count, you
could apply the following filter implementation to the stream:

public class ShortWordFilter extends BaseFilter {

 public boolean isKeep(TridentTuple tuple) {
 String word = tuple.getString(0);
 return word.length() > 3;
 }
 }

4.2.2.2. Functions

Trident functions are similar to Storm bolts, in that they consume individual tuples and
optionally emit new tuples. An important difference is that tuples emitted by Trident

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/Stream.html

Hortonworks Data Platform October 30, 2017

29

functions are additive. Fields emitted by Trident functions are added to the tuple and
existing fields are retained. The Split function in the word count example illustrates a
function that emits additional tuples:

 public class Split extends BaseFunction {

 public void execute(TridentTuple tuple, TridentCollector collector) {
 String sentence = tuple.getString(0);
 for (String word : sentence.split(" ")) {
 collector.emit(new Values(word));
 }
 }
 }

Note that the Split function always processes the first (index 0) field in the tuple.
It guarantees this because of the way that the function was applied using the
Stream.each() method:

stream.each(new Fields("sentence"), new Split(), new Fields("word"))

The first argument to the each() method can be thought of as a field selector. Specifying
“sentence” tells Trident to select only that field for processing, thus guaranteeing that the
“sentence” field will be at index 0 in the tuple.

Similarly, the third argument names the fields emitted by the function. This behavior allows
both filters and functions to be implemented in a more generic way, without depending on
specific field naming conventions.

4.2.3. Trident Aggregations

In addition to functions and filters, Trident defines a number of aggregator interfaces that
allow topologies to combine tuples.

There are three types of Trident aggregators:

• CombinerAggregator

• ReducerAggregator

• Aggregator

As with functions and filters, Trident aggregations are applied to streams via
methods in the Stream class, namely aggregate(), partitionAggregate(), and
persistentAggregate().

4.2.3.1. CombinerAggregator

The CombinerAggregator interface is used to combine a set of tuples into a single field.
In the word count example the Count class is an example of a CombinerAggregator that
summed field values across a partition. The CombinerAggregator interface is as follows:

public interface CombinerAggregator<T> extends Serializable {
 T init(TridentTuple tuple);
 T combine(T val1, T val2);
 T zero();
}

Hortonworks Data Platform October 30, 2017

30

When executing Aggregator, Storm calls init() for each tuple, and calls combine()
repeatedly to process each tuple in the partition.

When complete, the last value returned by combine() is emitted. If the partition is empty,
the value of zero() will be emitted.

4.2.3.2. ReducerAggregator

The ReducerAggregator interface has the following interface definition:

public interface ReducerAggregator<T> extends Serializable {
 T init();
 T reduce(T curr, TridentTuple tuple);
}

When applying a ReducerAggregator to a partition, Storm first calls the init()
method to obtain an initial value. It then calls the reduce() method repeatedly, to
process each tuple in the partition. The first argument to the reduce() method is the
current cumulative aggregation, which the method returns after applying the tuple to the
aggregation. When all tuples in the partition have been processed, Storm emits the last
value returned by reduce().

4.2.3.3. Aggregator

The Aggregator interface represents the most general form of aggregation operations:

public interface Aggregator<T> extends Operation {
 T init(Object batchId, TridentCollector collector);
 void aggregate(T val, TridentTuple tuple, TridentCollector collector);
 void complete(T val, TridentCollector collector);
}

A key difference between Aggregator and other Trident aggregation interfaces is that
an instance of TridentCollector is passed as a parameter to every method. This allows
Aggregator implementations to emit tuples at any time during execution.

Storm executes Aggregator instances as follows:

1. Storm calls the init() method, which returns an object T representing the initial state
of the aggregation.

T is also passed to the aggregate() and complete() methods.

2. Storm calls the aggregate() method repeatedly, to process each tuple in the batch.

3. Storm calls complete() with the final value of the aggregation.

The word count example uses the built-in Count class that implements the
CombinerAggregator interface. The Count class could also be implemented as an
Aggregator:

public class Count extends BaseAggregator<CountState> {
 static class CountState {

Hortonworks Data Platform October 30, 2017

31

 long count = 0;
 }

 public CountState init(Object batchId, TridentCollector collector) {
 return new CountState();
 }

 public void aggregate(CountState state, TridentTuple tuple,
 TridentCollector collector) {
 state.count+=1;
 }

 public void complete(CountState state, TridentCollector collector) {
 collector.emit(new Values(state.count));
 }
}

4.2.4. Trident State

Trident includes high-level abstractions for managing persistent state in a topology.
State management is fault tolerant: updates are idempotent when failures and retries
occur. These properties can be combined to achieve exactly-once processing semantics.
Implementing persistent state with the Storm core API would be more difficult.

Trident groups tuples into batches, each of which is given a unique transaction ID. When a
batch is replayed, the batch is given the same transaction ID. State updates in Trident are
ordered such that a state update for a particular batch will not take place until the state
update for the previous batch is fully processed. This is reflected in Tridents State interface
at the center of the state management API:

public interface State {
 void beginCommit(Long txid);
 void commit(Long txid);
}

When updating state, Trident informs the State implementation that a transaction is
about to begin by calling beginCommit(), indicating that state updates can proceed. At
that point the State implementation updates state as a batch operation. Finally, when
the state update is complete, Trident calls the commit() method, indicating that the state
update is ending. The inclusion of transaction ID in both methods allows the underlying
implementation to manage any necessary rollbacks if a failure occurs.

Implementing Trident states against various data stores is beyond the scope of this
document, but more information can be found in the Trident State documentation(https://
storm.apache.org/releases/1.1.0/Trident-state.html).

4.2.4.1. Trident Spouts

Trident defines three spout types that differ with respect to batch content, failure
response, and support for exactly-once semantics:

Non-transactional spouts Non-transactional spouts make no guarantees for the
contents of each batch. As a result, processing may
be at-most-once or at least once. It is not possible

https://storm.apache.org/releases/1.1.0/Trident-state.html
https://storm.apache.org/releases/1.1.0/Trident-state.html

Hortonworks Data Platform October 30, 2017

32

to achieve exactly-once processing when using non-
transactional Trident spouts.

Transactional spouts Transactional spouts support exactly-once processing
in a Trident topology. They define success at the batch
level, and have several important properties that allow
them to accomplish this:

1. Batches with a given transaction ID are always
identical in terms of tuple content, even when
replayed.

2. Batch content never overlaps. A tuple can never be in
more than one batch.

3. Tuples are never skipped.

With transactional spouts, idempotent state updates
are relatively easy: because batch transaction IDs are
strongly ordered, the ID can be used to track data that
has already been persisted. For example, if the current
transaction ID is 5 and the data store contains a value
for ID 5, the update can be safely skipped.

Opaque transactional spouts Opaque transactional spouts define success at the tuple
level. Opaque transactional spouts have the following
properties:

1. There is no guarantee that a batch for a particular
transaction ID is always the same.

2. Each tuple is successfully processed in exactly one
batch, though it is possible for a tuple to fail in one
batch and succeed in another.

The difference in focus between transactional and opaque transactional spouts—success
at the batch level versus the tuple level, respectively—has key implications in terms of
achieving exactly-once semantics when combining different spouts with different state
types.

4.2.4.2. Achieving Exactly-Once Messaging in Trident

As mentioned earlier, achieving exactly-once semantics in a Trident topology require certain
combinations of spout and state types. It should also be clear why exactly-once guarantees
are not possible with non-transactional spouts and states. The table below illustrates which
combinations of spouts and states support exactly-once processing:

Hortonworks Data Platform October 30, 2017

33

4.2.5. Further Reading about Trident

For additional information about Trident, refer to the following documents:

Trident Tutorial

Trident API Overview

Trident State

Trident Spouts

4.3. Moving Data Into and Out of a Storm
Topology

There are two approaches for moving data into and out of a Storm topology:

• Use a spout or bolt connector to ingest or write streaming data from or to a component
such as Kafka, HDFS or HBase. For more information, see Moving Data Into and Out of
Apache Storm Using Spouts and Bolts.

• Use the core Storm or Trident APIs to write a spout or bolt.

4.4. Implementing Windowing Computations on
Data Streams

Windowing is one of the most frequently used processing methods for streams of data. An
unbounded stream of data (events) is split into finite sets, or windows, based on specified

https://storm.apache.org/releases/1.1.0/Trident-tutorial.html
https://storm.apache.org/releases/1.1.0/Trident-API-Overview.html
https://storm.apache.org/releases/1.1.0/Trident-state.html
https://storm.apache.org/releases/1.1.0/Trident-spouts.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-connectors.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-connectors.html

Hortonworks Data Platform October 30, 2017

34

criteria, such as time. A window can be conceptualized as an in-memory table in which
events are added and removed based on a set of policies. Storm performs computations on
each window of events. An example would be to compute the top trending Twitter topic
every hour.

You can use high-level abstractions to define a window in a Storm topology, and you
can use stateful computation in conjunction with windowing. For more information, see
Implementing State Management.

This chapter includes examples that implement windowing features. For more information
about interfaces and classes, refer to the Storm 1.1.0 javadocs.

4.4.1. Understanding Sliding and Tumbling Windows

This subsection describes how sliding and tumbling windows work. Both types of windows
move across continuous streaming data, splitting the data into finite sets. Finite windows
are helpful for operations such as aggregations, joins, and pattern matching.

Sliding Windows

In a sliding window, tuples are grouped within a window that slides across the data
stream according to a specified interval. A time-based sliding window with a length of ten
seconds and a sliding interval of five seconds contains tuples that arrive within a ten-second
window. The set of tuples within the window are evaluated every five seconds. Sliding
windows can contain overlapping data; an event can belong to more than one sliding
window.

In the following image, the first window (w1, in the box with dashed lines) contains events
that arrived between the zeroth and tenth seconds. The second window (w2, in the box
with solid lines) contains events that arrived between the fifth and fifteenth seconds. Note
that events e3 through e6 are in both windows. When window w2 is evaluated at time t =
15 seconds, events e1 and e2 are dropped from the event queue.

An example would be to compute the moving average of a stock price across the last five
minutes, triggered every second.

Tumbling Windows

In a tumbling window, tuples are grouped in a single window based on time or count. A
tuple belongs to only one window.

For example, consider a time-based tumbling window with a length of five seconds. The
first window (w1) contains events that arrived between the zeroth and fifth seconds. The
second window (w2) contains events that arrived between the fifth and tenth seconds, and
the third window (w3) contains events that arrived between tenth and fifteenth seconds.
The tumbling window is evaluated every five seconds, and none of the windows overlap;
each segment represents a distinct time segment.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-state-mgmt.html
https://storm.apache.org/releases/1.1.0/javadocs/index.html

Hortonworks Data Platform October 30, 2017

35

An example would be to compute the average price of a stock over the last five minutes,
computed every five minutes.

4.4.2. Implementing Windowing in Core Storm
If you want to use windowing in a bolt, you can implement the bolt interface
IWindowedBolt:

public interface IWindowedBolt extends IComponent {
 void prepare(Map stormConf, TopologyContext context, OutputCollector
 collector);
 /**
 * Process tuples falling within the window and optionally emit
 * new tuples based on the tuples in the input window.
 */
 void execute(TupleWindow inputWindow);
 void cleanup();
}

Every time the window slides (the sliding interval elapses), Storm invokes the execute
method.

You can use the TupleWindow parameter to access current tuples in the window,
expired tuples, and tuples added since the window was last computed. You can use this
information to optimize the efficiency of windowing computations.

Bolts that need windowing support would typically extend BaseWindowedBolt, which
has APIs for specifying type of window, window length, and sliding interval:

public class SlidingWindowBolt extends BaseWindowedBolt {
 private OutputCollector collector;
 @Override
 public void prepare(Map stormConf, TopologyContext context, OutputCollector
 collector){
 this.collector = collector;
 }
 @Override
 public void execute(TupleWindow inputWindow) {
 for(Tuple tuple: inputWindow.get()) {
 // do the windowing computation
 ...
 }
 collector.emit(new Values(computedValue));
 }
}

You can specify window length and sliding interval as a count of the number of tuples, a
duration of time, or both. The following window configuration settings are supported:

/*
 * Tuple count based sliding window that slides after slidingInterval number
 of tuples

Hortonworks Data Platform October 30, 2017

36

 */
withWindow(Count windowLength, Count slidingInterval)

/*
 * Tuple count based window that slides with every incoming tuple
 */
withWindow(Count windowLength)

/*
 * Tuple count based sliding window that slides after slidingInterval time
 duration
 */
withWindow(Count windowLength, Duration slidingInterval)

/*
 * Time duration based sliding window that slides after slidingInterval time
 duration
 */
withWindow(Duration windowLength, Duration slidingInterval)

/*
 * Time duration based window that slides with every incoming tuple
 */
withWindow(Duration windowLength)

/*
 * Time duration based sliding window that slides after slidingInterval number
 of tuples
 */
withWindow(Duration windowLength, Count slidingInterval)

/*
 * Count based tumbling window that tumbles after the specified count of
 tuples
 */
withTumblingWindow(BaseWindowedBolt.Count count)

/*
 * Time duration based tumbling window that tumbles after the specified time
 duration
 */
withTumblingWindow(BaseWindowedBolt.Duration duration)

To add windowed bolts to the topology, use the TopologyBuilder (as you would with non-
windowed bolts):

TopologyBuilder builder = new TopologyBuilder();
/*
 * A windowed bolt that computes sum over a sliding window with window length
 of
 * 30 events that slides after every 10 events.
 */
builder.setBolt("sum", new WindowSumBolt().withWindow(Count.of(30), Count.
of(10)), 1)
 .shuffleGrouping("spout");

For a sample topology that shows how to use the APIs to compute a sliding window sum
and a tumbling window average, see the SlidingWindowTopology.java file in the
storm-starter GitHub directory.

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/topology/TopologyBuilder.html

Hortonworks Data Platform October 30, 2017

37

For examples of tumbling and sliding windows, see the Apache document Windowing
Support in Core Storm.

The following subsections describe additional aspects of windowing calculations:
timestamps, watermarks, guarantees, and state management.

4.4.2.1. Understanding Tuple Timestamps and Out-of-Order Tuples

By default, window calculations are performed based on the processing timestamp. The
timestamp tracked in each window is the time when the tuple is processed by the bolt.

Storm can also track windows by source-generated timestamp. This can be useful for
processing events based on the time that an event occurs, such as log entries with
timestamps.

The following example specifies a source-generated timestamp field. The value for
fieldName is retrieved from the incoming tuple, and then considered for use in
windowing calculations.

When this option is specified, all tuples are expected to contain the timestamp field.

/**
 * Specify the tuple field that represents the timestamp as a long value. If
 this field
 * is not present in the incoming tuple, an {@link IllegalArgumentException}
 will be thrown.
 *
 * @param fieldName the name of the field that contains the timestamp
 */
public BaseWindowedBolt withTimestampField(String fieldName)

Note: If the timestamp field is not present in the tuple, an exception is thrown and the
topology terminates. To resolve this issue, remove the erroneous tuple manually from the
source (such as Kafka), and then restart the topology.

In addition to using the timestamp field to trigger calculations, you can specify a time lag
parameter that indicates the maximum time limit for tuples with out-of-order timestamps:

/**
 * Specify the maximum time lag of the tuple timestamp in millis. The tuple
 timestamps
 * cannot be out of order by more than this amount.
 *
 * @param duration the max lag duration
 */
public BaseWindowedBolt withLag(Duration duration)

For example, if the lag is five seconds and tuple t1 arrives with timestamp 06:00:05,
no tuples can arrive with tuple timestamps earlier than 06:00:00. If a tuple arrives with
timestamp 05:59:59 after t1 and the window has moved past t1, the tuple is considered
late and is not processed; late tuples are ignored and are logged in the worker log files at
the INFO level.

4.4.2.2. Understanding Watermarks

When processing tuples using a timestamp field, Storm computes watermarks based on
the timestamp of an incoming tuple. Each watermark is the minimum of the latest tuple

https://storm.apache.org/releases/1.1.0/Windowing.html
https://storm.apache.org/releases/1.1.0/Windowing.html

Hortonworks Data Platform October 30, 2017

38

timestamps (minus the lag) across all the input streams. At a higher level, this is similar to
the watermark concept used by Google's MillWheel for tracking event-based timestamps.

Periodically (by default, every second), Storm emits watermark timestamps, which are used
as the “clock tick” for the window calculation when tuple-based timestamps are in use. You
can change the interval at which watermarks are emitted by using the following API:

/**
 * Specify the watermark event generation interval. Watermark events
 * are used to track the progress of time
 *
 * @param interval the interval at which watermark events are generated
 */
public BaseWindowedBolt withWatermarkInterval(Duration interval)

When a watermark is received, all windows up to that timestamp are evaluated.

For example, consider tuple timestamp-based processing with the following window
parameters:

• Window length equals 20 seconds, sliding interval equals 10 seconds, watermark emit
frequency equals 1 second, max lag equals 5 seconds.

• Current timestamp equals 09:00:00.

• Tuples e1(6:00:03), e2(6:00:05), e3(6:00:07), e4(6:00:18), e5(6:00:26), e6(6:00:36) arrive
between 9:00:00 and 9:00:01.

At time t equals 09:00:01, the following actions occur:

1. Storm emits watermark w1 at 6:00:31, because no tuples earlier than 6:00:31 can arrive.

2. Three windows are evaluated.

The first window ending timestamp (06:00:10) is computed by taking the earliest event
timestamp (06:00:03) and computing the duration based on the sliding interval (10
seconds):

• 5:59:50 to 06:00:10 with tuples e1, e2, e3

• 6:00:00 to 06:00:20 with tuples e1, e2, e3, e4

• 6:00:10 to 06:00:30 with tuples e4, e5

3. Tuple e6 is not evaluated, because watermark timestamp 6:00:31 is less than tuple
timestamp 6:00:36.

4. Tuples e7(8:00:25), e8(8:00:26), e9(8:00:27), e10(8:00:39) arrive between 9:00:01 and
9:00:02.

At time t equals 09:00:02, the following actions occur:

1. Storm emits watermark w2 at 08:00:34, because no tuples earlier than 8:00:34 can
arrive.

2. Three windows are evaluated:

https://research.google.com/pubs/pub41378.html

Hortonworks Data Platform October 30, 2017

39

• 6:00:20 to 06:00:40, with tuples e5 and e6 (from an earlier batch)

• 6:00:30 to 06:00:50, with tuple e6 (from an earlier batch)

• 8:00:10 to 08:00:30, with tuples e7, e8, and e9

3. Tuple e10 is not evaluated, because the tuple timestamp 8:00:39 is beyond the
watermark time 8:00:34.

The window calculation considers the time gaps and computes the windows based on the
tuple timestamp.

4.4.2.3. Understanding the “at-least-once” Guarantee

The windowing functionality in Storm core provides an “at-least-once” guarantee.
Values emitted from a bolt’s execute(TupleWindow inputWindow) method are
automatically anchored to all tuples in inputWindow. Downstream bolts are expected
to acknowledge the received tuple (the tuple emitted from the windowed bolt) to
complete the tuple tree. If not acknowledged, the tuples are replayed and the windowing
computation is reevaluated.

Tuples in a window are automatically acknowledged when they exit the window
after windowLength + slidingInterval. Note that the configuration
topology.message.timeout.secs should be more than windowLength +
slidingInterval for time-based windows; otherwise, the tuples expire and are
replayed, which can result in duplicate evaluations. For count-based windows, you should
adjust the configuration so that windowLength + slidingInterval tuples can be
received within the timeout period.

4.4.2.4. Saving the Window State

One issue with windowing is that tuples cannot be acknowledged until they exit the
window.

For example, consider a one-hour window that slides every minute. The tuples in the
window are evaluated (passed to the bolt execute method) every minute, but tuples that
arrived during the first minute are acknowledged only after one hour and one minute. If
there is a system outage after one hour, Storm replays all tuples from the starting point
through the sixtieth minute. The bolt’s execute method is invoked with the same set of
tuples 60 times; every window is reevaluated. One way to avoid this is to track tuples that
have already been evaluated, save this information in an external durable location, and use
this information to trim duplicate window evaluation during recovery.

For more information about state management and how it can be used to avoid duplicate
window evaluations, see Implementing State Management.

4.4.3. Implementing Windowing in Trident
Trident processes a stream in batches of tuples for a defined topology. As with core Storm,
Trident supports tumbling and sliding windows. Either type of window can be based on
processing time, tuple count, or both.

Windowing API for Trident

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-state-mgmt.html

Hortonworks Data Platform October 30, 2017

40

The common windowing API takes WindowConfig for any supported windowing
configuration. It returns a stream of aggregated results based on the given window
configuration.

public Stream window(WindowConfig windowConfig,
 Fields inputFields,
 Aggregator aggregator,
 Fields functionFields)

windowConfig can be any of the following:

• SlidingCountWindow of(int windowCount, int slidingCount)

• SlidingDurationWindow of(BaseWindowedBolt.Duration
windowDuration,

BaseWindowedBolt.Duration slidingDuration)

• TumblingCountWindow of(int windowLength)

• TumblingDurationWindow of(BaseWindowedBolt.Duration windowLength)

Trident windowing APIs also need to implement WindowsStoreFactory, to store
received tuples and aggregated values.

Implementing a Tumbling Window

For a tumbling window implementation, tuples are grouped in a single window based
on processing time or count. Any tuple belongs to only one window. Here is the API for a
tumbling window:

 /**
 * Returns a stream of tuples which are aggregated results of a tumbling
 window with
 every {@code windowCount} of tuples.
 */
public Stream tumblingWindow(int windowCount,
 WindowsStoreFactory windowStoreFactory,
 Fields inputFields,
 Aggregator aggregator,
 Fields functionFields)
 /**
 * Returns a stream of tuples which are aggregated results of a window
 that tumbles at
 duration of {@code windowDuration}
 */

public Stream tumblingWindow(BaseWindowedBolt.Duration windowDuration,
 WindowsStoreFactory windowStoreFactory,
 Fields inputFields,
 Aggregator aggregator,
 Fields functionFields)

Implementing a Sliding Window

For a sliding window implementation, tuples are grouped in windows that slide for every
sliding interval. A tuple can belong to more than one window. Here is the API for a sliding
window:

 /**

Hortonworks Data Platform October 30, 2017

41

 * Returns a stream of tuples which are aggregated results of a sliding
 window with
 every {@code windowCount} of tuples and slides the window after
 {@code slideCount}.
 */
public Stream slidingWindow(int windowCount,
 int slideCount,
 WindowsStoreFactory windowStoreFactory,
 Fields inputFields,
 Aggregator aggregator,
 Fields functionFields)
/**
* Returns a stream of tuples which are aggregated results of a window which
 slides at
 duration of {@code slidingInterval}
* and completes a window at {@code windowDuration}
*/
 public Stream slidingWindow(BaseWindowedBolt.
Duration windowDuration,
 BaseWindowedBolt.Duration slidingInterval,
 WindowsStoreFactory windowStoreFactory,
 Fields inputFields,
 Aggregator aggregator,
 Fields functionFields)

4.4.3.1. Trident Windowing Implementation Details

For information about org.apache.storm.trident.Stream, see the Apache javadoc
for Trident streams.

The following example shows a basic implementation of WindowStoreFactory for
HBase, using HBaseWindowsStoreFactory and HBaseWindowsStore. It can be
extended to address other use cases.

/**
 * Factory to create instances of {@code WindowsStore}.
 */
public interface WindowsStoreFactory extends Serializable {
 public WindowsStore create();
}

 /**
 * Store for storing window related entities like windowed tuples,
 triggers etc.
 *
 */
public interface WindowsStore extends Serializable {

public Object get(String key);

public Iterable<Object> get(List<String> keys);

public Iterable<String> getAllKeys();

public void put(String key, Object value);

public void putAll(Collection<Entry> entries);

public void remove(String key);

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/class-use/Stream.html
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/trident/class-use/Stream.html

Hortonworks Data Platform October 30, 2017

42

public void removeAll(Collection<String> keys);

public void shutdown();

 /**
 * This class wraps key and value objects which can be passed to {@code
 putAll} method.
 */
public static class Entry implements Serializable {
 public final String key;
 public final Object value;
...
}

A windowing operation in a Trident stream is a TridentProcessor implementation with
the following lifecycle for each batch of tuples received:

// This is invoked when a new batch of tuples is received.
void startBatch(ProcessorContext processorContext);

// This is invoked for each tuple of a batch.
void execute(ProcessorContext processorContext, String streamId, TridentTuple
 tuple);

// This is invoked for a batch to make it complete. All the tuples of this
 batch
would have been already invoked with #execute(ProcessorContext
 processorContext, String streamId, TridentTuple tuple)
void finishBatch(ProcessorContext processorContext);

Each tuple is received in window operation through
WindowTridentProcessor#execute (ProcessorContext
processorContext, String streamId, TridentTuple tuple). These tuples are
accumulated for each batch.

When a batch is finished, associated tuple information is added to the window, and tuples
are saved in the configured WindowsStore. Bolts for respective window operations fire
a trigger according to the specified windowing configuration (like tumbling/sliding count
or time). These triggers compute the aggregated result according to the given Aggregator.
Results are emitted as part of the current batch, if it exists.

When a trigger is fired outside WindowTridentProcessor#finishBatch invocation,
those triggers are stored in the given WindowsStore, and are emitted as part of the next
immediate batch from that window’s processor.

4.4.3.2. Sample Trident Application with Windowing

Here is an example that uses HBaseWindowStoreFactory for windowing:

// define arguments
Map<String, Object> config = new HashMap<>();
String tableName = "window-state";
byte[] columnFamily = “cf”.getBytes(“UTF-8”);
byte[] columnQualifier = “tuples”.getBytes(“UTF-8”);

// window-state table should already be created with cf:tuples column
 HBaseWindowsStoreFactory windowStoreFactory = new
 HBaseWindowsStoreFactory(config, tablename, columnFamily, columnQualifier);

Hortonworks Data Platform October 30, 2017

43

 FixedBatchSpout spout = new FixedBatchSpout(new Fields("sentence"), 3, new
 Values("the cow jumped over the moon"),
 new Values("the man went to the store and bought some candy"), new
 Values("four score and seven years ago"),
 new Values("how many apples can you eat"), new Values("to be or
 not to be the person"));

 spout.setCycle(true);

 TridentTopology topology = new TridentTopology();

 Stream stream = topology.newStream("spout1", spout).parallelismHint(16).
each(new Fields("sentence"),
 new Split(), new Fields("word"))
 .tumblingWindow(1000, windowStoreFactory, new Fields("word"), new
 CountAsAggregator(), new Fields("count"))
 .peek(new Consumer() {
 @Override
 public void accept(TridentTuple input) {
 LOG.info("Received tuple: [{}]", input);
 }
 });
 StormTopology stormTopology = topology.build();

For additional examples that use Trident windowing APIs, see
TridentHBaseWindowingStoreTopology and TridentWindowingInmemoryStoreTopology.

4.5. Implementing State Management
This subsection describes state management APIs and architecture for core Storm.

Stateful abstractions allow Storm bolts to store and retrieve the state of their
computations. The state management framework automatically, periodically snapshots the
state of bolts across a topology. There is a default in-memory-based state implementation,
as well as a Redis-backed implementation that provides state persistence.

Bolts that require state to be managed and persisted by the framework should implement
the IStatefulBolt interface or extend BaseStatefulBolt, and implement the
void initState(T state) method. The initState method is invoked by the
framework during bolt initialization. It contains the previously saved state of the bolt.
Invoke initState after prepare, but before the bolt starts processing any tuples.

Currently the only supported State implementation is KeyValueState, which provides
key-value mapping.

The following example describes how to implement a word count bolt that uses the key-
value state abstraction for word counts:

public class WordCountBolt
 extends BaseStatefulBolt<KeyValueState<String, Integer>> {
 private KeyValueState<String,Integer> wordCounts;
 ...
 @Override
 public void initState(KeyValueState<String,Integer> state) {
 wordCounts = state;
 }
 @Override

http://github.com/apache/storm/blob/v1.0.1/examples/storm-starter/src/jvm/org/apache/storm/starter/trident/TridentHBaseWindowingStoreTopology.java
http://github.com/apache/storm/blob/v1.0.1/examples/storm-starter/src/jvm/org/apache/storm/starter/trident/TridentWindowingInmemoryStoreTopology.java

Hortonworks Data Platform October 30, 2017

44

 public void execute(Tuple tuple) {
 String word = tuple.getString(0);
 Integer count = wordCounts.get(word, 0);
 count++;
 wordCounts.put(word, count);
 collector.emit(tuple, new Values(word, count));
 collector.ack(tuple);
 }
 ...
 }

1. Extend the BaseStatefulBolt and type parameterize it with KeyValueState, to
store the mapping of word to count.

2. In the init method, initialize the bolt with its previously saved state: the word count
last committed by the framework during the previous run.

3. In the execute method, update the word count.

The framework periodically checkpoints the state of the bolt (default
every second). The frequency can be changed by setting the storm config
topology.state.checkpoint.interval.ms.

For state persistence, use a state provider that supports persistence by setting
the topology.state.provider in the storm config. For example, for Redis based
key-value state implementation, you can set topology.state.provider to
org.apache.storm.redis.state.RedisKeyValueStateProvider in
storm.yaml. The provider implementation .jar should be in the class path, which in this
case means placing the storm-redis-*.jar in the extlib directory.

You can override state provider properties by setting
topology.state.provider.config. For Redis state this is a JSON configuration with
the following properties:

{
 "keyClass": "Optional fully qualified class name of the Key type.",
 "valueClass": "Optional fully qualified class name of the Value type.",
 "keySerializerClass": "Optional Key serializer implementation class.",
 "valueSerializerClass": "Optional Value Serializer implementation class.",
 "jedisPoolConfig": {
 "host": "localhost",
 "port": 6379,
 "timeout": 2000,
 "database": 0,
 "password": "xyz"
 }
}

4.5.1. Checkpointing
Checkpointing is triggered by an internal checkpoint spout at the interval specified by
topology.state.checkpoint.interval.ms. If there is at least one IStatefulBolt in
the topology, the checkpoint spout is automatically added by the topology builder .

For stateful topologies, the topology builder wraps the IStatefulBolt in a
StatefulBoltExecutor, which handles the state commits on receiving the checkpoint
tuples. Non-stateful bolts are wrapped in a CheckpointTupleForwarder, which

Hortonworks Data Platform October 30, 2017

45

simply forwards the checkpoint tuples so that the checkpoint tuples can flow through the
topology directed acyclic graph (DAG).

Checkpoint tuples flow through a separate internal stream called $checkpoint. The
topology builder wires the checkpoint stream across the whole topology, with the
checkpoint spout at the root.

At specified checkpoint intervals, the checkpoint spout emits checkpoint tuples. Upon
receiving a checkpoint tuple, the state of the bolt is saved and the checkpoint tuple is
forwarded to the next component. Each bolt waits for the checkpoint to arrive on all of
its input streams before it saves its state, so state is consistent across the topology. Once
the checkpoint spout receives an ack from all bolts, the state commit is complete and the
transaction is recorded as committed by the checkpoint spout.

This checkpoint mechanism builds on Storm's existing acking mechanism to replay the
tuples. It uses concepts from the asynchronous snapshot algorithm used by Flink, and from
the Chandy-Lamport algorithm for distributed snapshots. Internally, checkpointing uses a
three-phase commit protocol with a prepare and commit phase, so that the state across the
topology is saved in a consistent and atomic manner.

4.5.2. Recovery

The recovery phase is triggered for the following conditions:

• When a topology is started for the first time.

• If the previous transaction was not prepared successfully, a rollback message is sent
across the topology to indicate that if a bolt has some prepared transactions it can be
discarded.

• If the previous transaction was prepared successfully but not committed, a commit
message is sent across the topology so that the prepared transactions can be
committed.

After these steps finish, bolts are initialized with the state.

• When a bolt fails to acknowledge the checkpoint message; for example, if a worker
crashes during a transaction.

http://arxiv.org/abs/1506.08603
http://research.microsoft.com/en-us/um/people/lamport/pubs/chandy.pdf

Hortonworks Data Platform October 30, 2017

46

When the worker is restarted by the supervisor, the checkpoint mechanism ensures that
the bolt is initialized with its previous state. Checkpointing continues from the point
where it left off.

4.5.3. Guarantees
Storm relies on the acking mechanism to replay tuples in case of failures. It is possible
that the state is committed but the worker crashes before acking the tuples. In this
case the tuples are replayed causing duplicate state updates. Also currently the
StatefulBoltExecutor continues to process the tuples from a stream after it has
received a checkpoint tuple on one stream while waiting for checkpoint to arrive on other
input streams for saving the state. This can also cause duplicate state updates during
recovery.

The state abstraction does not eliminate duplicate evaluations and currently provides only
at-least once guarantee.

To provide the at-least-once guarantee, all bolts in a stateful topology are expected to
anchor the tuples while emitting and ack the input tuples once it is processed. For non-
stateful bolts, the anchoring and acking can be automatically managed by extending the
BaseBasicBolt. Stateful bolts are expected to anchor tuples while emitting and ack
the tuple after processing like in the WordCountBolt example in the State management
subsection.

4.5.4. Implementing Custom Actions: IStateful Bolt Hooks
The IStateful bolt interface provides hook methods through which stateful bolts can
implement custom actions. This feature is optional; stateful bolts are not expected to
provide an implementation. The feature is provided so that other system-level components
can be built on top of stateful abstractions; for example, to implement actions before the
state of the stateful bolt is prepared, committed or rolled back.

/**
* This is a hook for the component to perform some actions just before the
* framework commits its state.
*/
void preCommit(long txid);

/**
* This is a hook for the component to perform some actions just before the
* framework prepares its state.
*/
void prePrepare(long txid);

/**
* This is a hook for the component to perform some actions just before the
* framework rolls back the prepared state.
*/
void preRollback();

4.5.5. Implementing Custom States
Currently the only kind of State implementation supported is KeyValueState, which
provides key-value mapping.

Hortonworks Data Platform October 30, 2017

47

Custom state implementations should provide implementations for the methods defined
in the State interface. These are the void prepareCommit(long txid), void
commit(long txid), and rollback() methods. The commit() method is optional; it
is useful if the bolt manages state on its own. This is currently used only by internal system
bolts (such as CheckpointSpout).

KeyValueState implementations should also implement the methods defined in the
KeyValueState interface.

The framework instantiates state through the corresponding StateProvider
implementation. A custom state should also provide a StateProvider implementation
that can load and return the state based on the namespace.

Each state belongs to a unique namespace. The namespace is typically unique to a task,
so that each task can have its own state. The StateProvider and corresponding State
implementation should be available in the class path of Storm, by placing them in the
extlib directory.

4.5.6. Implementing Stateful Windowing

The windowing implementation in core Storm acknowledges tuples in a window only when
they fall out of the window.

For example, consider a window configuration with a window length of 5 minutes and a
sliding interval of 1 minute. The tuples that arrived between 0 and 1 minutes are acked only
when the window slides past one minute (for example, at the 6th minute).

If the system crashes, tuples e1 to e8 are replayed, assuming that the ack for e1 and e2 did
not reach the acker. Tuples w1, w2 and w3 will be reevaluated.

Stateful windowing tries to minimize duplicate window evaluations by saving the last
evaluated state and the last expired state of the window. Stateful windowing expects
a monotonically increasing message ID to be part of the tuple, and uses the stateful
abstractions discussed previously to save the last expired and last evaluated message IDs.

During recovery, Storm uses the last expired and last evaluated message IDs to avoid
duplicate window evaluations:

• Tuples with message IDs lower than the last expired ID are discarded.

• Tuples with message IDs between the last expired and last evaluated message IDs are fed
into the system without activating any triggers.

Hortonworks Data Platform October 30, 2017

48

• Tuples beyond the last evaluated message ids are processed as usual.

State support in windowing is provided by IStatefulWindowedBolt. User bolts should
typically extend BaseStatefulWindowedBolt for windowings operation that use the
Storm framework to automatically manage the state of the window.

4.5.7. Sample Topology with Saved State

A sample topology in storm-starter, StatefulWindowingTopology, demonstrates
the use of IStatefulWindowedBolt to save the state of a windowing operation and
avoid recomputation in case of failures. The framework manages window boundaries
internally; it does not invoke execute(TupleWindow inputWindow) for already-
evaluated windows if there is a restart after a failure.

4.6. Performance Guidelines for Developing a
Storm Topology

The following table lists several general performance-related guidelines for developing
Storm topologies.

Table 4.4. Storm Topology Development Guidelines

Guideline Description

Read topology configuration parameters from a file. Rather than hard coding configuration information in your
Storm application, read the configuration parameters,
including parallelism hints for specific components,
from a file inside the main() method of the topology.
This speeds up the iterative process of debugging by
eliminating the need to rewrite and recompile code for
simple configuration changes.

Use a cache. Use a cache to improve performance by eliminating
unnecessary operations over the network, such as making
frequent external service or lookup calls for reference data
needed for processing.

Tighten code in the execute() method. Every tuple is processed by the execute() method, so
verify that the code in this method is as tight and efficient
as possible.

Perform benchmark testing to determine latencies. Perform benchmark testing of the critical points in the
network flow of your topology. Knowing the capacity of
your data "pipes" provides a reliable standard for judging
the performance of your topology and its individual
components.

Hortonworks Data Platform October 30, 2017

49

5. Moving Data Into and Out of Apache
Storm Using Spouts and Bolts

This chapter focuses on moving data into and out of Apache Storm through the use of
spouts and bolts. Spouts read data from external sources to ingest data into a topology.
Bolts consume input streams and process the data, emit new streams, or send results to
persistent storage. This chapter focuses on bolts that move data from Storm to external
sources.

The following spouts are available in HDP 2.5:

• Kafka spout based on Kafka 0.7.x/0.8.x, plus a new Kafka consumer spout available as a
technical preview (not for production use)

• HDFS

• EventHubs

• Kinesis (technical preview)

The following bolts are available in HDP 2.5:

• Kafka

• HDFS

• EventHubs

• HBase

• Hive

• JDBC (supports Phoenix)

• Solr

• Cassandra

• MongoDB

• ElasticSearch

• Redis

• OpenTSDB (technical preview)

Supported connectors are located at /usr/lib/storm/contrib. Each contains a .jar file
containing the connector's packaged classes and dependencies, and another .jar file with
javadoc reference documentation.

This chapter describes how to use the Kafka spout, HDFS spout, Kafka bolt, Storm-
HDFS connector, and Storm-HBase connector APIs. For information about connecting
to components on a Kerberos-enabled cluster, see Configuring Connectors for a Secure
Cluster.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-connectors-secure.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-connectors-secure.html

Hortonworks Data Platform October 30, 2017

50

5.1. Ingesting Data from Kafka
KafkaSpout reads from Kafka topics. To do so, it needs to connect to the Kafka broker,
locate the topic from which it will read, and store consumer offset information (using the
ZooKeeper root and consumer group ID). If a failure occurs, KafkaSpout can use the offset
to continue reading messages from the point where the operation failed.

The storm-kafka components include a core Storm spout and a fully transactional
Trident spout. Storm-Kafka spouts provide the following key features:

• 'Exactly once' tuple processing with the Trident API

• Dynamic discovery of Kafka brokers and partitions

You should use the Trident API unless your application requires sub-second latency.

5.1.1. KafkaSpout Integration: Core Storm APIs

The core-storm API represents a Kafka spout with the KafkaSpout class.

To initialize KafkaSpout, define a SpoutConfig subclass instance of the KafkaConfig
class, representing configuration information needed to ingest data from a Kafka cluster.
KafkaSpout requires an instance of the BrokerHosts interface.

BrokerHosts Interface

The BrokerHost interface maps Kafka brokers to topic partitions. Constructors
for KafkaSpout (and, for the Trident API, TridentKafkaConfig) require an
implementation of the BrokerHosts interface.

The storm-kafka component provides two implementations of BrokerHosts,
ZkHosts and StaticHosts:

• Use ZkHosts if you want to track broker-to-partition mapping dynamically.This class
uses Kafka's ZooKeeper entries to track mapping.

You can instantiate an object as follows:

public ZkHosts(String brokerZkStr, String brokerZkPath)

public ZkHosts(String brokerZkStr)

where:

• brokerZkStr is the IP:port address for the ZooKeeper host; for example,
localhost:2181.

• brokerZkPath is the root directory under which topics and partition information are
stored. By default this is /brokers, which is the default used by Kafka.

By default, broker-partition mapping refreshes every 60 seconds. If you want to change
the refresh frequency, set host.refreshFreqSecs to your chosen value.

Hortonworks Data Platform October 30, 2017

51

• Use StaticHosts for static broker-to-partition mapping. To construct an instance of
this class, you must first construct an instance of GlobalPartitionInformation; for
example:

Broker brokerForPartition0 = new Broker("localhost");//localhost:9092
Broker brokerForPartition1 = new Broker("localhost", 9092);//localhost:9092
 but we specified the port explicitly
Broker brokerForPartition2 = new Broker("localhost:9092");//localhost:9092
 specified as one string.
GlobalPartitionInformation partitionInfo = new GlobalPartitionInformation();
partitionInfo.add(0, brokerForPartition0)//mapping form partition 0 to
 brokerForPartition0
partitionInfo.add(1, brokerForPartition1)//mapping form partition 1 to
 brokerForPartition1
partitionInfo.add(2, brokerForPartition2)//mapping form partition 2 to
 brokerForPartition2
StaticHosts hosts = new StaticHosts(partitionInfo);

KafkaConfig Class and SpoutConfig Subclass

Next, define a SpoutConfig subclass instance of the KafkaConfig class.

KafkaConfig contains several fields used to configure the behavior of a Kafka spout in
a Storm topology; Spoutconfig extends KafkaConfig, supporting additional fields for
ZooKeeper connection info and for controlling behavior specific to KafkaSpout.

KafkaConfig implements the following constructors, each of which requires an
implementation of the BrokerHosts interface:

public KafkaConfig(BrokerHosts hosts, String topic)
public KafkaConfig(BrokerHosts hosts, String topic, String clientId)

KafkaConfig Parameters

hosts One or more hosts that are Kafka ZooKeeper broker
nodes (see "BrokerHosts Interface").

topic Name of the Kafka topic that KafkaSpout will consume
from.

clientId Optional parameter used as part of the ZooKeeper
path, specifying where the spout's current offset is
stored.

KafkaConfig Fields

fetchSizeBytes Number of bytes to attempt to fetch in one request to a
Kafka server. The default is 1MB.

socketTimeoutMs Number of milliseconds to wait before a socket fails
an operation with a timeout. The default value is 10
seconds.

bufferSizeBytes Buffer size (in bytes) for network requests. The default
is 1MB.

scheme The interface that specifies how a ByteBuffer from a
Kafka topic is transformed into a Storm tuple.

Hortonworks Data Platform October 30, 2017

52

The default, MultiScheme, returns a tuple and no
additional processing.

The API provides many implementations of the Scheme
class, including:

• storm.kafka.StringScheme

• storm.kafka.KeyValueSchemeAsMultiScheme

• storm.kafka.StringKeyValueScheme

• storm.kafka.KeyValueSchemeAsMultiScheme

Important

In Apache Storm versions prior to 1.0,
MultiScheme methods accepted
a byte[] parameter instead of a
ByteBuffer. In Storm version 1.0,
MultiScheme and related scheme APIs
changed; they now accept a ByteBuffer
instead of a byte[].

As a result, Kafka spouts built with Storm
versions earlier than 1.0 do not work with
Storm versions 1.0 and later. When running
topologies with Storm version 1.0 and
later, ensure that your version of storm-
kafka is at least 1.0. Rebuild pre-1.0 shaded
topology .jar files that bundle storm-
kafka classes with storm-kafka version
1.0 before running them in clusters with
Storm 1.0 and later.

ignoreZKOffsets To force the spout to ignore any consumer
state information stored in ZooKeeper, set
ignoreZkOffsets to true. If true, the spout
always begins reading from the offset defined by
startOffsetTime. For more information, see "How
KafkaSpout stores offsets of a Kafka topic and recovers
in case of failures."

startOffsetTime Controls whether streaming for a topic starts from the
beginning of the topic or whether only new messages
are streamed. The following are valid values:

• kafka.api.OffsetRequest.EarliestTime()
starts streaming from the beginning of the topic

• kafka.api.OffsetRequest.LatestTime()
streams only new messages

https://github.com/apache/storm/tree/master/external/storm-kafka#multischeme
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures
https://github.com/apache/storm/tree/master/external/storm-kafka#how-kafkaspout-stores-offsets-of-a-kafka-topic-and-recovers-in-case-of-failures

Hortonworks Data Platform October 30, 2017

53

maxOffsetBehind Specifies how long a spout attempts to retry the
processing of a failed tuple. If a failing tuple's offset is
less than maxOffsetBehind, the spout stops retrying
the tuple. The default is LONG.MAX_VALUE.

useStartOffsetTimeOfOffsetOutOfRangeControls whether a spout streams messages from
the beginning of a topic when the spout throws an
exception for an out-of-range offset. The default value
is true.

metricsTimeBucketSizeInSecsControls the time interval at which Storm reports spout-
related metrics. The default is 60 seconds.

Instantiate SpoutConfig as follows:

public SpoutConfig(BrokerHosts hosts, String topic, String zkRoot, String
 nodeId)

SpoutConfig Parameters

hosts One or more hosts that are Kafka ZooKeeper broker nodes (see "BrokerHosts
Interface").

topic Name of the Kafka topic that KafkaSpout will consume from.

zkroot Root directory in ZooKeeper under which KafkaSpout consumer offsets are
stored. The default is /brokers.

nodeId ZooKeeper node under which KafkaSpout stores offsets for each topic-partition.
The node ID must be unique for each Topology. The topology uses this path to
recover in failure scenarios, or when there is maintenance that requires killing
the topology.

zkroot and nodeId are used to construct the ZooKeeper path where Storm stores the
Kafka offset. You can find offsets at zkroot+"/"+nodeId.

To start processing messages from where the last operation left off, use the
same zkroot and nodeId. To start from the beginning of the Kafka topic, set
KafkaConfig.ignoreZKOffsets to true.

Example

The following example illustrates the use of the KafkaSpout class and related interfaces:

BrokerHosts hosts = new ZkHosts(zkConnString);
SpoutConfig spoutConfig = new SpoutConfig(hosts, topicName, "/" + zkrootDir,
 node);
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

5.1.2. KafkaSpout Integration: Trident APIs
The Trident API represents a Kafka spout with the OpaqueTridentKafkaSpout class.

To initialize OpaqueTridentKafkaSpout, define a TridentKafkaConfig subclass
instance of the KafkaConfig class, representing configuration information needed to
ingest data from a Kafka cluster.

Hortonworks Data Platform October 30, 2017

54

KafkaConfig Class and TridentKafkaConfig Subclass

Both the core-storm and Trident APIs use KafkaConfig, which contains several
parameters and fields used to configure the behavior of a Kafka spout in a Storm topology.
For more information, see "KafkaConfig Class" in KafkaSpout Configuration Settings:
Core Storm API.

Instantiate a TridentKafkaConfig subclass instance of the KafkaConfig class. Use
one of the following constructors, each of which requires an implementation of the
BrokerHosts interface. For more information about BrokerHosts, see "BrokerHosts
Interface" in KafkaSpout Configuration Settings: Core Storm APIs.

public TridentKafkaConfig(BrokerHosts hosts, String topic)
public TridentKafkaConfig(BrokerHosts hosts, String topic, String id)

TridentKafkaConfig Parameters

hosts One or more hosts that are Kafka ZooKeeper broker nodes (see
"BrokerHosts Interface").

topic Name of the Kafka topic.

clientid Unique identifier for this spout.

Example

The following example illustrates the use of the OpaqueTridentKafkaSpout class and
related interfaces:

TridentTopology topology = new TridentTopology();
BrokerHosts zk = new ZkHosts("localhost");
TridentKafkaConfig spoutConf = new TridentKafkaConfig(zk, "test-topic");
spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
OpaqueTridentKafkaSpout spout = new OpaqueTridentKafkaSpout(spoutConf);

Important

In Apache Storm versions prior to 1.0, MultiScheme methods accepted
a byte[] parameter instead of a ByteBuffer. In Storm version 1.0,
MultiScheme and related scheme APIs changed; they now accept a
ByteBuffer instead of a byte[].

As a result, Kafka spouts built with Storm versions earlier than 1.0 do not work
with Storm versions 1.0 and later. When running topologies with Storm version
1.0 and later, ensure that your version of storm-kafka is at least 1.0. Rebuild
pre-1.0 shaded topology .jar files that bundle storm-kafka classes with
storm-kafka version 1.0 before running them in clusters with Storm 1.0 and
later.

5.1.3. Tuning KafkaSpout Performance
KafkaSpout provides two internal parameters to control performance:

• offset.commit.period.ms specifies the period of time (in milliseconds) after
which the spout commits to Kafka. To set this parameter, use the KafkaSpoutConfig set
method setOffsetCommitPeriodMs.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-kafkaspout-config-core.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-kafkaspout-config-core.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-kafkaspout-config-core.html
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L189-L193

Hortonworks Data Platform October 30, 2017

55

• max.uncommitted.offsets defines the maximum number of polled offsets (records)
that can be pending commit before another poll can take place. When this limit is
reached, no more offsets can be polled until the next succesful commit sets the number
of pending offsets below the threshold. To set this parameter, use the KafkaSpoutConfig
set method setMaxUncommittedOffsets.

Note that these two parameters trade off memory versus time:

• When offset.commit.period.ms is set to a low value, the spout commits to Kafka
more often. When the spout is committing to Kafka, it is not fetching new records nor
processing new tuples.

• When max.uncommitted.offsets increases, the memory footprint increases. Each
offset uses eight bytes of memory, which means that a value of 10000000 (10MB) uses
about 80MB of memory.

It is possible to achieve good performance with a low commit period and small memory
footprint (a small value for max.uncommitted.offsets), as well as with a larger
commit period and larger memory footprint. However, you should avoid using large values
for offset.commit.period.ms with a low value for max.uncommitted.offsets.

Kafka consumer configuration parameters can also have an impact on the KafkaSpout
performance. The following Kafka parameters are most likely to have the strongest impact
on KafkaSpout performance:

• The Kafka Consumer poll timeout specifies the time (in milliseconds) spent polling if
data is not available. To set this parameter, use the KafkaSpoutConfig set method
setPollTimeoutMs.

• Kafka consumer parameter fetch.min.bytes specifies the minimum amount of
data the server returns for a fetch request. If the minimum amount is not available, the
request waits until the minimum amount accumulates before answering the request.

• Kafka consumer parameter fetch.max.wait.ms specifies the maximum amount of
time the server will wait before answering a fetch request, when there is not sufficient
data to satisfy fetch.min.bytes.

Important

For HDP 2.5.0 clusters in production use, you should override the
default values of KafkaSpout parameters offset.commit.period
and max.uncommitted.offsets, and Kafka consumer parameter
poll.timeout.ms, as follows:

• Set poll.timeout.ms to 200.

• Set offset.commit.period.ms to 30000 (30 seconds).

• Set max.uncommitted.offsets to 10000000 (ten million).

Performance also depends on the structure of your Kafka cluster, the distribution of the
data, and the availability of data to poll.

Log Level Performance Impact

https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L211-L217
http://kafka.apache.org/documentation.html#consumerconfigs
http://kafka.apache.org/0100/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java
https://github.com/apache/storm/blob/1.0.x-branch/external/storm-kafka-client/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutConfig.java#L180-L184

Hortonworks Data Platform October 30, 2017

56

Storm supports several logging levels, including Trace, Debug, Info, Warn, and Error.
Trace-level logging has a significant impact on performance, and should be avoided in
production. The amount of log messages is proportional to the number of records fetched
from Kafka, so a lot of messages are printed when Trace-level logging is enabled.

Trace-level logging is most useful for debugging pre-production environments under mild
load. For debugging, if necessary, you can throttle how many messages are polled from
Kafka by setting the max.partition.fetch.bytes parameter to a low number that is
larger than than the largest single message stored in Kafka.

Logs with Debug level will have slightly less performance impact than Trace-level logs, but
still generate a lot of messages. This setting can be useful for assessing whether the Kafka
spout is properly tuned.

For general information about Apache Storm logging features, see Monitoring and
Debugging an Apache Storm Topology.

5.1.4. Configuring Kafka for Use with the Storm-Kafka
Connector

Before using the storm-kafka connector, you must modify your Apache Kafka
configuration: add a zookeeper.connect property, with hostnames and port numbers
of HDP ZooKeeper nodes, to the Kafka server.properties file.

5.1.5. Configuring KafkaSpout to Connect to HBase or Hive

Before connecting to HBase or Hive, add the following exclusions to your POM file for the
curator framework:

<exclusion>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-client</artifactId>
</exclusion>
<exclusion>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-recipes</artifactId>
</exclusion>
<exclusion>
 <groupId>org.apache.curator</groupId>
 <artifactId>apache-curator</artifactId>
</exclusion>

5.2. Ingesting Data from HDFS
The HDFS spout actively monitors a specified HDFS directory and consumes any new files
that appear in the directory, feeding data from HDFS to Storm.

Important

HDFS spout assumes that files visible in the monitored directory are not actively
being updated. Only after a file is completely written should it be made visible
to the spout. Following are two approaches for ensuring this:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-topology-debugging.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-topology-debugging.html

Hortonworks Data Platform October 30, 2017

57

• Write the file to another directory. When the write operation is finished,
move the file to the monitored directory.

• Create the file in the monitored directory with an '.ignore' suffix; HDFS spout
ignores files with an '.ignore' suffix. When the write operation is finished,
rename the file to omit the suffix.

When the spout is actively consuming a file, it renames the file with an .inprogress
suffix. After consuming all contents in the file, the file is moved to a configurable done
directory and the .inprogress suffix is dropped.

Concurrency

If multiple spout instances are used in the topology, each instance consumes a different file.
Synchronization among spout instances relies on lock files created in a subdirectory called
.lock (by default) under the monitored directory. A file with the same name as the file
being consumed (without the .inprogress suffix) is created in the lock directory. Once
the file is completely consumed, the corresponding lock file is deleted.

Recovery from failure

Periodically, the spout records information about how much of the file has been consumed
in the lock file. If the spout instance crashes or there is a force kill of topology, another
spout can take over the file and resume from the location recorded in the lock file.

Certain error conditions (such as a spout crash) can leave residual lock files. Such a stale lock
file indicates that the corresponding input file has not been completely processed. When
detected, ownership of such stale lock files will be transferred to another spout.

The hdfsspout.lock.timeout.sec property specifies the duration of inactivity after
which lock files should be considered stale. The default timeout is five minutes. For lock
file ownership transfer to succeed, the HDFS lease on the file (from the previous lock
owner) should have expired. Spouts scan for stale lock files before selecting the next file for
consumption.

Lock on .lock Directory

HDFS spout instances create a DIRLOCK file in the .lock directory to coordinate certain
accesses to the .lock directory itself. A spout will try to create it when it needs access to
the .lock directory, and then delete it when done. In error conditions such as a topology
crash, force kill, or untimely death of a spout, this file may not be deleted. Future instances
of the spout will eventually recover the file once the DIRLOCK file becomes stale due to
inactivity for hdfsspout.lock.timeout.sec seconds.

API Support

HDFS spout supports core Storm, but does not currently support Trident.

5.2.1. Configuring HDFS Spout

The following member functions are required for HdfsSpout:

.setReaderType() Specifies which file reader to use:

Hortonworks Data Platform October 30, 2017

58

• To read sequence files, set this to 'seq'.

• To read text files, set this to 'text'.

• If you want to use a custom file
reader class that implements interface
org.apache.storm.hdfs.spout.FileReader, set this
to the fully qualified class name.

.withOutputFields() Specifies names of output fields for the spout. The number of
fields depends upon the reader being used.

For convenience, built-in reader types expose a static member
called defaultFields that can be used for setting this.

.setHdfsUri() Specifies the HDFS URI for HDFS NameNode; for example:
hdfs://namenodehost:8020.

.setSourceDir() Specifies the HDFS directory from which to read files; for
example, /data/inputdir.

.setArchiveDir() Specifies the HDFS directory to move a file after the file is
completely processed; for example, /data/done.

If this directory does not exist, it will be created automatically.

.setBadFilesDir() Specifies a directory to move a file if there is an error parsing
the contents of the file; for example, /data/badfiles.

If this directory does not exist it will be created automatically.

For additional configuration settings, see Apache HDFS spout Configuration Settings.

5.2.2. HDFS Spout Example

The following example creates an HDFS spout that reads text files from HDFS path
hdfs://localhost:54310/source.

// Instantiate spout to read text files
HdfsSpout textReaderSpout = newHdfsSpout().setReaderType("text")
 .withOutputFields(TextFileReader.
defaultFields)
 .setHdfsUri("hdfs://
localhost:54310") // reqd
 .setSourceDir("/data/in")
 // reqd
 .setArchiveDir("/data/done")
 // reqd
 .setBadFilesDir("/data/badfiles");
 // required

// If using Kerberos
HashMap hdfsSettings = new HashMap();
hdfsSettings.put("hdfs.keytab.file", "/path/to/keytab");
hdfsSettings.put("hdfs.kerberos.principal","user@EXAMPLE.com");

https://github.com/apache/storm/tree/master/external/storm-hdfs#configuration-settings

Hortonworks Data Platform October 30, 2017

59

textReaderSpout.setHdfsClientSettings(hdfsSettings);

// Create topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("hdfsspout", textReaderSpout, SPOUT_NUM);

// Set up bolts and wire up topology
 ...

// Submit topology with config
Config conf = new Config();
StormSubmitter.submitTopologyWithProgressBar("topologyName", conf, builder.
createTopology());

A sample topology HdfsSpoutTopology is provided in the storm-starter module.

5.3. Streaming Data to Kafka
Storm provides a Kafka Bolt for both the core-storm and Trident APIs that publish data to
Kafka topics. Use the following procedure to add a Storm component to your topology
that writes data to a Kafka cluster:

1. Instantiate a Kafka Bolt.

2. Configure the Kafka Bolt with a Tuple-to-Message mapper.

3. Configure the Kafka Bolt with a Kafka Topic Selector.

4. Configure the Kafka Bolt with Kafka Producer properties.

The following code samples illustrate the construction of a simple Kafka bolt.

5.3.1. KafkaBolt Integration: Core Storm APIs
To use KafkaBolt, create an instance of
org.apache.storm.kafka.bolt.KafkaBolt and attach it as a component to your
topology. The following example shows construction of a Kafka bolt using core Storm APIs,
followed by details about the code:

TopologyBuilder builder = new TopologyBuilder();

Fields fields = new Fields("key", "message");
FixedBatchSpout spout = new FixedBatchSpout(fields, 4,
 new Values("storm", "1"),
 new Values("trident", "1"),
 new Values("needs", "1"),
 new Values("javadoc", "1")
);
spout.setCycle(true);
builder.setSpout("spout", spout, 5);
//set producer properties.
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.
StringSerializer");

Hortonworks Data Platform October 30, 2017

60

props.put("value.serializer", "org.apache.kafka.common.serialization.
StringSerializer");

KafkaBolt bolt = new KafkaBolt()
.withProducerProperties(props)
.withTopicSelector(new DefaultTopicSelector("test"))
.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());
builder.setBolt("forwardToKafka", bolt, 8).shuffleGrouping("spout");

Config conf = new Config();

StormSubmitter.submitTopology("kafkaboltTest", conf, builder.
createTopology());

1. Instantiate a KafkaBolt.

The core-storm API uses the storm.kafka.bolt.KafkaBolt class to instantiate a
Kafka Bolt:

KafkaBolt bolt = new KafkaBolt();

2. Configure the KafkaBolt with a Tuple-to-Message Mapper.

The KafkaBolt maps Storm tuples to Kafka messages. By default,
KafkaBolt looks for fields named "key" and "message." Storm provides the
storm.kafka.trident.mapper.FieldNameBasedTupleToKafkaMapper class
to support this default behavior and provide backward compatibility. The class is used by
both the core-storm and Trident APIs.

KafkaBolt bolt = new KafkaBolt()
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());

3. Configure the Kafka Bolt with a Kafka Topic Selector.

Note

To ignore a message, return NULL from the getTopics() method.

KafkaBolt bolt = new KafkaBolt().withTupleToKafkaMapper(new
 FieldNameBasedTupleToKafkaMapper())
 .withTopicSelector(new DefaultTopicSelector());

If you need to write to multiple Kafka topics, you can write your own implementation of
the KafkaTopicSelector interface .

4. Configure the Kafka Bolt with Kafka Producer properties.

You can specify producer properties in your Storm topology by calling
KafkaBolt.withProducerProperties(). See the Apache Producer Configs
documentation for more information.

5.3.2. KafkaBolt Integration: Trident APIs
To use KafkaBolt, create an instance of
org.apache.storm.kafka.trident.TridentState and
org.apache.storm.kafka.trident.TridentStateFactory, and attach them to

http://kafka.apache.org/documentation.html#producerconfigs

Hortonworks Data Platform October 30, 2017

61

your topology. The following example shows construction of a Kafka bolt using Trident
APIs, followed by details about the code:

Fields fields = new Fields("word", "count");
FixedBatchSpout spout = new FixedBatchSpout(fields, 4,
new Values("storm", "1"),
new Values("trident", "1"),
new Values("needs", "1"),
new Values("javadoc", "1")
);

spout.setCycle(true);

TridentTopology topology = new TridentTopology();
Stream stream = topology.newStream("spout1", spout);

//set producer properties.
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.
StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.
StringSerializer");

TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
 .withProducerProperties(props)
 .withKafkaTopicSelector(new DefaultTopicSelector("test"))
 .withTridentTupleToKafkaMapper(new
 FieldNameBasedTupleToKafkaMapper("word", "count"));
stream.partitionPersist(stateFactory, fields, new TridentKafkaUpdater(), new
 Fields());

Config conf = new Config();
StormSubmitter.submitTopology("kafkaTridentTest", conf, topology.build());

1. Instantiate a KafkaBolt.

The Trident API uses a combination of the
storm.kafka.trident.TridentStateFactory and
storm.kafka.trident.TridentKafkaStateFactory classes.

TridentTopology topology = new TridentTopology();
 Stream stream = topology.newStream("spout");
 TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory();
 stream.partitionPersist(stateFactory, fields, new TridentKafkaUpdater(),
 new Fields());

2. Configure the KafkaBolt with a Tuple-to-Message Mapper.

The KafkaBolt must map Storm tuples to Kafka messages. By default,
KafkaBolt looks for fields named "key" and "message." Storm provides the
storm.kafka.trident.mapper.FieldNameBasedTupleToKafkaMapper class
to support this default behavior and provide backward compatibility. The class is used by
both the core-storm and Trident APIs.

TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("word",
 "count"));

Hortonworks Data Platform October 30, 2017

62

You must specify the field names for the Storm tuple key and the Kafka message for any
implementation of the TridentKafkaState in the Trident API. This interface does not
provide a default constructor.

However, some Kafka bolts may require more than two fields. You can write your own
implementation of the TupleToKafkaMapper and TridentTupleToKafkaMapper
interfaces to customize the mapping of Storm tuples to Kafka messages. Both interfaces
define two methods:

K getKeyFromTuple(Tuple/TridentTuple tuple);

V getMessageFromTuple(Tuple/TridentTuple tuple);

3. Configure the KafkaBolt with a Kafka Topic Selector.

Note

To ignore a message, return NULL from the getTopics() method.

TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
 .withKafkaTopicSelector(new DefaultTopicSelector("test"))
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("word",
 "count"));

If you need to write to multiple Kafka topics, you can write your own implementation of
the KafkaTopicSelector interface; for example:

public interface KafkaTopicSelector {
 String getTopics(Tuple/TridentTuple tuple);
 }

4. Configure the KafkaBolt with Kafka Producer properties.

You can specify producer properties in your Storm topology by calling
TridentKafkaStateFactory.withProducerProperties(). See the Apache
Producer Configs documentation for more information.

5.4. Writing Data to HDFS
The storm-hdfs connector supports core Storm and Trident APIs. You should use the
trident API unless your application requires sub-second latency.

5.4.1. Storm-HDFS: Core Storm APIs

The primary classes of the storm-hdfs connector are HdfsBolt and
SequenceFileBolt, both located in the org.apache.storm.hdfs.bolt package.
Use the HdfsBolt class to write text data to HDFS and the SequenceFileBolt class to
write binary data.

For more information about the HdfsBolt class, refer to the Apache Storm HdfsBolt
documentation.

Specify the following information when instantiating the bolt:

http://kafka.apache.org/documentation.html#producerconfigs
https://github.com/apache/storm/tree/master/external/storm-hdfs#hdfs-bolt

Hortonworks Data Platform October 30, 2017

63

HdfsBolt Methods

withFsUrl Specifies the target HDFS URL and port number.

withRecordFormat Specifies the delimiter that indicates a boundary
between data records. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.format.RecordFormat
interface. Use the provided
org.apache.storm.hdfs.format.
DelimitedRecordFormat class as a convenience class for
writing delimited text data with delimiters such as tabs, comma-
separated values, and pipes. The storm-hdfs bolt uses the
RecordFormat implementation to convert tuples to byte
arrays, so this method can be used with both text and binary
data.

withRotationPolicy Specifies when to stop writing to a data file and
begin writing to another. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.rotation.FileSizeRotationSizePolicy
interface.

withSyncPolicy Specifies how frequently to flush buffered data to
the HDFS filesystem. This action enables other HDFS
clients to read the synchronized data, even as the Storm
client continues to write data. Storm developers can
customize by writing their own implementation of the
org.apache.storm.hdfs.sync.SyncPolicy interface.

withFileNameFormat Specifies the name of the data file. Storm developers
can customize by writing their own interface of the
org.apache.storm.hdfs.format.FileNameFormat
interface. The provided
org.apache.storm.hdfs.format.DefaultFileNameFormat
creates file names with the following naming format:
{prefix}-{componentId}-{taskId}-{rotationNum}-
{timestamp}-{extension}.

Example: MyBolt-5-7-1390579837830.txt.

Example: Cluster Without High Availability ("HA")

The following example writes pipe-delimited files to the HDFS path hdfs://
localhost:8020/foo. After every 1,000 tuples it will synchronize with the filesystem,
making the data visible to other HDFS clients. It will rotate the files when they reach 5 MB
in size.

Note that the HdfsBolt is instantiated with an HDFS URL and port number.

```java
// use "|" instead of "," for field delimiter
RecordFormat format = new DelimitedRecordFormat()
        .withFieldDelimiter("|");



Hortonworks Data Platform October 30, 2017

64

// Synchronize the filesystem after every 1000 tuples
SyncPolicy syncPolicy = new CountSyncPolicy(1000);

// Rotate data files when they reach 5 MB
FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f, Units.
MB);

// Use default, Storm-generated file names
FileNameFormat fileNameFormat = new DefaultFileNameFormat()
        .withPath("/foo/");

// Instantiate the HdfsBolt
HdfsBolt bolt = new HdfsBolt()
        .withFsUrl("hdfs://localhost:8020")
        .withFileNameFormat(fileNameFormat)
        .withRecordFormat(format)
        .withRotationPolicy(rotationPolicy)
        .withSyncPolicy(syncPolicy);
```      

Example: HA-Enabled Cluster

The following example shows how to modify the previous example for an HA-enabled
cluster.

Here the HdfsBolt is instantiated with a nameservice ID, instead of using an HDFS URL and
port number.

...
HdfsBolt bolt = new HdfsBolt()
 .withFsURL("hdfs://myNameserviceID")
 .withFileNameFormat(fileNameformat)
 .withRecordFormat(format)
 .withRotationPolicy(rotationPolicy)
 .withSyncPolicy(syncPolicy);
...

To obtain the nameservice ID, check the dfs.nameservices property in your hdfs-
site.xml file; nnha in the following example:

<property>
 <name>dfs.nameservices</name>
 <value>nnha</value>
</property>

5.4.2. Storm-HDFS: Trident APIs
The Trident API implements a StateFactory class with an API that resembles the
methods from the storm-code API, as shown in the following code sample:

...
Fields hdfsFields = new Fields("field1", "field2");

FileNameFormat fileNameFormat = new DefaultFileNameFormat()
 .withPrefix("trident")
 .withExtension(".txt")
 .withPath("/trident");

Hortonworks Data Platform October 30, 2017

65

RecordFormat recordFormat = new DelimitedRecordFormat()
 .withFields(hdfsFields);

FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f,
 FileSizeRotationPolicy.Units.MB);

HdfsState.Options options = new HdfsState.HdfsFileOptions()
 .withFileNameFormat(fileNameFormat)
 .withRecordFormat(recordFormat)
 .withRotationPolicy(rotationPolicy)
 .withFsUrl("hdfs://localhost:8020");

StateFactory factory = new HdfsStateFactory().withOptions(options);

TridentState state = stream.partitionPersist(factory, hdfsFields, new
 HdfsUpdater(), new Fields());

See the javadoc for the Trident API, included with the storm-hdfs connector, for more
information.

Limitations

Directory and file names changes are limited to a prepackaged file name format based on a
timestamp.

5.5. Writing Data to HBase
The storm-hbase connector enables Storm developers to collect several PUTS in a single
operation and write to multiple HBase column families and counter columns. A PUT is
an HBase operation that inserts data into a single HBase cell. Use the HBase client's write
buffer to automatically batch: hbase.client.write.buffer.

The primary interface in the storm-hbase connector is the
org.apache.storm.hbase.bolt.mapper.HBaseMapper interface. However,
the default implementation, SimpleHBaseMapper, writes a single column family.
Storm developers can implement the HBaseMapper interface themselves or extend
SimpleHBaseMapper if they want to change or override this behavior.

SimpleHBaseMapper Methods

withRowKeyField Specifies the row key for the target HBase row. A row key
uniquely identifies a row in HBase

withColumnFields Specifies the target HBase column.

withCounterFields Specifies the target HBase counter.

withColumnFamily Specifies the target HBase column family.

Example

The following example specifies the 'word' tuple as the row key, adds an HBase column for
the tuple 'word' field, adds an HBase counter column for the tuple 'count' field, and writes
data to the 'cf' column family.

SimpleHBaseMapper mapper = new SimpleHBaseMapper()

Hortonworks Data Platform October 30, 2017

66

 .withRowKeyField("word")
 .withColumnFields(new Fields("word"))
 .withCounterFields(new Fields("count"))
 .withColumnFamily("cf");

5.6. Writing Data to Hive
Core Storm and Trident APIs support streaming data directly to Apache Hive using Hive
transactions. Data committed in a transaction is immediately available to Hive queries
from other Hive clients. You can stream data to existing table partitions, or configure the
streaming Hive bolt to dynamically create desired table partitions.

Use the following steps to perform this procedure:

1. Instantiate an implementation of the HiveMapper Interface.

2. Instantiate a HiveOptions class with the HiveMapper implementation.

3. Instantiate a HiveBolt with the HiveOptions class.

Note

Currently, data may be streamed only into bucketed tables using the ORC file
format.

5.6.1. Core-storm APIs
The following example constructs a Kafka bolt using core Storm APIs:

DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames));
HiveOptions hiveOptions = new
HiveOptions(metaStoreURI,dbName,tblName,mapper);
HiveBolt hiveBolt = new HiveBolt(hiveOptions);

1. Instantiate an Implementation of HiveMapper Interface.

The storm-hive streaming bolt uses the HiveMapper interface to map the
names of tuple fields to the names of Hive table columns. Storm provides two
implementations: DelimitedRecordHiveMapper and JsonRecordHiveMapper.
Both implementations take the same arguments.

Table 5.1. HiveMapper Arguments

Argument Data Type Description

withColumnFields org.apache.storm.tuple.FieldsThe name of the tuple fields that you
want to map to table column names.

withPartitionFields org.apache.storm.tuple.FieldsThe name of the tuple fields that you
want to map to table partitions.

withTimeAsPartitionField String Requests that table partitions be
created with names set to system
time. Developers can specify any
Java-supported date format, such as
"YYYY/MM/DD".

The following sample code illustrates how to use DelimitedRecordHiveMapper:

Hortonworks Data Platform October 30, 2017

67

...
DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withPartitionFields(new Fields(partNames));

DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withTimeAsPartitionField("YYYY/MM/DD");
...

2. Instantiate a HiveOptions Class with the HiveMapper Implementation. The
HiveOptions class configures transactions used by Hive to ingest the streaming data:

...
HiveOptions hiveOptions = new HiveOptions(metaStoreURI,dbName,tblName,
mapper)
 .withTxnsPerBatch(10)
 .withBatchSize(1000)
 .withIdleTimeout(10);
...

The following table describes all configuration properties for the HiveOptions class.

Table 5.2. HiveOptions Class Configuration Properties

HiveOptions Configuration Property Data Type Description

metaStoreURI String Hive Metastore URI. Storm developers
can find this value in hive-
site.xml.

dbName String Database name

tblName String Table name

mapper Mapper Two properties that start with

"org.apache.storm.hive.bolt.":

mapper.DelimitedRecordHiveMapper

mapperJsonRecordHiveMapper

withTxnsPerBatch Integer Configures the number of desired
transactions per transaction batch.
Data from all transactions in a single
batch form a single compaction
file. Storm developers use this
property in conjunction with the
withBatchSize property to control
the size of compaction files. The
default value is 100.

Hive stores data in base files that
cannot be updated by HDFS. Instead,
Hive creates a set of delta files for
each transaction that alters a table
or partition and stores them in a
separate delta directory. Occasionally,
Hive compacts, or merges, the base
and delta files. Hive performs all
compactions in the background
without affecting concurrent reads
and writes of other Hive clients. See
Transactions for more information
about Hive compactions.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_data-access/content/hive-013-feature-transactions.html

Hortonworks Data Platform October 30, 2017

68

HiveOptions Configuration Property Data Type Description

withMaxOpenConnections Integer Specifies the maximum number of
open connections. Each connection
is to a single Hive table partition.
The default value is 500. When
Hive reaches this threshold, an
idle connection is terminated for
each new connection request. A
connection is considered idle if no
data is written to the table partition
to which the connection is made.

withBatchSize Integer Specifies the maximum number of
Storm tuples written to Hive in a
single Hive transaction. The default
value is 15000 tuples.

withCallTimeout Integer Specifies the interval in seconds
between consecutive heartbeats
sent to Hive. Hive uses heartbeats
to prevent expiration of unused
transactions. Set this value to 0 to
disable heartbeats. The default value
is 240.

withAutoCreatePartitions Boolean Indicates whether HiveBolt should
automatically create the necessary
Hive partitions needed to store
streaming data. The default value is
true.

withKerberosPrinicipal String Kerberos user principal for accessing a
secured Hive installation.

withKerberosKeytab String Kerberos keytab for accessing a
secured Hive installation.

3. Instantiate the HiveBolt with the HiveOptions class:

...
HiveBolt hiveBolt = new HiveBolt(hiveOptions);
...

4. Before building your topology code, add the following dependency to your topology
pom.xml file:

<dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpclient</artifactId>
 <version>4.3.3</version>
</dependency>

5.6.2. Trident APIs
The following example shows construction of a Kafka bolt using core Storm APIs, followed
by details about the code:

DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withTimeAsPartitionField("YYYY/MM/DD");

HiveOptions hiveOptions = new HiveOptions(metaStoreURI,dbName,tblName,mapper)
 .withTxnsPerBatch(10)
 .withBatchSize(1000)
 .withIdleTimeout(10)

Hortonworks Data Platform October 30, 2017

69

StateFactory factory = new HiveStateFactory().withOptions(hiveOptions);
TridentState state = stream.partitionPersist(factory, hiveFields, new
 HiveUpdater(),
new Fields());

1. Instantiate an Implementation of HiveMapper Interface

The storm-hive streaming bolt uses the HiveMapper interface to map the
names of tuple fields to the names of Hive table columns. Storm provides two
implementations: DelimitedRecordHiveMapper and JsonRecordHiveMapper.
Both implementations take the same arguments.

Table 5.3. HiveMapper Arguments

Argument Data Type Description

withColumnFields org.apache.storm.tuple.FieldsThe name of the tuple fields that you
want to map to table column names.

withPartitionFields org.apache.storm.tuple.FieldsThe name of the tuple fields that you
want to map to table partitions.

withTimeAsPartitionField String Requests that table partitions be
created with names set to system
time. Developers can specify any
Java-supported date format, such as
"YYYY/MM/DD".

The following sample code illustrates how to use DelimitedRecordHiveMapper:

...
DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withPartitionFields(new Fields(partNames));

DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
 .withColumnFields(new Fields(colNames))
 .withTimeAsPartitionField("YYYY/MM/DD");
...

2. Instantiate a HiveOptions class with the HiveMapper Implementation

Use the HiveOptions class to configure the transactions used by Hive to ingest the
streaming data, as illustrated in the following code sample.

...
HiveOptions hiveOptions = new HiveOptions(metaStoreURI,dbName,tblName,
mapper)
 .withTxnsPerBatch(10)
 .withBatchSize(1000)
 .withIdleTimeout(10);
...

See "HiveOptions Class Configuration Properties" for a list of configuration properties for
the HiveOptions class.

3. Instantiate the HiveBolt with the HiveOptions class:

...
StateFactory factory = new HiveStateFactory().withOptions(hiveOptions);

Hortonworks Data Platform October 30, 2017

70

TridentState state = stream.partitionPersist(factory, hiveFields, new
 HiveUpdater(),
new Fields());
...

4. Before building your topology code, add the following dependency to your topology
pom.xml file:

<dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpclient</artifactId>
 <version>4.3.3</version>
</dependency>

5.7. Configuring Connectors for a Secure Cluster
If your topology uses KafkaSpout, Storm-HDFS, Storm-HBase, or Storm-Hive to access
components on a Kerberos-enabled cluster, complete the associated configuration steps
listed in this subsection.

5.7.1. Configuring KafkaSpout for a Secure Kafka Cluster
To connect to a Kerberized Kafka topic:

1. Code: Add spoutConfig.securityProtocol=PLAINTEXTSASL to your Kafka
Spout configuration.

2. Configuration: Add a KafkaClient section (excerpted from /usr/hdp/current/
kafka-broker/config/kafka_jaas.conf) to /usr/hdp/current/storm-
supervisor/conf/storm_jaas.conf:

KafkaClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/security/keytabs/stormusr.service.keytab"
 storeKey=true
 useTicketCache=false
 serviceName="kafka"
 principal="stormusr/host.name@EXAMPLE.COM";
 };

3. Setup: Add a Kafka ACL for the topic. For example:

bin/kafka-acls.sh --authorizer
kafka.security.auth.SimpleAclAuthorizer --authorizer-properties
zookeeper.connect=localhost:2181 --add --allow-principal
user:stormusr --allow-hosts * --operations Read --topic TEST

5.7.2. Configuring Storm-HDFS for a Secure Cluster
To use the storm-hdfs connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Config
object that you pass into the topology must contain the storm keytab file and principal
name.

Hortonworks Data Platform October 30, 2017

71

2. Specify an HdfsBolt configKey, using the method
HdfsBolt.withConfigKey("somekey"). The value map of this key should have the
following two properties:

hdfs.keytab.file: "<path-to-keytab>"

hdfs.kerberos.principal: "<principal>@<host>"

where

<path-to-keytab> specifies the path to the keytab file on the supervisor hosts

<principal>@<host> specifies the user and domain; for example, storm-
admin@EXAMPLE.com.

For example:

Config config = new Config();
config.put(HdfsSecurityUtil.STORM_KEYTAB_FILE_KEY, "$keytab");
config.put(HdfsSecurityUtil.STORM_USER_NAME_KEY, "$principal");

StormSubmitter.submitTopology("$topologyName", config, builder.
createTopology());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

Note

For more information about the HdfsBolt class, refer to the Apache Storm
HdfsBolt API documentation.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HDFS, typically the Storm
service keytab, storm. The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster this is /etc/security/keytabs/
storm.service.keytab (the "path-to-keytab"), where the worker runs under
storm.

4. If you set supervisor.run.worker.as.user to true (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the storm keytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hdfs/bolt/HdfsBolt.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html

Hortonworks Data Platform October 30, 2017

72

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HDFS
connector (see Writing Data to HDFS for a more extensive example):

HdfsBolt bolt = new HdfsBolt()
 .withFsUrl("hdfs://localhost:8020")
 .withFileNameFormat(fileNameFormat)
 .withRecordFormat(format)
 .withRotationPolicy(rotationPolicy)
 .withSyncPolicy(syncPolicy);
 .withConfigKey("hdfs.config");

Map<String, Object> map = new HashMap<String,Object>();
map.put("hdfs.keytab.file","/etc/security/keytabs/storm.service.keytab");
map.put("hdfs.kerberos.principal","storm@TEST.HORTONWORKS.COM");

Config config = new Config();
config.put("hdfs.config", map);

StormSubmitter.submitTopology("$topologyName",config,builder.
createTopology());

Important

For the Storm-HDFS connector, you must package hdfs-site.xml and
core-site.xml (from your cluster configuration) in the topology .jar file.

In addition, include any configuration files for HDP components used in your
Storm topology, such as hive-site.xml and hbase-site.xml. This fulfills the
requirement that all related configuration files appear in the CLASSPATH of
your Storm topology at runtime.

5.7.3. Configuring Storm-HBase for a Secure Cluster

To use the storm-hbase connector in topologies that run on secure clusters:

1. Provide your own Kerberos keytab and principal name to the connectors. The Config
object that you pass into the topology must contain the storm keytab file and principal
name.

2. Specify an HBaseBolt configKey, using the method
HBaseBolt.withConfigKey("somekey"). The value map of this key should have
the following two properties:

storm.keytab.file: "<path-to-keytab-file>"

storm.kerberos.principal: "<principal>@<host>"

For example:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/storm-write-to-hdfs.html

Hortonworks Data Platform October 30, 2017

73

Config config = new Config();
config.put(HBaseSecurityUtil.STORM_KEYTAB_FILE_KEY, "$keytab");
config.put(HBaseSecurityUtil.STORM_USER_NAME_KEY, "$principal");

StormSubmitter.submitTopology("$topologyName", config, builder.
createTopology());

On worker hosts the bolt/trident-state code will use the keytab file and principal to
authenticate with the NameNode. Make sure that all workers have the keytab file,
stored in the same location.

Note

For more information about the HBaseBolt class, refer to the Apache
Storm HBaseBolt API documentation.

3. Distribute the keytab file that the Bolt is using in the Config object, to all supervisor
nodes. This is the keytab that is being used to authenticate to HBase, typically the Storm
service keytab, storm. The user ID that the Storm worker is running under should have
access to it.

On an Ambari-managed cluster this is /etc/security/keytabs/
storm.service.keytab (the "path-to-keytab"), where the worker runs under
storm.

4. If you set supervisor.run.worker.as.user to true (see Running Workers as
Users in Configuring Storm for Kerberos over Ambari), make sure that the user that
the workers are running under (typically the storm keytab) has read access on those
keytabs. This is a manual step; an admin needs to go to each supervisor node and run
chmod to give file system permissions to the users on these keytab files.

Note

You do not need to create separate keytabs or principals; the general
guideline is to create a principal and keytab for each group of users that
requires the same access to these resources, and use that single keytab.

All of these connectors accept topology configurations. You can specify the keytab
location on the host and the principal through which the connector will login to that
system.

5. Configure the connector(s). Here is a sample configuration for the Storm-HBase
connector:

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hbase/bolt/HBaseBolt.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_security/content/secure-storm-running-workers.html

Hortonworks Data Platform October 30, 2017

74

HBaseBolt hbase = new HBaseBolt("WordCount", mapper).withConfigKey("hbase.
config");

Map<String, Object> mapHbase = new HashMap<String,Object>();
mapHbase.put("storm.keytab.file","/etc/security/keytabs/storm.service.
keytab");
mapHbase.put("storm.kerberos.principal","storm@TEST.HORTONWORKS.COM");

Config config = new Config();
config.put("hbase.config",mapHbase);

StormSubmitter.submitTopology("$topologyName",config,builder.
createTopology());

Important

For the Storm-HBase connector, you must package hdfs-site.xml, core-
site.xml, and hbase-site.xml (from your cluster configuration) in the
topology .jar file.

In addition, include any other configuration files for HDP components used in
your Storm topology, such as hive-site.xml. This fulfills the requirement that all
related configuration files appear in the CLASSPATH of your Storm topology at
runtime.

5.7.4. Configuring Storm-Hive for a Secure Cluster

The Storm-Hive connector accepts configuration settings as part of the HiveOptions class.
For more information about the HiveBolt and HiveOptions classes, see the Apache Storm
HiveOptions and HiveBolt API documentation.

There are two required settings for accessing secure Hive:

• withKerberosPrincipal, the Kerberos principal for accessing Hive:

public HiveOptions withKerberosPrincipal(String kerberosPrincipal)

• withKerberosKeytab, the Kerberos keytab for accessing Hive:

public HiveOptions withKerberosKeytab(String kerberosKeytab)

https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hive/common/HiveOptions.html
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/hive/bolt/HiveBolt.html

Hortonworks Data Platform October 30, 2017

75

6. Packaging Storm Topologies
Storm developers should verify that the following conditions are met when packaging their
topology into a .jar file:

• Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

• Include a dependency for the Hadoop version used in the Hadoop cluster.

• Include both of the Hadoop configuration files, hdfs-site.xml and core-site.xml,
in the .jar file. In addition, include any configuration files for HDP components used
in your Storm topology, such as hive-site.xml and hbase-site.xml. This is the
easiest way to meet the requirement that all required configuration files appear in the
CLASSPATH of your Storm topology at runtime.

Maven Shade Plugin

Use the maven-shade-plugin, rather than the maven-assembly-plugin to package your
Apache Storm topologies. The maven-shade-plugin provides the ability to merge JAR
manifest entries, which are used by the Hadoop client to resolve URL schemes.

Use the following Maven configuration file to package your topology:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>1.4</version>
 <configuration>
 <createDependencyReducedPom>true</createDependencyReducedPom>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer implementation="org.apache.maven.
plugins.shade.resource.ServicesResourceTransformer"/>
 <transformer implementation="org.apache.maven.
plugins.shade.resource.ManifestResourceTransformer">
 <mainClass></mainClass>
 </transformer>
 </transformers>
 </configuration>
 </execution>
 </executions>
</plugin>

Hadoop Dependency

Include a dependency for the Hadoop version used in the Hadoop cluster; for example:

<dependency>

Hortonworks Data Platform October 30, 2017

76

 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>2.7.1.2.3.2.0-2950</version>
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Troubleshooting

The following table describes common packaging errors.

Table 6.1. Topology Packing Errors

Error Description

com.google.protobuf.
InvalidProtocolBufferException: Protocol
message contained an invalid tag (zero)

Hadoop client version incompatibility

java.lang.RuntimeException: Error
preparing HdfsBolt: No FileSystem for
scheme: hdfs

The .jar manifest files have not properly merged in the
topology.jar

Hortonworks Data Platform October 30, 2017

77

7. Deploying and Managing Apache
Storm Topologies

Use the command line interface to deploy a Storm topology after packaging it in a .jar file.

For example, you can use the following command to deploy WordCountTopology from
the storm-starter jar:

storm jar storm-starter-<starter_version>-storm-<storm_version>.jar storm.
starter.WordCountTopology WordCount -c nimbus.host=sandbox.hortonworks.com

The remainder of this chapter describes the Storm UI, which shows diagnostics for a cluster
and topologies, allowing you to monitor and manage deployed topologies.

7.1. Configuring the Storm UI
If Ambari is running on the same node as Apache Storm, ensure that Ambari and Storm use
different ports. Both processes use port 8080 by default, so you might need to configure
Apache Storm to use a different port.

If you want to use the Storm UI on a Kerberos-enabled cluster, ensure that your browser
is configured to use authentication for the Storm UI. For example, complete the following
steps to configure Firefox:

1. Go to the about:config configuration page.

2. Search for the network.negotiate-auth.trusted-uris configuration option.

3. Double-click on the option.

4. An "Enter string value" dialog box opens.

5. In this box, enter the value http://storm-ui-hostname:8080.

6. Click OK to finish.

7. Close and relaunch the browser.

If your cluster is not managed by Ambari, refer to the UI/Logviewer section of Apache
Storm security documentation for additional configuration guidelines.

7.2. Using the Storm UI
To access the Storm UI, point a browser to the following URL:

http://<storm-ui-server>:8080

In the following image, no workers, executors, or tasks are running. However, the status of
the topology remains active and the uptime continues to increase. Storm topologies, unlike
traditional applications, remain active until an administrator deactivates or kills them.

https://github.com/apache/storm/blob/master/SECURITY.md#uilogviewer

Hortonworks Data Platform October 30, 2017

78

Storm administrators use the Storm UI to perform the following administrative actions:

Table 7.1. Topology Administrative Actions

Topology Administrative Action Description

Activate Return a topology to active status after it has been
deactivated.

Deactivate Set the status of a topology to inactive. Topology uptime
is not affected by deactivation.

Rebalance Dynamically increase or decrease the number of worker
processes and/or executors. The administrator does not
need to restart the cluster or the topology.

Kill Stop the topology and remove it from Apache Storm.
The topology no longer appears in the Storm UI, and
the administrator must deploy the application again to
activate it.

Click any topology in the Topology Summary section to launch the Topology Summary
page. To perform any of the topology actions in the preceding table, you can click the
corresponding button (shown in the following image):

Hortonworks Data Platform October 30, 2017

79

The "Executors" field in the Spouts and Bolts sections shows all running Storm threads,
including the host and port. If a bolt is experiencing latency issues, review this field to
determine which executor has reached capacity. Click the port number to display the log
file for the corresponding executor.

Hortonworks Data Platform October 30, 2017

80

8. Monitoring and Debugging an Apache
Storm Topology

Debugging Storm applications can be challenging due to the number of moving parts
across a large number of nodes in a cluster. Tracing failures to a particular component or a
node in the system requires collection and analysis of log files and analysis of debug/trace
processes running in the cluster. The following subsections describe features designed to
facilitate the process of debugging a storm topology.

8.1. Enabling Dynamic Log Levels
Storm allows users and administrators to dynamically change the log level settings of
a running topology. You can change log level settings from either the Storm UI or the
command line. No Storm processes need to be restarted for the settings to take effect. The
resulting log files are searchable from the Storm UI and logviewer service.

Standard log4j levels include DEBUG, INFO, WARN, ERROR, and FATAL, specifying logging
of coarse or finer-grained levels of informational messages and error events. Inheritance is
consistent with log4j behavior. For example, if you set the log level of a parent logger, the
child loggers start using that level (unless the children have a more restrictive level defined
for them).

8.1.1. Setting and Clearing Log Levels Using the Storm UI

To set log level from the Storm UI:

1. Click on a running topology.

2. Click on “Change Log Level” in the Topology Actions section:

3. For an existing logger, select the desired log level for the logger. Alternately, add a
logger and set the desired log level.

4. Optionally, specify a timeout value in seconds, after which changes will be reverted
automatically. Specify 0 if no timeout is needed.

Hortonworks Data Platform October 30, 2017

81

5. Click "Apply".

The preceding example sets the log4j log level to ERROR for the root logger, and to DEBUG
for storm.starter. Logging for the root logger will be limited to error events, and finer-
grained informational events (useful for debugging the application) will be recorded for
storm.starter packages.

To clear (reset) a log level setting using the Storm UI, click on the “Clear” button. This
reverts the log level back to what it was before you added the setting. The log level line will
disappear from the UI.

8.1.2. Setting and Clearing Log Levels Using the CLI

To set log level from the command line, use the following command:

./bin/storm set_log_level [topology name] -l [logger name]=[LEVEL]:[TIMEOUT]

The following example sets the ROOT logger to DEBUG for 30 seconds:

./bin/storm set_log_level my_topology -l ROOT=DEBUG:30

To clear (reset) the log level using the CLI, use the following command. This reverts the log
level back to what it was before you added the setting.

./bin/storm set_log_level [topology name] -r [logger name]

The following example clears the ROOT logger dynamic log level, resetting it to its original
value:

./bin/storm set_log_level my_topology -r ROOT

For more information, see Apache STORM-412.

8.2. Enabling Topology Event Logging
The topology event inspector lets you view tuples as they flow through different stages of
a Storm topology. This tool is useful for inspecting tuples emitted from a spout or a bolt in
the topology pipeline while the topology is running; you do not need to stop or redeploy
the topology to use the event inspector. The normal flow of tuples from spouts to bolts is
not affected by turning on event logging.

8.2.1. Configuring Topology Event Logging

Event logging sends events (tuples) from each component to an internal eventlogger bolt.

Event logging is disabled by default, due to a slight performance degradation associated
with eventlogger tasks.

To enable event logging, set the topology.eventlogger.executors property
to a non-zero value when submitting your topology. You can set the property globally
in the storm.yaml file, or use the command line. For more information about
topology.eventlogger.executors and other property settings, see Configuring
Apache Storm for Production Environments.

https://issues.apache.org/jira/browse/STORM-412
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-configure.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/ch_storm-configure.html

Hortonworks Data Platform October 30, 2017

82

8.2.2. Enabling Event Logging

To log events for an entire topology, click the "Debug" button under "Topology actions" in
the topology view. This setting logs tuples from all spouts and bolts in a topology at the
specified sampling percentage.

To log events at a specific spout or bolt level, navigate to the corresponding component
page and click "Debug" under component actions:

8.2.3. Viewing Event Logs

Prerequisite: The Storm "logviewer" process should be running so that you can view the
logged tuples. If it is not already running, start the log viewer by running the following
command from the storm installation directory:

bin/storm logviewer

To view tuples:

1. From the Storm UI, navigate to the specific spout or bolt component page.

2. Click on the "events" link in the Debug column of the component summary. This will
open a view similar to the following:

Hortonworks Data Platform October 30, 2017

83

Each line in the event log contains an entry corresponding to a tuple emitted from a
specific spout or bolt, presented in a comma-separated format:

Timestamp, Component name, Component task-id, MessageId (incase of
 anchoring), List of emitted values

3. Navigate between different pages to view logged events.

8.2.4. Accessing Event Logs on a Secure Cluster
If you want to view logs in secure mode, ensure that your browser is configured to use
authentication with all supervisor nodes running logviewer. This process is similar to
the process used to configure access to the Storm UI on a secure cluster (described in
Configuring the Storm UI).

Add domains to the white list by setting network.negotiate-auth.trusted-uris to
a comma-separated list containing one or more domain names and URLs. For example, the
following steps configure Firefox to use authentication with two nodes:

1. Go to the about:config configuration page.

2. Search for the network.negotiate-auth.trusted-uris configuration option.

3. Double-click on the option.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/config-storm-ui.html

Hortonworks Data Platform October 30, 2017

84

4. An "Enter string value" dialog box opens.

5. In this box, enter the values http://node1.example.com, http://
node2.example.com.

6. Click OK to finish.

7. Close and relaunch the browser.

If your cluster is not managed by Ambari, refer to the UI/Logviewer section of Apache
Storm security documentation for additional configuration guidelines.

8.2.5. Disabling Event Logs
To disable event logging for a component or for a topology, click "Stop Debug" under the
Component actions or Topology actions page (respectively) in the Storm UI.

The following example disables topology "test-topology":

8.2.6. Extending Event Logging
The Storm eventlogger bolt uses the IEventLogger interface to log events. The default
implementation is aFileBasedEventLogger, which logs events to a log file at logs/
workers-artifacts/<topology-id>/<worker-port>/events.log.

To extend event logging functionality (for example, to build a search index or log events to
a database), add an alternate implementation of the IEventLogger interface.

/**
 * EventLogger interface for logging the event info to a sink like log
 file or db
 * for inspecting the events via UI for debugging.
 */public interface IEventLogger {
 void prepare(Map stormConf, TopologyContext context);
 /**
 * Invoked when the {@link EventLoggerBolt} receives a tuple from the
 spouts or bolts that
 * have event logging enabled.
 *
 * @param e the event
 */
 void log(EventInfo e);
 /**
 * Invoked when the event logger bolt is cleaned up
 */
 void close();
 }

See JIRA STORM-954 for more details.

https://github.com/apache/storm/blob/master/SECURITY.md#uilogviewer
https://storm.apache.org/releases/1.1.0/javadocs/org/apache/storm/metric/IEventLogger.html
https://issues.apache.org/jira/browse/STORM-954

Hortonworks Data Platform October 30, 2017

85

8.3. Enabling Distributed Log Search
The distributed log search capability allows users to search across log files (including
archived logs) to find information and events for a specific topology. Results include
matches from all supervisor nodes.

This feature is useful when searching for patterns across workers or supervisors of a
topology. (A similar log search is supported within specific worker log files via the Storm
UI.)

For more information about log search capabilities, see Apache JIRA STORM-902.

8.4. Dynamic Worker Profiling
You can request the following types of worker profile data directly from the Storm UI ,
without restarting the topologies:

• Heap dumps

• JStack output

https://issues.apache.org/jira/browse/STORM-902

Hortonworks Data Platform October 30, 2017

86

• JProfile recordings

To access this feature:

1. Navigate to the “Profiling and Debugging” section on the Spout/Bolt component
summary page. There you will see buttons to request JStack output or generate a Heap
dump:

Note that you can also restart worker processes from this page.

2. To view output, click the “files” link under “Actions”.

Hortonworks Data Platform October 30, 2017

87

3. To download output for offline analysis, click the associated link under the "Actions"
column on the Profiling and Debugging page, or click "Download Full File" on the output
page.

See Apache JIRA STORM-1157 for more information.

https://issues.apache.org/jira/browse/STORM-1157

Hortonworks Data Platform October 30, 2017

88

9. Tuning an Apache Storm Topology
Because Storm topologies operate on streaming data (rather than data at rest, as in HDFS)
they are sensitive to data sources. When tuning Storm topologies, consider the following
questions:

• What are my data sources?

• At what rate do these data sources deliver messages?

• What size are the messages?

• What is my slowest data sink?

In a Storm cluster, most of the computational burden typically falls on the Supervisor and
Worker nodes. The Nimbus node usually has a lighter load. For this reason, Hortonworks
recommends that organizations save their hardware resources for the relatively burdened
Supervisor and Worker nodes.

The performance of a Storm topology degrades when it cannot ingest data fast enough to
keep up with the data source. The velocity of incoming streaming data changes over time.
When the data flow of the source exceeds what the topology can process, memory buffers
fill up. The topology suffers frequent timeouts and must replay tuples to process them.

Use the following techniques to identify and overcome poor topology performance due to
mismatched data flow rates between source and application:

1. Identify the bottleneck.

a. In the Storm UI, click Show Visualization to display a visual representation of your
topology and find the data bottleneck in your Storm application.

• Thicker lines between components denote larger data flows.

• A blue component represents the the first component in the topology, such as the
spout below from the WordCountTopology included with storm-starter.

• The color of the other topology components indicates whether the component is
exceeding cluster capacity: red components denote a data bottleneck and green
components indicate components operating within capacity.

Hortonworks Data Platform October 30, 2017

89

Note

In addition to bolts defined in your topology, Storm uses its own bolts to
perform background work when a topology component acknowledges
that it either succeeded or failed to process a tuple. The names of these
"acker" bolts are prefixed with an underscore in the visualization, but they
do not appear in the default view.

To display component-specific data about successful acknowledgements,
select the _ack_ack checkbox. To display component-specific data about
failed acknowledgements, select the _ack_fail checkbox.

b. To verify that you have found the topology bottleneck, rewrite the execute()
method of the target bolt or spout so that it performs no operations. If the
performance of the topology improves, you have found the bottleneck.

Alternately, turn off each topology component, one at a time, to find the component
responsible for the bottleneck.

2. Refer to "Performance Guidelines for Developing a Storm Topology" for several
performance-related development guidelines.

3. Adjust topology configuration settings. For more information, see Configuring Storm
Resource Usage.

4. Increase the parallelism for the target spout or bolt. Parallelism units are a useful
conceptual tool for determining how to distribute processing tasks across a distributed
application.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/config-storm-settings.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.3/bk_storm-component-guide/content/config-storm-settings.html

Hortonworks Data Platform October 30, 2017

90

Hortonworks recommends using the following calculation to determine the total
number of parallelism units for a topology.

(number of worker nodes in cluster * number cores per worker node) - (number
 of acker tasks)

Acker tasks are topology components that acknowledge a successfully processed tuple.

The following example assumes a Storm cluster with ten worker nodes, 16 CPU cores
per worker node, and ten acker tasks in the topology. This Storm topology has 150 total
parallelism units:

(10 * 16) - 10 = 150

Storm developers can mitigate the increased processing load associated with data
persistence operations, such as writing to HDFS and generating reports, by distributing
the most parallelism units to topology components that perform data persistence
operations.

	Hortonworks Data Platform
	Table of Contents
	1. Analyzing Streams of Data with Apache Storm
	2. Installing Apache Storm
	3. Configuring Apache Storm for a Production Environment
	3.1. Configuring Storm for Supervision
	3.2. Configuring Storm Resource Usage
	3.3. Enabling Audit to HDFS for a Secure Cluster

	4. Developing Apache Storm Applications
	4.1. Core Storm Concepts
	4.1.1. Spouts
	4.1.2. Bolts
	4.1.3. Stream Groupings
	4.1.4. Topologies
	4.1.5. Processing Reliability
	4.1.6. Workers, Executors, and Tasks
	4.1.7. Parallelism
	4.1.8. Core Storm Example: RollingTopWords Topology

	4.2. Trident Concepts
	4.2.1. Introductory Example: Trident Word Count
	4.2.2. Trident Operations
	4.2.2.1. Filters
	4.2.2.2. Functions

	4.2.3. Trident Aggregations
	4.2.3.1. CombinerAggregator
	4.2.3.2. ReducerAggregator
	4.2.3.3. Aggregator

	4.2.4. Trident State
	4.2.4.1. Trident Spouts
	4.2.4.2. Achieving Exactly-Once Messaging in Trident

	4.2.5. Further Reading about Trident

	4.3. Moving Data Into and Out of a Storm Topology
	4.4. Implementing Windowing Computations on Data Streams
	4.4.1. Understanding Sliding and Tumbling Windows
	4.4.2. Implementing Windowing in Core Storm
	4.4.2.1. Understanding Tuple Timestamps and Out-of-Order Tuples
	4.4.2.2. Understanding Watermarks
	4.4.2.3. Understanding the “at-least-once” Guarantee
	4.4.2.4. Saving the Window State

	4.4.3. Implementing Windowing in Trident
	4.4.3.1. Trident Windowing Implementation Details
	4.4.3.2. Sample Trident Application with Windowing

	4.5. Implementing State Management
	4.5.1. Checkpointing
	4.5.2. Recovery
	4.5.3. Guarantees
	4.5.4. Implementing Custom Actions: IStateful Bolt Hooks
	4.5.5. Implementing Custom States
	4.5.6. Implementing Stateful Windowing
	4.5.7. Sample Topology with Saved State

	4.6. Performance Guidelines for Developing a Storm Topology

	5. Moving Data Into and Out of Apache Storm Using Spouts and Bolts
	5.1. Ingesting Data from Kafka
	5.1.1. KafkaSpout Integration: Core Storm APIs
	5.1.2. KafkaSpout Integration: Trident APIs
	5.1.3. Tuning KafkaSpout Performance
	5.1.4. Configuring Kafka for Use with the Storm-Kafka Connector
	5.1.5. Configuring KafkaSpout to Connect to HBase or Hive

	5.2. Ingesting Data from HDFS
	5.2.1. Configuring HDFS Spout
	5.2.2. HDFS Spout Example

	5.3. Streaming Data to Kafka
	5.3.1. KafkaBolt Integration: Core Storm APIs
	5.3.2. KafkaBolt Integration: Trident APIs

	5.4. Writing Data to HDFS
	5.4.1. Storm-HDFS: Core Storm APIs
	5.4.2. Storm-HDFS: Trident APIs

	5.5. Writing Data to HBase
	5.6. Writing Data to Hive
	5.6.1. Core-storm APIs
	5.6.2. Trident APIs

	5.7. Configuring Connectors for a Secure Cluster
	5.7.1. Configuring KafkaSpout for a Secure Kafka Cluster
	5.7.2. Configuring Storm-HDFS for a Secure Cluster
	5.7.3. Configuring Storm-HBase for a Secure Cluster
	5.7.4. Configuring Storm-Hive for a Secure Cluster

	6. Packaging Storm Topologies
	7. Deploying and Managing Apache Storm Topologies
	7.1. Configuring the Storm UI
	7.2. Using the Storm UI

	8. Monitoring and Debugging an Apache Storm Topology
	8.1. Enabling Dynamic Log Levels
	8.1.1. Setting and Clearing Log Levels Using the Storm UI
	8.1.2. Setting and Clearing Log Levels Using the CLI

	8.2. Enabling Topology Event Logging
	8.2.1. Configuring Topology Event Logging
	8.2.2. Enabling Event Logging
	8.2.3. Viewing Event Logs
	8.2.4. Accessing Event Logs on a Secure Cluster
	8.2.5. Disabling Event Logs
	8.2.6. Extending Event Logging

	8.3. Enabling Distributed Log Search
	8.4. Dynamic Worker Profiling

	9. Tuning an Apache Storm Topology

