
Hortonworks Data Platform

 (June 28, 2016)

Spark Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform June 28, 2016

ii

Hortonworks Data Platform: Spark Guide
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform June 28, 2016

iii

Table of Contents
1. Introduction ... 1
2. Prerequisites .. 4
3. Installing and Configuring Spark .. 5

3.1. Installing and Configuring Spark Over Ambari ... 5
3.1.1. (Optional) Configuring Spark for Hive Access .. 9
3.1.2. (Optional) Installing the Spark Thrift Server After Deploying Spark 10

3.2. Configuring Dynamic Resource Allocation and Thrift Server Settings 11
3.2.1. Customizing Cluster Dynamic Resource Allocation Settings (Ambari) 12
3.2.2. Configuring Cluster Dynamic Resource Allocation Manually 13
3.2.3. Configuring a Job for Dynamic Resource Allocation 13
3.2.4. Dynamic Resource Allocation Properties ... 14
3.2.5. Customizing the Spark Thrift Server Port .. 15

3.3. (Optional) Configuring Spark for a Kerberos-Enabled Cluster 15
3.3.1. Configuring the Spark Thrift Server on a Kerberos-Enabled Cluster 17

3.4. (Optional) Configuring the Spark History Server .. 17
3.5. Validating the Spark Installation .. 17

4. Developing Spark Applications ... 19
4.1. Spark Pi Program .. 19
4.2. WordCount Program ... 20

5. Using the Spark DataFrame API ... 22
5.1. Additional DataFrame API Examples ... 22
5.2. Specify Schema Programmatically .. 23

6. Accessing ORC Files from Spark .. 24
6.1. Accessing ORC in Spark ... 24
6.2. Reading and Writing with ORC ... 24
6.3. Column Pruning .. 25
6.4. Predicate Push-down ... 25
6.5. Partition Pruning ... 25
6.6. DataFrame Support ... 26
6.7. Additional Resources ... 26

7. Using Spark SQL .. 28
7.1. Accessing Spark SQL Through the Spark Shell .. 28
7.2. Accessing Spark SQL through JDBC ... 29
7.3. Forming JDBC Connection Strings for Spark SQL .. 30
7.4. Calling Hive User-Defined Functions ... 31

7.4.1. Using Custom UDFs .. 32
8. Using Spark Streaming ... 33
9. Adding Libraries to Spark ... 34
10. Using Spark with HDFS .. 35

10.1. Specifying Compression ... 35
10.2. Accessing HDFS from PySpark: SettingHADOOP_CONF_DIR 35

11. Tuning and Troubleshooting Spark ... 36
11.1. Hardware Provisioning .. 36
11.2. Checking Job Status .. 36
11.3. Checking Job History ... 36
11.4. Configuring Spark JVM Memory Allocation ... 37
11.5. Configuring YARN Memory Allocation for Spark .. 38
11.6. Specifying codec Files .. 39

Hortonworks Data Platform June 28, 2016

iv

List of Tables
1.1. Spark - HDP Version Support ... 2
1.2. Spark Feature Support by Version ... 2
2.1. Prerequisites for Running Spark .. 4
3.1. Dynamic Resource Allocation Properties .. 14
3.2. Dynamic Resource Allocation: Optional Settings .. 15

Hortonworks Data Platform June 28, 2016

1

1. Introduction
Hortonworks Data Platform supports Apache Spark, a fast, large-scale data processing
engine.

Deep integration of Spark with YARN allows Spark to operate as a cluster tenant alongside
other engines such as Hive, Storm, and HBase, all running simultaneously on a single data
platform. YARN allows flexibility: you can choose the right processing tool for the job.
Instead of creating and managing a set of dedicated clusters for Spark applications, you can
store data in a single location, access and analyze it with multiple processing engines, and
leverage your resources. In a modern data architecture with multiple processing engines
using YARN and accessing data in HDFS, Spark on YARN is the leading Spark deployment
mode.

Spark Features

Spark on HDP supports the following features:

• Spark Core

• Spark on YARN

• Spark on YARN on Kerberos-enabled clusters

• Spark History Server

• Spark MLLib

• Support for Hive 1.2

• ML Pipeline API

• DataFrame API

• Optimized Row Columnar (ORC) files

• Spark SQL

• Spark SQL Thrift Server

• Spark Streaming

• PySpark

• Dynamic Resource Allocation

The following features and associated tools are available as technical previews:

• SparkR

• GraphX

• Apache Zeppelin

https://hortonworks.com/hadoop-tutorial/apache-zeppelin/

Hortonworks Data Platform June 28, 2016

2

The following features and associated tools are not officially supported by Hortonworks:

• Spark Standalone

• Spark on Mesos

• Jupyter/iPython Notebook

• Oozie Spark action is not supported, but there is a tech note available for HDP customers

Spark on YARN leverages YARN services for resource allocation, and runs Spark Executors
in YARN containers. Spark on YARN supports workload management and Kerberos security
features. It has two modes:

• YARN-cluster mode, optimized for long-running production jobs.

• YARN-client mode, best for interactive use such as prototyping, testing, and debugging.
Spark Shell runs in YARN-client mode only.

Table 1.1. Spark - HDP Version Support

HDP Ambari Spark

2.3.6 2.2 1.5.2

2.3.4.7 2.2 1.5.2

2.3.2 2.1.2 1.4.1

2.3.0 2.1.1 1.3.1

2.2.9 2.1.1 1.3.1

2.2.8 2.1.1 1.3.1

2.2.6 2.1.1 1.2.1

2.2.4 2.0.1 1.2.1

Table 1.2. Spark Feature Support by Version

Feature 1.2.1 1.3.1 1.4.1 1.5.2

Spark Core Yes Yes Yes Yes

Spark on YARN Yes Yes Yes Yes

Spark on YARN, Kerberos-enabled clusters Yes Yes Yes Yes

Spark History Server Yes Yes Yes Yes

Spark MLLib Yes Yes Yes Yes

Hive support, including collect_list UDF Hive version
0.13.1

Hive version
0.13.1

Hive version
1.2

ML Pipeline API Yes Yes

DataFrame API TP Yes Yes

ORC Files TP Yes Yes

Spark SQL TP TP TP Yes

Spark Thrift Server TP TP Yes

Spark Streaming TP TP TP Yes

PySpark TP Yes Yes

Dynamic Resource Allocation TP TP Yes*

Hortonworks Data Platform June 28, 2016

3

Feature 1.2.1 1.3.1 1.4.1 1.5.2

SparkR TP TP

GraphX TP

 TP: Tech Preview

* Note: Dynamic Resource Allocation does not work with Spark Streaming.

Hortonworks Data Platform June 28, 2016

4

2. Prerequisites
Before installing Spark, make sure your cluster meets the following prerequisites.

Table 2.1. Prerequisites for Running Spark

Prerequisite Description

HDP Cluster Stack Version • 2.3.6 or later

(Optional) Ambari Version • 2.2 or later

Software dependencies • Spark requires HDFS and YARN

• PySpark requires Python to be installed on all nodes

• (Optional) The Spark Thrift Server requires Hive to be
deployed on your cluster

• (Optional) For optimal performance with MLlib,
consider installing the netlib-java library

• SparkR (tech preview) requires R binaries to be installed
on all nodes

Note

When you upgrade your cluster to HDP 2.3.6, Spark is automatically upgraded
to 1.5.2. If you wish to use a previous version of Spark, follow the Spark Manual
Downgrade procedure in the Release Notes.

https://github.com/fommil/netlib-java

Hortonworks Data Platform June 28, 2016

5

3. Installing and Configuring Spark
To install Spark manually, see Installing and Configuring Apache Spark in the Non-Ambari
Cluster Installation Guide.

The next section in this chapter describes how to install and configure Spark on an Ambari-
managed cluster, followed by configuration topics that apply to both types of clusters
(Ambari-managed and not).

3.1. Installing and Configuring Spark Over Ambari
The following diagram shows the Spark installation process using Ambari. (For general
information about installing HDP components using Ambari, see Adding a Service in the
Ambari Documentation Suite.)

To install Spark using Ambari, complete the following steps.

Note

If you wish to install the Spark Thrift Server, you can install it during component
installation (described in this subsection) or at any time after Spark has been
installed and deployed. To install the Spark Thrift Server later, add the optional
STS service to the specified host. For more information, see "Installing the Spark
Thrift Server after Installing Spark" (later in this chapter).

Before installing the Spark Thrift Server, make sure that Hive is deployed on
your cluster.

1. Choose the Ambari "Services" tab.

In the Ambari "Actions" pulldown menu, choose "Add Service." This will start the Add
Service Wizard. You'll see the Choose Services screen.

Select "Spark", and click "Next" to continue.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_installing_manually_book/content/ch_installing_spark_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.2.2.18/bk_ambari-user-guide/content/_adding_a_service.html

Hortonworks Data Platform June 28, 2016

6

2. On the Assign Masters screen, review the node assignment for the Spark History Server.
Modify the assignment if desired.

Click "Next" to continue.

Hortonworks Data Platform June 28, 2016

7

3. On the Assign Slaves and Clients screen:

a. Specify the node(s) that will run Spark clients. These nodes will be the nodes from
which Spark jobs can be submitted to YARN.

b. (Optional) If you are installing the Spark Thrift Server at this time, review the node
assignments for the Spark Thrift Server. Assign one or two nodes to the Spark Thrift
Server, as needed.

Click "Next" to continue.

Hortonworks Data Platform June 28, 2016

8

4. (Optional) On the "Customize Services" screen: If you are installing the Spark Thrift
Server at this time, choose the "Spark" tab and navigate to the "Advanced spark-thrift-
sparkconf" group. Set the spark.yarn.queue value to the name of the YARN queue
that you want to use.

Aside from the YARN queue setting, we recommend that you use default values for your
initial configuration. For additional information about configuring property values, see
Customizing Dynamic Resource Allocation and Spark Thrift Server Settings

Click "Next" to continue.

5. Ambari will display the Review screen.

Important

On the Review screen, make sure all HDP components correspond to HDP
version 2.3.6 or later.

Click "Deploy" to continue.

6. Ambari will display the Install, Start and Test screen. The status bar and messages will
indicate progress.

Hortonworks Data Platform June 28, 2016

9

7. When finished, Ambari will present a summary of results. Click "Complete" to finish
installing Spark.

Caution

Ambari will create and edit several configuration files. Do not edit these files
directly if you configure and manage your cluster using Ambari.

3.1.1. (Optional) Configuring Spark for Hive Access

When you install Spark using Ambari, the hive-site.xml file is populated with the Hive
metastore location.

If you move Hive to a different server, edit the SPARK_HOME/conf/hive-site.xml
file so that it contains only the hive.metastore.uris property. Make sure that the
hostname points to the URI where the Hive Metastore is running.

Important

hive-site.xml contains a number of properties that are not relevant to or
supported by the Spark thrift server. Ensure that your Spark hive-site.xml
file contains only the following configuration property.

<configuration>
 <property>
 <name>hive.metastore.uris</name>
 <!-- hostname must point to the Hive Metastore URI in your cluster -->
 <value>thrift://hostname:9083</value>
 <description>URI for client to contact metastore server</description>
 </property>
</configuration>

Hortonworks Data Platform June 28, 2016

10

3.1.2. (Optional) Installing the Spark Thrift Server After
Deploying Spark

The Spark Thrift Server can be installed during Spark installation or after Spark is deployed.

To install the Spark Thrift Server after deploying Spark, add the service to the specified
host:

1. On the Summary tab, click "+ Add" and choose the Spark Thrift Server:

2. Ambari will ask you to confirm the selection:

3. The installation process will run in the background until it completes:

Hortonworks Data Platform June 28, 2016

11

3.2. Configuring Dynamic Resource Allocation and
Thrift Server Settings

When the dynamic resource allocation feature is enabled, an application's use of executors
is dynamically adjusted based on workload. This means that an application may relinquish
resources when the resources are no longer needed, and request them later when there is
more demand. This feature is particularly useful if multiple applications share resources in
your Spark cluster.

Dynamic resource allocation is available for use by the Spark Thrift Server and general Spark
jobs. You can configure dynamic resource allocation at the cluster or job level:

• On an Ambari-managed cluster, the Spark Thrift Server uses dynamic resource allocation
by default. The Thrift Server will increase or decrease the number of running executors
based on a specified range, depending on load. (In addition, the Thrift Server runs in
YARN mode by default, so the Thrift Server will use resources from the YARN cluster.)

• On a manually-installed cluster, dynamic resource allocation is not enabled by default for
the Thrift Server or for other Spark applications. You can enable and configure dynamic
resource allocation and start the shuffle service during the Spark manual installation or
upgrade process.

• You can customize dynamic resource allocation settings on a per-job basis. Job settings
will override cluster configuration settings.

Cluster configuration is the default unless overridden by job configuration.

The next three subsections describe each configuration approach, followed by a list of
dynamic resource allocation properties and a set of instructions for customizing the Spark
Thrift Server port.

Hortonworks Data Platform June 28, 2016

12

3.2.1. Customizing Cluster Dynamic Resource Allocation
Settings (Ambari)

On an Ambari-managed cluster, dynamic resource allocation is configured for the Spark
Thrift Server as part of the Spark installation process. Ambari starts the shuffle service for
use by the Thrift Server and general Spark jobs.

To view or modify property values for the Spark Thrift Server, navigate to Services > Spark.
Required settings are listed in the "Advanced spark-thrift-sparkconf" group; additional
properties can be specified in the custom section. (For a complete list of DRA properties,
see Dynamic Resource Allocation Properties.)

To enable and configure dynamic resource allocation for general Spark applications,
navigate to Services > Spark. Review the list of properties in the Advanced spark-defaults
group, and revise settings as needed.

Dynamic resource allocation requires an external shuffle service on each worker node. If
you installed your cluster using Ambari, the service will be started automatically; no further
steps are needed.

Hortonworks Data Platform June 28, 2016

13

3.2.2. Configuring Cluster Dynamic Resource Allocation
Manually

To configure a cluster to run Spark applications with dynamic resource allocation:

1. Add the following properties to the spark-defaults.conf file associated with
your Spark installation. (For general Spark applications, this file typically resides at
$SPARK_HOME/conf/spark-defaults.conf.)

• Set spark.dynamicAllocation.enabled to true

• Set spark.shuffle.service.enabled to true

(Optional) The following properties specify a starting point and range for the number
of executors. Note that initialExecutors must be greater than or equal to
minExecutors, and less than or equal to maxExecutors.

• spark.dynamicAllocation.initialExecutors

• spark.dynamicAllocation.minExecutors

• spark.dynamicAllocation.maxExecutors

For a description of each property, see Dynamic Resource Allocation Properties.

2. Start the shuffle service on each worker node in the cluster. (The shuffle service runs as
an auxiliary service of the NodeManager.)

a. In the yarn-site.xml file on each node, add spark_shuffle
to yarn.nodemanager.aux-services, then set
yarn.nodemanager.aux-services.spark_shuffle.class to
org.apache.spark.network.yarn.YarnShuffleService.

b. Review and, if necessary, edit spark.shuffle.service.* configuration settings.
For more information, see the Apache Spark Shuffle Behavior documentation.

c. Restart all NodeManagers in your cluster.

3.2.3. Configuring a Job for Dynamic Resource Allocation

There are two ways to customize dynamic resource allocation properties for a specific job:

• Include property values in the spark-submit command, using the -conf option.

This approach will load the default spark-defaults.conf file first, and then apply
property values specified in your spark-submit command. Here is an example:

spark-submit —conf “property_name=property_value”

• Create a job-specific spark-defaults.conf file and pass it to the spark-submit
command.

https://spark.apache.org/docs/1.5.2/configuration.html#shuffle-behavior

Hortonworks Data Platform June 28, 2016

14

This approach will use the specified properties-file, without reading the default property
file.

spark-submit —properties-file <property_file>

3.2.4. Dynamic Resource Allocation Properties
See the following tables for more information about dynamic resource allocation
properties.

Table 3.1. Dynamic Resource Allocation Properties

Property Name Value Meaning

spark.dynamicAllocation.
enabled

true Whether to use dynamic resource
allocation, which scales the number
of executors registered with this
application up and down based on the
workload. Note that this is currently
only available in YARN mode. For more
information, see the Apache Dynamic
Resource Allocation documentation.

DRA requires
spark.shuffle.service.enabled
to be set. The following
configurations are also relevant:
spark.dynamicAllocation.
minExecutors,
spark.dynamicAllocation.
maxExecutors, and
spark.dynamicAllocation.
initialExecutors

spark.shuffle.service.
enabled

true Enables the external shuffle service,
which preserves shuffle files written by
executors so that the executors can be
safely removed.

This property must be set to true
if spark.dynamicAllocation.
enabled is true.

The external shuffle service must be
set up before enabling the property.
For more information, see "Starting
the Shuffle Service" at the end of this
section.

spark.dynamicAllocation.
initialExecutors

default is
spark.dynamicAllocation.
minExecutors

Initial number of executors to run if
dynamic resource allocation is enabled.
This value must be greater than or
equal to the minExecutors value, and
less than or equal to the maxExecutors
value.

spark.dynamicAllocation.
maxExecutors

Default is infinity Upper bound for the number of
executors if dynamic resource
allocation is enabled.

spark.dynamicAllocation.
minExecutors

Default is 0 Lower bound for the number of
executors if dynamic resource
allocation is enabled.

Optional Settings: The following table lists several advanced settings for dynamic resource
allocation.

http://spark.apache.org/docs/1.5.2/job-scheduling.html#dynamic-resource-allocation
http://spark.apache.org/docs/1.5.2/job-scheduling.html#dynamic-resource-allocation

Hortonworks Data Platform June 28, 2016

15

Table 3.2. Dynamic Resource Allocation: Optional Settings

Property Name Value Meaning

spark.dynamicAllocation.
executorIdleTimeout

Default is 60 seconds (60s) If dynamic resource allocation is
enabled and an executor has been
idle for more than this duration, the
executor will be removed.

spark.dynamicAllocation.
cachedExecutorIdleTimeout

Default is infinity If dynamic resource allocation is
enabled and an executor with cached
data blocks has been idle for more
than this duration, the executor will be
removed.

spark.dynamicAllocation.
schedulerBacklogTimeout

1 second (1s) If dynamic resource allocation is
enabled and there have been pending
tasks backlogged for more than
this duration, new executors will be
requested.

spark.dynamicAllocation.
sustainedSchedulerBacklog
Timeout

Default is
schedulerBacklogTimeout

Same as
spark.dynamicAllocation.
schedulerBacklogTimeout,but
used only for subsequent executor
requests.

3.2.5. Customizing the Spark Thrift Server Port
The default Spark Thrift Server port is 10015. To specify a different port, navigate to
the hive.server2.thrift.port setting in the "Advanced spark-hive-site-override"
category of the Spark configuration section. Update the setting with your preferred port
number.

3.3. (Optional) Configuring Spark for a Kerberos-
Enabled Cluster

Spark jobs are submitted to a Hadoop cluster as YARN jobs.

When a job is ready to run in a production environment, there are a few additional steps if
the cluster is Kerberized:

• The Spark History Server daemon needs a Kerberos account and keytab to run in a
Kerberized cluster.

• When you enable Kerberos for a Hadoop cluster with Ambari, Ambari configures
Kerberos for the Spark History Server and automatically creates a Kerberos account
and keytab for it. For more information, see Configuring Ambari and Hadoop for
Kerberos.

• If you are not using Ambari, or if you plan to enable Kerberos manually for the Spark
History Server, see Creating Service Principals and Keytab Files for HDP in the Hadoop
Security Guide.

• To submit Spark jobs in a Kerberized cluster, the account (or person) submitting jobs
needs a Kerberos account & keytab.

• When access is authenticated without human interaction -- as happens for processes
that submit job requests -- the process would use a headless keytab. Security risk is

https://docs.hortonworks.com/HDPDocuments/Ambari-2.2.2.18/bk_ambari-security/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.2.2.18/bk_ambari-security/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_Security_Guide/content/creating_service_principals_and_keytab_files_for_hdp.html

Hortonworks Data Platform June 28, 2016

16

mitigated by ensuring that only the service who should be using the headless keytab
has the permissions to read it.

• An end user should use their own keytab when submitting a Spark job.

Setting Up Principals and Keytabs for End User Access to Spark

In the following example, user $USERNAME runs the Spark Pi job in a Kerberos-enabled
environment:

su $USERNAME
kinit USERNAME@YOUR-LOCAL-REALM.COM
cd /usr/hdp/current/spark-client/
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-
cluster --num-executors 3 --driver-memory 512m --executor-memory 512m --
executor-cores 1 lib/spark-examples*.jar 10

Setting Up Service Principals and Keytabs for Processes Submitting Spark Jobs

The following example shows the creation and use of a headless keytab for a spark service
user account that will submit Spark jobs on node blue1@example.com:

1. Create a Kerberos service principal for user spark:

kadmin.local -q "addprinc -randkey spark/blue1@EXAMPLE.COM"

2. Create the keytab:

kadmin.local -q "xst -k /etc/security/keytabs/spark.keytab
spark/blue1@EXAMPLE.COM"

3. Create a spark user and add it to the hadoop group. (Do this for every node of your
cluster.)

useradd spark -g hadoop

4. Make spark the owner of the newly-created keytab:

chown spark:hadoop /etc/security/keytabs/spark.keytab

5. Limit access: make sure user spark is the only user with access to the keytab:

chmod 400 /etc/security/keytabs/spark.keytab

In the following steps, user spark runs the Spark Pi example in a Kerberos-enabled
environment:

su spark
kinit -kt /etc/security/keytabs/spark.keytab spark/blue1@EXAMPLE.COM
cd /usr/hdp/current/spark-client/
./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-
cluster --num-executors 1 --driver-memory 512m --executor-memory 512m --
executor-cores 1 lib/spark-examples*.jar 10

Hortonworks Data Platform June 28, 2016

17

3.3.1. Configuring the Spark Thrift Server on a Kerberos-
Enabled Cluster

If you are installing the Spark Thrift Server on a Kerberos-secured cluster, the following
instructions apply:

• The Spark Thrift Server must run in the same host as HiveServer2, so that it can access
the hiveserver2 keytab.

• Edit permissions in /var/run/spark and /var/log/spark to specify read/write
permissions to the Hive service account.

• Use the Hive service account to start the thriftserver process.

Note

We recommend that you run the Spark Thrift Server as user hive instead
of user spark (this supersedes recommendations in previous releases).
This ensures that the Spark Thrift Server can access Hive keytabs, the Hive
metastore, and data in HDFS that is stored under user hive.

Important

When the Spark Thrift Server runs queries as user hive, all data accessible
to user hive will be accessible to the user submitting the query. For a more
secure configuration, use a different service account for the Spark Thrift Server.
Provide appropriate access to the Hive keytabs and the Hive metastore.

For Spark jobs that are not submitted through the Thrift Server, the user submitting the job
must have access to the Hive metastore in secure mode (via kinit).

3.4. (Optional) Configuring the Spark History
Server

The Spark History Server is a monitoring tool that lists information about completed Spark
applications. Applications write history data to a directory on HDFS (recommended) or
ATS. The History Server pulls the data and presents it in a Web UI at <host>:18080 (by
default).

For information about configuring optional History Server properties, see the Apache
Monitoring and Instrumentation document.

For Kerberos considerations, see Configuring Spark for a Kerberos-Enabled Cluster.

3.5. Validating the Spark Installation
To validate the Spark installation, run the following Spark jobs:

• Spark Pi example

http://spark.apache.org/docs/1.5.2/monitoring.html#viewing-after-the-fact
http://spark.apache.org/docs/1.5.2/monitoring.html#viewing-after-the-fact
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/ch_spark-examples.html#run_spark_pi

Hortonworks Data Platform June 28, 2016

18

• WordCount example

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/ch_spark-examples.html#run_wordcount

Hortonworks Data Platform June 28, 2016

19

4. Developing Spark Applications
Apache Spark is designed for fast application development and fast processing. Spark Core
is the underlying execution engine; other services such as Spark SQL, MLlib, and Spark
Streaming are built on top of the Spark Core.

To run Spark applications, use the spark-submit script in the Spark bin directory to
launch applications on a cluster. Alternately, to use the API interactively you can launch
an interactive shell for Scala (spark-shell), Python (pyspark), or SparkR. Note: Each
interactive shell automatically creates SparkContext in a variable called sc.

For more information about getting started with Spark, see the Apache Spark Quick Start.
For more extensive information about application development, see the Apache Spark
Programming Guide and Submitting Applications.

The remainder of this chapter contains basic coding examples. Subsequent chapters
describe how to access a range of data sources and analytic capabilities.

4.1. Spark Pi Program
To test compute-intensive tasks in Spark, the Pi example calculates pi by “throwing darts” at
a circle — it generates points in the unit square ((0,0) to (1,1)) and counts how many points
fall within the unit circle within the square. The result approximates pi.

Here is Python code for the Spark Pi program included with Spark.

To run the Spark Pi example:

1. Log on as a user with HDFS access--for example, your spark user, if you defined one, or
hdfs. (When the job runs, the library is uploaded into HDFS, so the user running the job
needs permission to write to HDFS.)

2. Navigate to a node with a Spark client and access the spark-client directory:

cd /usr/hdp/current/spark-client

su spark

3. Run the Apache Spark Pi job in yarn-client mode, using code from org.apache.spark:

./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-
client --num-executors 1 --driver-memory 512m --executor-memory 512m --
executor-cores 1 lib/spark-examples*.jar 10

Commonly-used options include:

• --class: The entry point for your application (e.g.,
org.apache.spark.examples.SparkPi)

• --master: The master URL for the cluster (e.g., spark://23.195.26.187:7077)

• --deploy-mode: Whether to deploy your driver on the worker nodes (cluster) or
locally as an external client (client) (default: client

http://spark.apache.org/docs/1.5.2/quick-start.html
http://spark.apache.org/docs/1.5.2/programming-guide.html
http://spark.apache.org/docs/1.5.2/programming-guide.html
http://spark.apache.org/docs/1.5.2/submitting-applications.html
https://github.com/apache/spark/blob/master/examples/src/main/python/pi.py

Hortonworks Data Platform June 28, 2016

20

• --conf: Arbitrary Spark configuration property in key=value format. For values
that contain spaces wrap “key=value” in quotes (as shown).

• <application-jar>: Path to a bundled jar including your application and all
dependencies. The URL must be globally visible inside of your cluster, for instance, an
hdfs:// path or a file:// path that is present on all nodes.

• <application-arguments>: Arguments passed to the main method of your main
class, if any.

The job should complete without errors.

It should produce output similar to the following. Note the value of pi in the output.

16/05/31 14:28:35 INFO scheduler.DAGScheduler: Job 0 finished: reduce at
 SparkPi.scala:36, took 1.721177 s
Pi is roughly 3.141296
16/05/31 14:28:35 INFO spark.ContextCleaner: Cleaned accumulator 1

To view job status in a browser, navigate to the YARN ResourceManager Web UI and
view Job History Server information. (For more information about checking job status
and history, see Tuning and Troubleshooting Spark.)

4.2. WordCount Program
WordCount is a simple program that counts how often a word occurs in a text file. The
code builds a dataset of (String, Int) pairs called counts, and saves the dataset to a file.

The following example submits WordCount code to the scala shell:

1. Select an input file for the Spark WordCount example. You can use any text file as input.

2. Log on as a user with HDFS access--for example, your spark user (if you defined one) or
hdfs.

The following example uses log4j.properties as the input file:

cd /usr/hdp/current/spark-client/

su spark

3. Upload the input file to HDFS:

hadoop fs -copyFromLocal /etc/hadoop/conf/log4j.properties /tmp/
data

4. Run the Spark shell:

./bin/spark-shell --master yarn-client --driver-memory 512m --
executor-memory 512m

You should see output similar to the following:

bin/spark-shell

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/ch_tuning-spark.html

Hortonworks Data Platform June 28, 2016

21

Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 1.5.2
 /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.
0_60)
Type in expressions to have them evaluated.
Type :help for more information.
16/05/31 16:28:09 INFO SparkContext: Running Spark version 1.5.2
16/05/31 16:28:09 INFO SecurityManager: Changing view acls to: root
...
...
16/05/31 16:28:14 INFO SparkILoop: Created sql context (with Hive support)..
SQL context available as sqlContext.

scala>

5. At the scala> prompt, submit the job: type the following commands, replacing node
names, file name and file location with your own values.

val file = sc.textFile("/tmp/data")
val counts = file.flatMap(line => line.split(" ")).map(word => (word, 1)).
reduceByKey(_ + _)
counts.saveAsTextFile("/tmp/wordcount")

6. To view WordCount output in the scala shell:

scala> counts.count()

To view the full output from within the scala shell:

counts.toArray().foreach(println)

To view the output using HDFS:

a. Exit the scala shell.

b. View WordCount job results:

hadoop fs -ls /tmp/wordcount

You should see output similar to the following:

/tmp/wordcount/_SUCCESS
/tmp/wordcount/part-00000
/tmp/wordcount/part-00001

c. Use the HDFS cat command to list WordCount output. For example:

hadoop fs -cat /tmp/wordcount/part-00000

Hortonworks Data Platform June 28, 2016

22

5. Using the Spark DataFrame API
The Spark DataFrame API provides table-like access to data from a variety of sources. Its
purpose is similar to Python's pandas library and R's data frames: collect and organize data
into a tabular format with named columns. DataFrames can be constructed from a wide
array of sources, including structured data files, Hive tables, and existing Spark RDDs.

1. As user spark, upload the people.txt file to HDFS:

cd /usr/hdp/current/spark-client
su spark
hdfs dfs -copyFromLocal examples/src/main/resources/people.txt people.txt
hdfs dfs -copyFromLocal examples/src/main/resources/people.json people.json

2. Launch the Spark shell:

cd /usr/hdp/current/spark-client
su spark
./bin/spark-shell --num-executors 1 --executor-memory 512m --master yarn-
client

3. At the Spark shell, type the following:

scala> val df = sqlContext.read.format("json").load("people.json")

4. Using df.show, display the contents of the DataFrame:

scala> df.show
16/05/31 11:24:10 INFO YarnScheduler: Removed TaskSet 2.0, whose tasks have
 all completed, from pool

+----+-------+
| age| name|
+----+-------+
null	Michael
30	Andy
19	Justin
+----+-------+

5.1. Additional DataFrame API Examples
Here are additional examples of Scala-based DataFrame access, using DataFrame df
defined in the previous subsection:

// Import the DataFrame functions API
scala> import org.apache.spark.sql.functions._

// Select all rows, but increment age by 1
scala> df.select(df("name"), df("age") + 1).show()

// Select people older than 21
scala> df.filter(df("age") > 21).show()

// Count people by age
df.groupBy("age").count().show()

Hortonworks Data Platform June 28, 2016

23

5.2. Specify Schema Programmatically
The following example uses the DataFrame API to specify a schema for people.txt, and
retrieve names from a temporary table associated with the schema:

import org.apache.spark.sql._

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val people = sc.textFile("people.txt")
val schemaString = "name age"

import org.apache.spark.sql.types.{StructType,StructField,StringType}

val schema = StructType(schemaString.split(" ").map(fieldName =>
 StructField(fieldName, StringType, true)))
val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))
val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)

peopleDataFrame.registerTempTable("people")

val results = sqlContext.sql("SELECT name FROM people")

results.map(t => "Name: " + t(0)).collect().foreach(println)

This will produce output similar to the following:

16/05/31 14:36:49 INFO cluster.YarnScheduler: Removed TaskSet 13.0, whose
 tasks have all completed, from pool
16/05/31 14:36:49 INFO scheduler.DAGScheduler: ResultStage 13 (collect at :33)
 finished in 0.129 s
16/05/31 14:36:49 INFO scheduler.DAGScheduler: Job 10 finished: collect
 at :33, took 0.162827 s
Name: Michael
Name: Andy
Name: Justin

Hortonworks Data Platform June 28, 2016

24

6. Accessing ORC Files from Spark
Spark on HDP supports the Optimized Row Columnar ("ORC") file format, a self-describing,
type-aware column-based file format that is one of the primary file formats supported
in Apache Hive. The columnar format lets the reader read, decompress, and process
only the columns that are required for the current query. ORC support in Spark SQL and
DataFrame APIs provides fast access to ORC data contained in Hive tables. It supports ACID
transactions, snapshot isolation, built-in indexes, and complex types.

6.1. Accessing ORC in Spark
Spark’s ORC data source supports complex data types (such as array, map, and struct),
and provides read and write access to ORC files. It leverages Spark SQL’s Catalyst engine
for common optimizations such as column pruning, predicate push-down, and partition
pruning.

This chapter has several examples of Spark’s ORC integration, showing how such
optimizations are applied to user programs.

To start using ORC, define a HiveContext instance:

import org.apache.spark.sql._
val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)

The following examples use a few data structures to demonstrate working with complex
types. The Person struct has name, age, and a sequence of Contacts, which are themselves
defined by names and phone numbers. Define these structures as follows:

case class Contact(name: String, phone: String)
case class Person(name: String, age: Int, contacts: Seq[Contact])

Next, create 100 records. In the physical file these records will be saved in columnar
format, but users will see rows when accessing ORC files via the DataFrame API. Each row
represents one Person record.

val records = (1 to 100).map { i =>;
 Person(s"name_$i", i, (0 to 1).map { m => Contact(s"contact_$m", s"phone_
$m") })
}

6.2. Reading and Writing with ORC
Spark’s DataFrameReader and DataFrameWriter are used to access ORC files, in a similar
manner to other data sources.

To write People objects as ORC files to directory “people”, use the following command:

sc.parallelize(records).toDF().write.format("orc").save("people")

Read the objects back as follows:

val people = sqlContext.read.format("orc").load("people.json")

For reuse in future operations, register it as temporary table “people”:

Hortonworks Data Platform June 28, 2016

25

people.registerTempTable("people")

6.3. Column Pruning
The previous step registered the table as a temporary table named “people”. The following
SQL query references two columns from the underlying table.

sqlContext.sql("SELECT name FROM people WHERE age < 15").count()

At runtime, the physical table scan will only load columns name and age, without reading
the contacts column from the file system. This improves read performance.

ORC reduces I/O overhead by only touching required columns. It requires significantly
fewer seek operations because all columns within a single stripe are stored together on
disk.

6.4. Predicate Push-down
The columnar nature of the ORC format helps avoid reading unnecessary columns, but it
is still possible to read unnecessary rows. In our example, we read all rows where age was
between 0 and 100, even though we requested rows where age was less than 15. Such full
table scanning is an expensive operation.

ORC avoids this type of overhead by using predicate push-down with three levels of built-in
indexes within each file: file level, stripe level, and row level:

• File and stripe level statistics are in the file footer, making it easy to determine if the rest
of the file needs to be read.

• Row level indexes include column statistics for each row group and position, for seeking
to the start of the row group.

ORC utilizes these indexes to move the filter operation to the data loading phase, by
reading only data that potentially includes required rows.

This combination of indexed data and columnar storage reduces disk I/O significantly,
especially for larger datasets where I/O bandwidth becomes the main bottleneck for
performance.

Important

By default, ORC predicate push-down is disabled in Spark SQL. To obtain
performance benefits from predicate push-down, you must enable it explicitly,
as follows:

sqlContext.setConf("spark.sql.orc.filterPushdown", "true")

6.5. Partition Pruning
When predicate pushdown is not applicable--for example, if all stripes contain records
that match the predicate condition--a query with a WHERE clause might need to read the

Hortonworks Data Platform June 28, 2016

26

entire data set. This becomes a bottleneck over a large table. Partition pruning is another
optimization method; it exploits query semantics to avoid reading large amounts of data
unnecessarily.

Partition pruning is possible when data within a table is split across multiple logical
partitions. Each partition corresponds to a particular value(s) of partition column(s), and
is stored as a sub-directory within the table’s root directory on HDFS. Where applicable,
only the required partitions (subdirectories) of a table are queried, thereby avoiding
unnecessary I/O.

Spark supports saving data out in a partitioned layout seamlessly, through the partitionBy
method available during data source writes. To partition the people table by the “age”
column, use the following command:

people.write.format("orc").partitionBy("age").save("peoplePartitioned")

Records will be automatically partitioned by the age field, and then saved into different
directories; for example, peoplePartitioned/age=1/, peoplePartitioned/
age=2/, etc.

After partitioning the data, subsequent queries will be able to skip large amounts of I/O
when the partition column is referenced in predicates. For example, the following query
will automatically locate and load the file under peoplePartitioned/age=20/; it will
skip all others.

val peoplePartitioned = sqlContext.read.format("orc").
load("peoplePartitioned")
peoplePartitioned.registerTempTable("peoplePartitioned")
sqlContext.sql("SELECT * FROM peoplePartitioned WHERE age = 20")

6.6. DataFrame Support
DataFrames look similar to Spark RDDs, but have higher-level semantics built into their
operators. This allows optimization to be pushed down to the underlying query engine.
ORC data can be loaded into DataFrames.

Here is the Scala API translation of the preceding SELECT query, using the DataFrame API:

val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc)
sqlContext.setConf("spark.sql.orc.filterPushdown", "true")
val people = sqlContext.read.format("orc").load("peoplePartitioned")
people.filter(people("age") < 15).select("name").show()

DataFrames are not limited to Scala. There is a Java API and, for data scientists, a Python
API binding:

sqlContext = HiveContext(sc)
sqlContext.setConf("spark.sql.orc.filterPushdown", "true")
people = sqlContext.read.format("orc").load("peoplePartitioned")
people.filter(people.age < 15).select("name").show()

6.7. Additional Resources
• Apache ORC website: https://orc.apache.org/

https://orc.apache.org/

Hortonworks Data Platform June 28, 2016

27

• ORC performance: http://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-
better-performance/

• Get Started with Spark: http://hortonworks.com/hadoop/spark/get-started/

https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
https://hortonworks.com/hadoop/spark/get-started/

Hortonworks Data Platform June 28, 2016

28

7. Using Spark SQL
Spark SQL can read data directly from the filesystem, when SQLContext is used. This is
useful when the data you are trying to analyze does not reside in Hive (for example, JSON
files stored in HDFS).

Spark SQL can also read data by interacting with the Hive MetaStore, when HiveContext is
used. If you already use Hive, you should use HiveContext; it supports all Hive data formats
and user-defined functions (UDFs), and allows full access to the HiveQL parser. HiveContext
extends SQLContext, so HiveContext supports all SQLContext functionality.

Note

We do not currently support HiveContext in yarn-cluster mode in a Kerberos-
enabled cluster. We do support HiveContext in yarn-client mode in a
Kerberos-enabled cluster.

There are two ways to interact with Spark SQL:

• Interactive access using the Spark shell. For more information, see Accessing Spark SQL
through the Spark Shell.

• From an application, operating through JDBC (using your own Java code or the Beeline
JDBC client) and the Spark Thrift Server. For more information, see Accessing Spark SQL
through JDBC.

The following diagram outlines the access process, depending on type of interaction:

7.1. Accessing Spark SQL Through the Spark Shell
Here is a sample command that launches the Spark shell on a YARN cluster:

./bin/spark-shell --num-executors 1 --executor-memory 512m --
master yarn-client

To read data directly from the filesystem, construct a SQLContext. For an example that
uses SQLContext and the Spark DataFrame API to access a JSON file, see Using the Spark
DataFrame API.

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/ch_spark-dataframe-api.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/ch_spark-dataframe-api.html

Hortonworks Data Platform June 28, 2016

29

To read data by interacting with the Hive MetaStore, construct a HiveContext.
(HiveContext extends SQLContext.) For an example of the use of HiveContext (instantiated
as val sqlContext), see Accessing ORC Files from Spark.

7.2. Accessing Spark SQL through JDBC
With the use of the Spark Thrift Server, remote access to Spark SQL is possible over JDBC.
The following considerations and prerequisites apply to JDBC access.

Considerations:

• The Spark Thrift Server works in YARN client mode only.

• JDBC client configurations must match Spark Thrift Server configuration parameters. For
example, if the Thrift Server is configured to listen in binary mode, the client should send
binary requests and use HTTP mode when the Thrift Server is configured over HTTP.

• When using JDBC to access Spark SQL in a production environment, note that the
Spark Thrift Server does not currently support the doAs authorization property, which
propagates user identity. Workaround: use programmatic APIs or spark-shell,
submitting the job under your identity.

• All client requests coming to Spark Thrift Server share a SparkContext.

Prerequisites:

• The Spark Thrift Server must be deployed on the cluster.

• For an Ambari-managed cluster, deploy and launch the Spark Thrift Server using the
Ambari Web UI (see Installing and Configuring Spark Over Ambari).

• For a cluster that is not managed by Ambari, see Starting the Spark Thrift Server in the
Non-Ambari Cluster Installation Guide.

• If SPARK_HOME is not already defined, set it to your Spark directory. For example:

export SPARK_HOME=/usr/hdp/current/spark-client

To list available Thrift Server options, run ./sbin/start-thriftserver.sh --help.

To manually stop the Spark Thrift Server:

su spark

./sbin/stop-thriftserver.sh

To access Spark SQL through JDBC:

1. Connect to the Thrift Server over the Beeline JDBC client.

a. Launch Beeline from SPARK_HOME:

su spark

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/ch_orc-spark.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/install-sts-after-spark-install.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_installing_manually_book/content/starting_sts.html

Hortonworks Data Platform June 28, 2016

30

./bin/beeline

b. On the Beeline prompt, connect to the Spark SQL Thrift Server:

beeline> !connect jdbc:hive2://localhost:10015

The host port must match the host port where the Spark Thrift Server is running.

You should see output similar to the following:

beeline> !connect jdbc:hive2://localhost:10015
Connecting to jdbc:hive2://localhost:10015
Enter username for jdbc:hive2://localhost:10015:
Enter password for jdbc:hive2://localhost:10015:
...
Connected to: Spark SQL (version 1.5.2)
Driver: Spark Project Core (version 1.5.2.2.3.6.0-169)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://localhost:10015>

2. Once connected, issue a Spark SQL statement.

The following example executes a SHOW TABLES query:

0: jdbc:hive2://localhost:10015> show tables;
+------------+--------------+--+
| tableName | isTemporary |
+------------+--------------+--+
sample_07	false
sample_08	false
testtable	false
+------------+--------------+--+
3 rows selected (2.399 seconds)
0: jdbc:hive2://localhost:10015>

7.3. Forming JDBC Connection Strings for Spark
SQL

JDBC URL connection strings have the following format:

jdbc:hive2://<host>:<port>/<dbName>;<sessionConfs>?
<hiveConfs>#<hiveVars>

JDBC Parameter Description

host The node hosting the Thrift Server.

port The port number on which the Thrift Server listens.

dbName The name of the Hive database to run the query against.

sessionConfs Optional configuration parameters for
the JDBC driver, in the following format:
<key1>=<value1>;<key2>=<key2>...;

hiveConfs Optional configuration parameters for
Hive on the server in the following format:
<key1>=<value1>;<key2>=<key2>; ...

These settings last for the duration of the user session.

Hortonworks Data Platform June 28, 2016

31

JDBC Parameter Description

hiveVars Optional configuration parameters for
Hive variables in the following format:
<key1>=<value1>;<key2>=<key2>; ...

These settings last for the duration of the user session.

Note

The Spark Thrift Server is a variant of HiveServer2, so you can use many of the
same settings. For more information, including transport and security settings,
see Hive JDBC and ODBC Drivers in the HDP Data Services Guide.

Accessing Spark via JDBC on a Kerberos-enabled Cluster

The following connection URL accesses Spark SQL via JDBC on a Kerberos-enabled cluster:

beeline> !connect jdbc:hive2://localhost:10002/
default;httpPath=/;principal=hive/hdp-team.example.com@EXAMPLE.COM

The following connection URL accesses Spark SQL via JDBC over HTTP transport on a
Kerberos-enabled cluster:

beeline> !connect jdbc:hive2://localhost:10002/
default;transportMode=http;httpPath=/;principal=hive/hdp-
team.example.com@EXAMPLE.COM

7.4. Calling Hive User-Defined Functions
You can call built-in Hive UDFs, UDAFs, and UDTFs from Spark SQL applications, as long
as the functions are available in the standard Hive .jar file. When using Hive UDFs, use
HiveContext (not SQLContext).

The following interactive example reads and writes to HDFS under Hive directories, using
hiveContext and the built-in collect_list(col) UDF. The collect_list(col)
UDF returns a list of objects with duplicates. In a production environment this type of
operation would run under an account with appropriate HDFS permissions; the following
example uses hdfs user.

1. Launch the Spark Shell on a YARN cluster:

su hdfs

cd $SPARK_HOME

./bin/spark-shell --num-executors 2 --executor-memory 512m --
master yarn-client

2. At the Scala REPL prompt, construct a HiveContext:

val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)

3. Invoke the Hive collect_list UDF:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_dataintegration/content/hive-jdbc-odbc-drivers.html

Hortonworks Data Platform June 28, 2016

32

scala> hiveContext.sql("from TestTable SELECT
key, collect_list(value) group by key order by
key").collect.foreach(println)

7.4.1. Using Custom UDFs

You can register custom functions in Python, Java, or Scala, and use them within SQL
statements.

When using a custom UDF, make sure that the jar file for your UDF is included with your
application, or use the --jars command-line option to specify the file.

The following example uses a custom Hive UDF. This example uses the more limited
SQLContext, instead of HiveContext.

1. Launch spark-shell with hive-udf.jar as its parameter:

./bin/spark-shell --jars <path-to-your-hive-udf>.jar

2. From spark-shell, define a function:

scala> sqlContext.sql("""create temporary function balance as
'org.package.hiveudf.BalanceFromRechargesAndOrders'""");

3. From spark-shell, invoke your UDF:

scala> sqlContext.sql("""
create table recharges_with_balance_array as
select
 reseller_id,
 phone_number,
 phone_credit_id,
 date_recharge,
 phone_credit_value,
 balance(orders,'date_order', 'order_value', reseller_id, date_recharge,
 phone_credit_value) as balance
from orders
""");

Hortonworks Data Platform June 28, 2016

33

8. Using Spark Streaming
Spark Streaming is an extension of the core Spark API that enables scalable, high-
throughput, fault-tolerant processing of real-time data streams. Data can be ingested
from sources such as Kafka and Flume, and can be processed using complex algorithms
expressed with high-level functions like map, reduce, join, and window. Processed data
can be sent to file systems, databases, and live dashboards.

Important

Kafka Direct Receiver integration with Spark Streaming only works when the
cluster is not Kerberos-enabled.

Dynamic Resource Allocation does not work with Spark Streaming.

The Apache Spark Streaming Programming Guide offers conceptual information;
programming examples in Scala, Java, and Python; and performance tuning information.

For additional examples, see the Apache GitHub example repositories for Scala, Java, and
Python.

https://spark.apache.org/docs/1.5.2/streaming-programming-guide.html
https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/python/streaming

Hortonworks Data Platform June 28, 2016

34

9. Adding Libraries to Spark
To use a custom library with a Spark application (a library that is not available in Spark by
default, such as a compression library or Magellan), use one of the following two spark-
submit script options:

• The --jars option transfers associated jar files to the cluster.

• The --packages option pulls directly from Spark packages. This approach requires an
internet connection.

For example, to add the LZO compression library to Spark using the --jars option:

spark-submit --driver-memory 1G --executor-memory 1G --master yarn-client
 --jars /usr/hdp/2.3.6.0-2557/hadoop/lib/hadoop-lzo-0.6.0.2.3.6.0-2557.jar
 test_read_write.py

For more information about the two options, see Advanced Dependency Management in
the Apache Spark "Submitting Applications" document.

https://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/
http://spark.apache.org/docs/1.5.2/submitting-applications.html#advanced-dependency-management

Hortonworks Data Platform June 28, 2016

35

10. Using Spark with HDFS

10.1. Specifying Compression
To add a compression library to Spark, use the --jars option. As mentioned in "Adding
Libraries to Spark," the following example adds the LZO compression library:

spark-submit --driver-memory 1G --executor-memory 1G --master yarn-client
 --jars /usr/hdp/2.3.6.0-2557/hadoop/lib/hadoop-lzo-0.6.0.2.3.6.0-2557.jar
 test_read_write.py

To specify compression in Spark-shell when writing to HDFS, use code similar to:

rdd.saveAsHadoopFile("/tmp/spark_compressed",
"org.apache.hadoop.mapred.TextOutputFormat",
compressionCodecClass="org.apache.hadoop.io.compress.GzipCodec")

For more information about supported compression algorithms, see Configuring HDFS
Compression in the HDFS Reference Guide.

10.2. Accessing HDFS from PySpark:
SettingHADOOP_CONF_DIR

If PySpark is accessing an HDFS file, HADOOP_CONF_DIR needs to be set in an environment
variable. For example:

export HADOOP_CONF_DIR=/etc/hadoop/conf
[hrt_qa@ip-172-31-42-188 spark]$ pyspark
[hrt_qa@ip-172-31-42-188 spark]$ >>>lines = sc.textFile("hdfs://
ip-172-31-42-188.ec2.internal:8020/tmp/PySparkTest/file-01")
.......

If HADOOP_CONF_DIR is not set properly, you might see the following error:

Error from secure cluster

2016-05-31 00:27:06,046|t1.machine|INFO|1580|140672245782272|MainThread|
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.
PythonRDD.collectAndServe.
2016-05-31 00:27:06,047|t1.machine|INFO|1580|140672245782272|MainThread|: org.
apache.hadoop.security.AccessControlException: SIMPLE authentication is not
 enabled. Available:[TOKEN, KERBEROS]
2016-05-31 00:27:06,047|t1.machine|INFO|1580|140672245782272|MainThread|at
 sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
2016-05-31 00:27:06,047|t1.machine|INFO|1580|140672245782272|
MainThread|at sun.reflect.NativeConstructorAccessorImpl.
newInstance(NativeConstructorAccessorImpl.java:57)
2016-05-31 00:27:06,048|t1.machine|INFO|1580|140672245782272|MainThread|at
{code}

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_hdfs_admin_tools/content/ch04.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_hdfs_admin_tools/content/ch04.html

Hortonworks Data Platform June 28, 2016

36

11. Tuning and Troubleshooting Spark
When tuning Spark applications, it is important to understand how Spark works and what
types of resources your application requires. For example, machine learning tasks are
usually CPU intensive, whereas extract-transform-load (ETL) operations are I/O intensive.

General performance guidelines:

• Minimize shuffle operations where possible.

• Match join strategy (ShuffledHashJoin vs. BroadcastHashJoin) to the table. This requires
manual configuration.

• Consider switching from the default serializer to the Kryo serializer to improve
performance. This requires manual configuration and class registration.

Note

For information about known issues and workarounds related to Spark, see the
"Known Issues" section of the HDP Release Notes.

11.1. Hardware Provisioning
For general information about Spark memory use, including node distribution, local disk,
memory, network, and CPU core recommendations, see the Apache Spark Hardware
Provisioning document.

11.2. Checking Job Status
When you run a Spark job, you will see a standard set of console messages.

If a job takes longer than expected or does not complete successfully, check the following
to understand more about what the job was doing and where time was spent:

• To list running applications from the command line (including the application ID):

yarn application –list

• To see a description of an RDD and its recursive dependencies, use toDebugString()
on the RDD. This is useful for understanding how jobs will be executed.

• To check the query plan when using the DataFrame API, use DataFrame#explain().

11.3. Checking Job History
If a job does not complete successfully, check the following resources to understand more
about what the job was doing and where time was spent:

• The Spark History Server displays information about Spark jobs that have completed.

https://spark.apache.org/docs/1.5.2/hardware-provisioning.html
https://spark.apache.org/docs/1.5.2/hardware-provisioning.html

Hortonworks Data Platform June 28, 2016

37

• On an Ambari-managed cluster, in the Ambari Services tab, select Spark. Click on Quick
Links and choose the Spark History Server UI. Ambari will display a list of jobs. Click
"App ID" for job details.

• You can access the Spark History Server Web UI directly, at <host>:18080 (by
default).

• The YARN Web UI displays job history and time spent in various stages of the job:

http://<host>:8088/proxy/<job_id>/environment/

http://<host>:8088/proxy/<app_id>/stages/

• To list the contents of all log files from all containers associated with the specified
application, check the application log from the command line:

yarn logs -applicationId <app_id>

You can also view container log files using the HDFS shell or API. For more information,
see "Debugging your Application" in the Apache document Running Spark on YARN.

11.4. Configuring Spark JVM Memory Allocation
This section describes how to determine memory allocation for a JVM running the Spark
executor.

To avoid memory issues, Spark uses 90% of the JVM heap by default. This percentage is
controlled by spark.storage.safetyFraction.

Of this 90% of JVM allocation, Spark reserves memory for three purposes:

• Storing in-memory shuffle, 20% by default (controlled by
spark.shuffle.memoryFraction)

• Unroll - used to serialize/deserialize Spark objects to disk when they don’t fit in memory,
20% is default (controlled by spark.storage.unrollFraction)

• Storing RDDs: 60% by default (controlled by spark.storage.memoryFraction)

Example

If the JVM heap is 4GB, the total memory available for RDD storage is calculated as:

 4GB x 0.9 X 0. 6 = 2.16 GB

Therefore, with the default configuration approximately one half of the Executor JVM
heap is used for storing RDDs.

http://spark.apache.org/docs/1.5.2/running-on-yarn.html

Hortonworks Data Platform June 28, 2016

38

11.5. Configuring YARN Memory Allocation for
Spark

This section describes how to manually configure YARN memory allocation settings based
on node hardware specifications.

YARN takes into account all of the available compute resources on each machine in the
cluster, and negotiates resource requests from applications running in the cluster. YARN
then provides processing capacity to each application by allocating containers. A container
is the basic unit of processing capacity in YARN; it is an encapsulation of resource elements
such as memory (RAM) and CPU.

In a Hadoop cluster, it is important to balance the usage of RAM, CPU cores, and disks so
that processing is not constrained by any one of these cluster resources.

When determining the appropriate YARN memory configurations for SPARK, note the
following values on each node:

• RAM (Amount of memory)

• CORES (Number of CPU cores)

Configuring Spark for yarn-cluster Deployment Mode

In yarn-cluster mode, the Spark driver runs inside an application master process that is
managed by YARN on the cluster. The client can stop after initiating the application.

The following command starts a YARN client in yarn-cluster mode. The client will start
the default Application Master. SparkPi will run as a child thread of the Application Master.
The client will periodically poll the Application Master for status updates, which will be
displayed in the console. The client will exist when the application stops running.

./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-cluster \
 --num-executors 3 \
 --driver-memory 4g \
 --executor-memory 2g \
 --executor-cores 1 \
 lib/spark-examples*.jar 10

Configuring Spark for yarn-client Deployment Mode

In yarn-client mode, the driver runs in the client process. The application master is only
used to request resources for YARN.

To launch a Spark application in yarn-client mode, replace yarn-cluster with
yarn-client. For example:

./bin/spark-shell --num-executors 32 \
 --executor-memory 24g \
 --master yarn-client

Considerations

Hortonworks Data Platform June 28, 2016

39

When configuring Spark on YARN, consider the following information:

• Executor processes will be not released if the job has not finished, even if they are no
longer in use. Therefore, please do not overallocate executors above your estimated
requirements.

• Driver memory does not need to be large if the job does not aggregate much data (as
with a collect() action).

• There are tradeoffs between num-executors and executor-memory. Large executor
memory does not imply better performance, due to JVM garbage collection. Sometimes
it is better to configure a larger number of small JVMs than a small number of large
JVMs.

11.6. Specifying codec Files
If you try to use a codec library without specifying where the codec resides, you will see an
error.

For example, if the hadoop-lzo codec file cannot be found during spark-submit, Spark will
generate the following message:

Caused by: java.lang.IllegalArgumentException: Compression codec com.hadoop.
compression.lzo.LzoCodec not found.

SOLUTION: Specify the hadoop-lzo jar file with the --jars option in your job submit
command.

For example:

spark-submit --driver-memory 1G --executor-memory 1G --master
yarn-client --jars /usr/hdp/2.3.6.0-2557/hadoop/lib/hadoop-
lzo-0.6.0.2.3.6.0-2557.jar test_read_write.py

For more information about the --jar option, see Adding Libraries to Spark.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.6/bk_spark-guide/content/ch_spark-add-libraries.html

	Hortonworks Data Platform
	Table of Contents
	1. Introduction
	2. Prerequisites
	3. Installing and Configuring Spark
	3.1. Installing and Configuring Spark Over Ambari
	3.1.1. (Optional) Configuring Spark for Hive Access
	3.1.2. (Optional) Installing the Spark Thrift Server After Deploying Spark

	3.2. Configuring Dynamic Resource Allocation and Thrift Server Settings
	3.2.1. Customizing Cluster Dynamic Resource Allocation Settings (Ambari)
	3.2.2. Configuring Cluster Dynamic Resource Allocation Manually
	3.2.3. Configuring a Job for Dynamic Resource Allocation
	3.2.4. Dynamic Resource Allocation Properties
	3.2.5. Customizing the Spark Thrift Server Port

	3.3. (Optional) Configuring Spark for a Kerberos-Enabled Cluster
	3.3.1. Configuring the Spark Thrift Server on a Kerberos-Enabled Cluster

	3.4. (Optional) Configuring the Spark History Server
	3.5. Validating the Spark Installation

	4. Developing Spark Applications
	4.1. Spark Pi Program
	4.2. WordCount Program

	5. Using the Spark DataFrame API
	5.1. Additional DataFrame API Examples
	5.2. Specify Schema Programmatically

	6. Accessing ORC Files from Spark
	6.1. Accessing ORC in Spark
	6.2. Reading and Writing with ORC
	6.3. Column Pruning
	6.4. Predicate Push-down
	6.5. Partition Pruning
	6.6. DataFrame Support
	6.7. Additional Resources

	7. Using Spark SQL
	7.1. Accessing Spark SQL Through the Spark Shell
	7.2. Accessing Spark SQL through JDBC
	7.3. Forming JDBC Connection Strings for Spark SQL
	7.4. Calling Hive User-Defined Functions
	7.4.1. Using Custom UDFs

	8. Using Spark Streaming
	9. Adding Libraries to Spark
	10. Using Spark with HDFS
	10.1. Specifying Compression
	10.2. Accessing HDFS from PySpark: SettingHADOOP_CONF_DIR

	11. Tuning and Troubleshooting Spark
	11.1. Hardware Provisioning
	11.2. Checking Job Status
	11.3. Checking Job History
	11.4. Configuring Spark JVM Memory Allocation
	11.5. Configuring YARN Memory Allocation for Spark
	11.6. Specifying codec Files

