
HCP Tuning Guide 1

Hortonworks Cybersecurity Platform
Date of Publish: 2018-08-23

http://docs.hortonworks.com

http://docs.hortonworks.com

Contents

Introduction to Tuning HCP...3

General Tuning Suggestions..3

Component Tuning Levers.. 3
Kafka Tuning.. 4
Storm Tuning.. 4
Parser Tuning..6
Enrichment Tuning... 6

Modifying Enrichment Properties Using Ambari.. 7
Modifying Enrichment Properties Using Flux (Advanced)... 7

Index Tuning...8
Modifying Index Parameters Using Ambari.. 8
Modifying Index Parameters Using Flux (Advanced)...8

Use Case Specific Tuning Suggestions..9
Performance Monitoring Tools.. 9

Tooling.. 10
Issues... 14

HCP Tuning Guide Introduction to Tuning HCP

Introduction to Tuning HCP

Tuning your Hortonworks Cybersecurity Platform (HCP) architecture can help maximize the performance of the
Apache Metron Storm topologies.

In the simplest terms, HCP powered by Apache Metron is a streaming architecture created on top of Kafka and three
main types of Storm topologies: parsers, enrichment, and indexing. Each parser has its own topology and there is also
a highly performant, specialized spout-only topology for streaming PCAP data to HDFS.

The HCP architecture can be tuned almost exclusively using a few primary Storm and Kafka parameters along with a
few Metron-specific options. You can think of the data flow as being similar to water flowing through a pipe, and the
majority of these options assist in tweaking the various pipe widths in the system.

General Tuning Suggestions

Tuning Hortonworks Cybersecurity Platform (HCP) depends in large part on tuning three areas: Kafka, Storm, and
indexing.

Indexing is where most of your turning issues are likely to occure because it is the most IO intensive.

The second area that needs tuning is parallelism in both Kafka and Storm. The performance of the Storm topology.
and therefore the performance of Metron, degrades when it cannot ingest data fast enough to keep up with the data
source. Therefore, much of Metron tuning focuses on adjusting the data throughput of the Storm topologies. For more
information on tuning a Storm topology, see Apache Storm Overview.

The third area that requires analysis and tuning is consumer lags on the key Kafka topics: enrichment, indexing,
parser.

When tuning your Metron configuration, consider the following:

• Look at Elasticsearch and Solr tuning
• Assign small values for parallelism, and increase values incrementally
• Aim for an even balance across your topologies
• Check your system logs for the following:

• Empty results - may indicate that your data is broken
• Kafka - Consumer lags on key Kafka topics
• Load average or system latency - a high load average might indicate underlying stress on the machine
• Exceptions - Any exceptions shown in the Storm log or key topologies can indicate possible problems with

underlying systems and data
• What topology do I want to tune?
• What is the capacity of Storm topology?

It is also important to consider the growth of your cluster and data flow. You might want to set the number of tasks
higher than the number of executors to accommodate for future performance tuning and rebalancing without the need
to bring down your topologies.

Component Tuning Levers

There are a number of services that you can use to tune the performance of your Metron cluster. These services
include Kafka, Storm, and HDFS. Within these services, you can modify parsers, enrichment, and indexing
(Elasticsearch or Solr).

3

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.0/storm-overview/content/analyzing_streams_of_data_with_apache_storm.html

HCP Tuning Guide Component Tuning Levers

When you consider tuning your HCP architecture, it is important to note where you can modify settings. For example,
Storm gives you the ability to independently set tasks in executors for parser topologies. This is important if you
want to set the number of tasks higher than the number of executors to accommodate for future performance tuning
and rebalancing without the need to bring down your topologies. However, for enrichment and indexing topologies,
HCP uses Flux, and there is no method for specifying the number of tasks from the number of executors in Flux. By
default, the number of tasks equals the number of executors.

The following lists the major properties for each service that you can modify to tune your cluster:

• Kafka

• Number partitions
• Storm

• Kafka spout

• Polling frequency
• Polling timeouts
• Offset commit period
• Max uncommitted offsets

• Number workers (OS processes)
• Number executors (threads in a process)
• Number ackers
• Max spout pending
• Spout and bolt parallelism

• HDFS

• Replication factor
• Indexing

• Elasticsearch
• Solr

Kafka Tuning
The main lever you can adjust to tune Kafka throughput is the number of partitions.

To determine the number of partitions required to attain your desired throughput, calculate the throughput for a single
producer (p) and a single consumer (c), and then use that with the desired throughput (t) to roughly estimate the
number of partitions to use. You would want at least max(t/p, t/c) partitions to attain the desired throughput.

Related Information
How to Choose the Number of Topic or Partitions in a Kafka Cluster

Storm Tuning
There are several Storm properties you can adjust to tune your Storm topologies. Achieving the desired performance
can be iterative and will take some trial and error.

Hortonworks recommends you start your tuning with the Storm topology defaults and smaller numbers in terms of
parallelism. Then you can iteratively increase the values until you achieve your desired level of performance. Use the
offset lag tool to verify your settings.

The following sections assume log type messages. However, if your data consists of emails which are much larger in
size, then you should adjust your values accordingly.

Storm Topology Parallelism

4

https://www.confluent.io/blog/how-to-choose-the-number-of-topicspartitions-in-a-kafka-cluster/

HCP Tuning Guide Component Tuning Levers

To provide a uniform distribution to each machine and jvm process, you can modify the values for the number of
tasks, executors, and workers properties. Start with small values and iteratively increase the values so you don't
overwhelm you CPU with too many processes.

Usually your number of tasks is equal to the number of executors, which is the default in Storm. Flux does not
provide a method to independently set the number of tasks, so for enrichments and indexing, which use Flux, num
tasks are always equal to num executors.

You can change the number of workers in the Storm property topology.workers.

The following table lists the variables you can set to adjust the parallelism in a Storm topology and provides
recommendations for their values:

Storm Topology Variables Description Value

num tasks Tasks are instances of a given spout or bolt.
Executors are threads in a process.

Set the number of tasks as a multiple of the
number of executors.

num executors Executors are threads in a process. Set the number of executors as a multiple of
the number of workers.

num workers Workers are jvm processes. Set the number of workers as a multiple of the
number of machines

Maximum Number of Tuples

The topology.max.spout.pending setting sets the maximum number of tuples that can be in a field (for example, not
yet acked) at any given time within your topology. You set this property as a form of back pressure to ensure that you
don't flood your topology.

topology.max.spout.pending

Topology Acker Executors

The topology.ackers.executors setting specifies how many threads are dedicated to tuple acking. Set this setting to
equal the number of partitions in your inbound Kafka topic.

topology.ackers.executors

Spout Recommended Defaults

As a general rule, it is optimal to set spout parallelism equal to the number of partitions used in your Kafka topic. Any
greater parallelism will leave you with idle consumers because Kafka limits the maximum number of consumers to
the number of partitions. This is important because Kafka has certain ordering guarantees for message delivery per
partition that would not be possible if more than one consumer in a given consumer group is able to read from that
partition.

You can modify the following spout settings in the spout-config.json file. However, if the spout default settings work
for your system, you can omit these settings from the file. These default settings are based on recommendations from
Storm and are provided in the Kafka spout itself.

{
 ...
 "spout.pollTimeoutMs" : 200,
 "spout.maxUncommittedOffsets" : 10000000,
 "spout.offsetCommitPeriodMs" : 30000
}

Related Information
What is the Task in Storm Parallelism

Understanding the Parallelism of a Storm Topology

Reading and Understanding the Storm UI

5

https://stackoverflow.com/questions/17257448/what-is-the-task-in-storm-parallelism
https://storm.apache.org/releases/current/Understanding-the-parallelism-of-a-Storm-topology.html
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained/

HCP Tuning Guide Component Tuning Levers

Parser Tuning
You can modify certain parser properties to tune your HCP architecture using the Management module. Modifying
properties using the Management module is simple and can be performed by any user.

Parsers tend to vary a lot. Some will be very high volume receiving thousands of messages per second and others will
be much lower. Rather than using a standard setting for the number of partitions and parallelism, you should base
your settings on the expected data volume. That said, use the following guidelines:

• The spout parallelism should be roughly the same as your Kafka partitions.
• Consider data flow when assigning Kafka partitions to parsers.
• Keep in mind the aggregate number of partitions when assigning them to partitions. You do not want to assign the

maximum number of partitions to each parser because that can overload your system.

The parser topologies are deployed by a builder pattern that takes parameters from the CLI as set by the Management
module. The parser properties materialize as follows:

Management UI -> parser json config and CLI -> Storm

The following table lists the parser properties you can modify in the Management module:

Category Management UI Property Name CLI Option

Storm topology config Num Workers -nw,--num_workers <NUM_WORKERS>

Num Ackers --na,--num_ackers <NUM_ACKERS>

Storm Config <JSON_FILE>, e.g.,
{ "topology.max.spout.pending" : NUM }

Kafka Spout Parallelism -sp,--spout_p
<SPOUT_PARALLELISM_HINT>

Spout Num Tasks -snt,--spout_num_tasks <NUM_TASKS>

Spout Config <JSON_FILE>, e.g.,
{ "spout.pollTimeoutMs" : 200 }

Spout Config <JSON_FILE>, e.g.,
{ "spout.maxUncommittedOffsets" :
10000000 }

Spout Config <JSON_FILE>, e.g.,
{ "spout.offsetCommitPeriodMs" : 30000 }

Parser bolt Parser Num Tasks -pnt,--parser_num_tasks <NUM_TASKS>

Parser Parallelism -pp,--parser_p <PARALLELISM_HINT>

Parser Parallelism -pp,--parser_p <PARALLELISM_HINT>

All of the Storm parameters are available in the STORM SETTINGS section of the Management module.

For the Storm config and Spout config properties, you enter the JSON_FILE information in the appropriate field
using the JSON format supplied in the following table.

For more detail on starting parsers, see Starting and Stopping Parsers.

Enrichment Tuning
Because all of the data is coming together in enrichments, you will probably need larger enrichments settings than
your parallelism settings. Enrichment settings focus more on the compute workload than on the mapping workload in
parsers or the IO driven workload in indexing. Enrichment makes significant use of caching for performance.

6

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.6.1/administration/content/starting_and_stopping_parsers.html

HCP Tuning Guide Component Tuning Levers

You can modify many performance tuning properties for enrichment using Ambari or Storm Flux. Modifying
properties using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm
Flux usage and formatting before attempting to modify any Flux files.

The enrichment properties materialize as follows:

Ambari UI -> properties file -> Flux -> Storm

Modifying Enrichment Properties Using Ambari
You can modify various enrichment properties using Ambari.

To modify the enrichment properties, navigate to Ambari>Metron>Enrichment.

Note: Many of the following settings are relevant only to the split-join topology.

The following table lists the enrichment properties you can modify in Ambari:

Category Ambari Property Name

Storm topology config enrichment_workers

enrichment_acker_executors

enrichment_topology_max_spout_pending

Kafka spout enrichment_kafka_spout_parallelism

Enrichment splitter enrichment_split_parallelism

Enrichment joiner enrichment_join_parallelism

Threat intel splitter threat_intel_split_parallelism

Threat intel joiner threat_intel_join_parallelism

Modifying Enrichment Properties Using Flux (Advanced)
Some of the tuning enrichment properties can only be modified using Flux. However, if you manually change your
Flux file, if you perform an upgrade, Ambari will overwrite all of your changes. Be sure to save your Flux changes
prior to performing an upgrade.

Important: You should be familiar with Storm Flux before you adjust the values in this section. Changes to
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.

You can find the enrichment Flux file at $METRON_HOME/flux/enrichment/remote.yaml.

The following table lists the enrichment properties you can modify in the flux file:

Category Flux Property or Function Flux Section Location

Kafka spout session.timeout.ms line 201, id: kafkaProps

enable.auto.commit line 201, id: kafkaProps

setPollTimeoutMs line 230, id: kafkaConfig

setMaxUncommittedOffsets line 230, id: kafkaConfig

setOffsetCommitPeriodMs line 230, id: kafkaConfig

You can add Kafka spout properties or functions using two methods:

Flux properties - Flux # kafkaProps Add a new key/value to the kafkaProps section HashMap
on line 201. For example, if you want to set the Kafka
Spout consumer'ssession.timeout.ms to 30 seconds, add
the following:

 - name: "put"

7

HCP Tuning Guide Component Tuning Levers

 args:
 -
 "session.timeout.ms"
 - 30000

Flux functions - Flux # kafkaConfig Add a new setter to the kafkaConfig object section on
line 230. For example, if you want to set the Kafka Spout
consumer's poll timeout to 200 milliseconds, add the
following under configMethods:

 - name:
 "setPollTimeoutMs"
 args:
 - 200

Index Tuning
Indexing is primarily IO driven. Tuning indexing tends to focus on the search index (Solr or Elasticsearch). Problems
with indexing running too slow will often manifest as Kafka not commiting in time. This results from the indexing
backing up so that it fails batches and the poll interval in Kafka is exceeded. The issue is actually with the index
rather than Kafka.

You can modify many performance tuning properties for indexing using Ambari or Storm Flux. Modifying properties
using Ambari is simple and can be performed by any user. However, you should have knowledge of Storm Flux usage
and formatting before attempting to modify any Flux files.

The indexing properties materialize as follows:

Ambari UI -> properties file -> Flux -> Storm

Modifying Index Parameters Using Ambari
You can modify various indexing properties using Ambari. The HDFS sync policy is not currently managed by
Ambari. To accommodate the HDFS sync policy setting, modify the Flux file directly.

To modify the indexing properties, navigate to Ambari>Metron>Indexing.

The following table lists the indexing properties you can modify in Ambari:

Category Ambari Property Name Storm Property Name

Storm topology config enrichment_workers topology.workers

enrichment_acker_executors topology.acker.executors

enrichment_topology_max_spout_pending topology.max.spout.pending

Kafka spout batch_indexing_kafka_spout_parallelism n/a

Output bolt hdfs_writer_parallelism n/a

bolt_hdfs_rotation_policy_units n/a

bolt_hdfs_rotation_policy_count n/a

Modifying Index Parameters Using Flux (Advanced)
Some of the tuning indexing properties, for example the HDFS sync policy setting, can only be modified using
Flux. However, if you manually change your Flux file, if you perform an upgrade, Ambari will overwrite all of your
changes. Be sure to back up your Flux changes prior to performing an upgrade.

8

HCP Tuning Guide Use Case Specific Tuning Suggestions

Important: You should be familiar with Storm Flux before you adjust the values in this section. Changes to
Flux file properties that are managed by Ambari will render Ambari unable to further manage the property.

You can find the indexing Flux file at $METRON_HOME/flux/indexing/batch/remote.yaml.

Category Flux Property Flux Section Location Suggested Value

Kafka spout session.timeout.ms line 80, id: kafkaProps Kafka consumer client property

enable.auto.commit line 80, id: kafkaProps Kafka consumer client property

setPollTimeoutMs line 108, id: kafkaConfig Kafka consumer client property

setMaxUncommittedOffsets line 108, id: kafkaConfig Kafka consumer client property

setOffsetCommitPeriodMs line 108, id: kafkaConfig Kafka consumer client property

Output bolt hdfsSyncPolicy line 47, id: hdfsWriter See notes below about adding this
prop

To modify index tuning properties, complete the following steps:

1. Add a new setter to the hdfsWriter around line 56.

 53 - name: "withRotationPolicy"
 54 args:
 55 - ref: "hdfsRotationPolicy
 56 - name: "withSyncPolicy"
 57 args:
 58 - ref: "hdfsSyncPolicy

Lines are 53-55 provided for context.
2. Add an hdfsSyncPolicy after the hdfsRotationPolicy that appears on line 41:

 41 - id: "hdfsRotationPolicy"
...
 45 - "${bolt.hdfs.rotation.policy.units}"
 46
 47 - id: "hdfsSyncPolicy"
 48 className: "org.apache.storm.hdfs.bolt.sync.CountSyncPolicy"
 49 constructorArgs:
 50 - 100000

Use Case Specific Tuning Suggestions

The following discussion outlines a specific tuning exercise we went through for driving 1 Gbps of traffic through a
Metron cluster running with 4 Kafka brokers and 4 Storm Supervisors.

General machine specs:

• 10 GB network cards
• 256 GB memory
• 12 disks
• 32 cores

Performance Monitoring Tools
Before we get to tuning our cluster, it helps to describe what we might actually want to monitor as well as any
potential pain points.

9

HCP Tuning Guide Use Case Specific Tuning Suggestions

Prior to switching over to the new Storm Kafka client, which leverages the new Kafka consumer API under the hood,
offsets were stored in ZooKeeper. While the broker hosts are still stored in ZooKeeper, this is no longer true for the
offsets which are now stored in Kafka itself. This is a configurable option, and you may switch back to ZooKeeper if
you choose, but Metron is currently using the new defaults. With this in mind, there are some useful tools that come
with Storm and Kafka that we can use to monitor our topologies.

Tooling
You can use the Storm and Kafka tools to monitor your topologies.

Kafka

• Consumer group offset lag viewer
• There is a GUI tool to make creating, modifying, and generally managing your Kafka topics a bit easier - see

kafka-manager
• Console consumer - useful for quickly verifying topic contents

Storm

For more information on the Storm user interface, see Reading and Understanding the Storm UI.

View Kafka Offset Lags Example
You can use the Kafka consumer group offset lag viewer to monitor the delta calculations between the current and
end offset for a partition.

Procedure

1. Set up some environment variables.

export BROKERLIST your broker comma-delimated list of host:ports>
export ZOOKEEPER your zookeeper comma-delimated list of host:ports>
export KAFKA_HOME kafka home dir>
export METRON_HOME your metron home>
export HDP_HOME your HDP home>

2. If you have Kerberos enabled, set up the security protocol.

$ cat /tmp/consumergroup.config
security.protocol=SASL_PLAINTEXT

3. Enter the following command to display a table containing offsets for all partitions and consumers associated with
a running topology's consumer group:

${KAFKA_HOME}/bin/kafka-consumer-groups.sh \ --command-config=/tmp/consumergroup.config \ --describe
\ --group enrichments \ --bootstrap-server $BROKERLIST \ --new-consumer

The command displays the following table:

GROUP TOPIC PARTITION CURRENT-
OFFSET LOG-END-OFFSET LAG OWNER
enrichments enrichments 9 29746066
 29746067 1 consumer-2_/xxx.xxx.xxx.xxx
enrichments enrichments 3 29754325
 29754326 1 consumer-1_/xxx.xxx.xxx.xxx
enrichments enrichments 43 29754331
 29754332 1 consumer-6_/xxx.xxx.xxx.xxx
...

Note: Output displays only when the topology is running because the consumer groups only exist while
consumers in the spouts are up and running.

10

https://github.com/yahoo/kafka-manager
http://www.malinga.me/reading-and-understanding-the-storm-ui-storm-ui-explained

HCP Tuning Guide Use Case Specific Tuning Suggestions

The LAG column lists the current delta calculation between the current and end offset for the partition. The
column value indicates how close you are to keeping up with incoming data. It also indicates whether there are
any problems with specific consumers getting stuck.

4. To watch the offsets and lags change over time, add a watch command and set the refresh rate to 10 seconds:

watch -n 10 -d ${KAFKA_HOME}/bin/kafka-consumer-groups.sh \
 --command-config=/tmp/consumergroup.config \
 --describe \
 --group enrichments \
 --bootstrap-server $BROKERLIST \
 --new-consumer

The watch command runs every 10 seconds and refreshes the screen with new information. The command also
highlights the differences from the current output and the last output screens.

Parser Tuning Example
We'll be using the Bro sensor in this parser tuning example.

We started with a single partition for the inbound Kafka topics and eventually worked our way up to 48 partitions.
And we're using the following pending value, as shown below. The default is 'null' which would result in no limit.

storm-bro.config

 {
 ...
 "topology.max.spout.pending" : 2000
 ...
 }

And the following default spout settings. Again, this can be omitted entirely since we are using the defaults.

spout-bro.config

 {
 ...

 "spout.pollTimeoutMs" : 200,
 "spout.maxUncommittedOffsets" : 10000000,
 "spout.offsetCommitPeriodMs" : 30000
 }

And we ran our Bro parser topology with the following options. We did not need to fully match the number of Kafka
partitions with our parallelism in this case, though you could certainly do so if necessary. Notice that we only needed
1 worker.

 /usr/metron/0.4.0/bin/start_parser_topology.sh -k $BROKERLIST -z $ZOOKEEPER
 -s bro -ksp SASL_PLAINTEXT
 -ot enrichments
 -e ~metron/.storm/storm-bro.config \
 -esc ~/.storm/spout-bro.config \
 -sp 24 \
 -snt 24 \
 -nw 1 \
 -pnt 24 \
 -pp 24 \

11

HCP Tuning Guide Use Case Specific Tuning Suggestions

From the usage docs, here are the options we've used.

 -e,--extra_topology_options (JSON_FILE) Extra options in the form
 of a JSON file with a map
 for content.
 -esc,--extra_kafka_spout_config (JSON_FILE) Extra spout config options
 in the form of a JSON file
 with a map for content.
 Possible keys are:
 retryDelayMaxMs,retryDelay

 Multiplier,retryInitialDelayMs,stateUpdateIntervalMs,

 bufferSizeBytes,fetchMaxWait,fetchSizeBytes,maxOffswt

 Behind,metricsTimeBucketSizeInSecs,socketTimeoutMs
-sp,--spout_p (SPOUT_PARALLELISM_HINT) Spout Parallelism Hint
-snt,--spout_num_tasks (NUM_TASKS) Spout Num Tasks
-nw,--num_workers (NUM_WORKERS) Number of Workers
-pnt,--parser_num_tasks (NUM_TASKS) Parser Num Tasks
-pp,--parser_p (PARALLELISM_HINT) Parser Parallelism Hint

Enrichment Tuning Example
We landed on the same number of partitions for enrichment and indexing as we did for bro - 48.

For configuring Storm, there is a flux file and properties file that we modified. Here are the settings we changed for
Bro in Flux. +Note that the main Metron-specific option we've changed to accommodate the desired rate of data
throughput is max cache size in the join bolts.

More information on Flux can be found here - https://storm.apache.org/releases/1.1.0/flux.html

general storm settings

```
 topology.workers: 8
 topology.acker.executors: 48
 topology.max.spout.pending: 2000
 ```

Spout and Bolt Settings

 kafkaSpout
 parallelism=48
 session.timeout.ms=29999
 enable.auto.commit=false
 setPollTimeoutMs=200
 setMaxUncommittedOffsets=10000000
 setOffsetCommitPeriodMs=30000
 enrichmentSplitBolt
 parallelism=4
 enrichmentJoinBolt
 parallelism=8
 withMaxCacheSize=200000
 withMaxTimeRetain=10
 threatIntelSplitBolt
 parallelism=4
 threatIntelJoinBolt
 parallelism=4
 withMaxCacheSize=200000
 withMaxTimeRetain=10
 outputBolt

12

HCP Tuning Guide Use Case Specific Tuning Suggestions

 parallelism=48

Indexing (HDFS) Tuning
There are 48 partitions set for the indexing partition, per the previous enrichment exercise.

These are the batch size settings for the Bro index.

cat ${METRON_HOME}/config/zookeeper/indexing/bro.json
{
"hdfs" : {
"index": "bro",
 "batchSize": 50,
 "enabled" : true
 }...
}

And here are the settings we used for the indexing topology

General storm settings

topology.workers: 4
topology.acker.executors: 24
topology.max.spout.pending: 2000

Spout and Bolt Settings

hdfsSyncPolicy
 org.apache.storm.hdfs.bolt.sync.CountSyncPolicy
 constructor arg=100000
hdfsRotationPolicy
 bolt.hdfs.rotation.policy.units=DAYS
 bolt.hdfs.rotation.policy.count=1
kafkaSpout
 parallelism: 24
 session.timeout.ms=29999
 enable.auto.commit=false
 setPollTimeoutMs=200
 setMaxUncommittedOffsets=10000000
 setOffsetCommitPeriodMs=30000
hdfsIndexingBolt
 parallelism: 24

PCAP Tuning Example
PCAP is a specialized topology that is a Spout-only topology. Both Kafka topic consumption and HDFS writing is
done within a spout to avoid the additional network hop required if using an additional bolt.

General Storm topology properties

topology.workers=16
topology.ackers.executors: 0

__Spout and Bolt properties__

kafkaSpout
 parallelism: 128
 poll.timeout.ms=100

13

HCP Tuning Guide Use Case Specific Tuning Suggestions

 offset.commit.period.ms=30000
 session.timeout.ms=39000
 max.uncommitted.offsets=200000000
 max.poll.interval.ms=10
 max.poll.records=200000
 receive.buffer.bytes=431072
 max.partition.fetch.bytes=10000000
 enable.auto.commit=false
 setMaxUncommittedOffsets=20000000
 setOffsetCommitPeriodMs=30000

writerConfig
 withNumPackets=1265625
 withMaxTimeMS=0
 withReplicationFactor=1
 withSyncEvery=80000
 withHDFSConfig
 io.file.buffer.size=1000000
 dfs.blocksize=1073741824

Issues
You can run into issues when you tune your system.

__Error__

org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be
 completed since the group has already rebalanced and assigned
the partitions to another member. This means that the time
 between subsequent calls to poll() was longer than the configured
 session.timeout.ms,
which typically implies that the poll loop is spending too much time message
 processing. You can address this either by increasing the
session timeout or by reducing the maximum size of batches returned in
 poll() with max.poll.records

Suggestions

This implies that the spout hasn't been given enough time between polls before committing the offsets. In other
words, the amount of time taken to process the messages is greater than the timeout window. In order to fix this, you
can improve message throughput by modifying the options outlined above, increasing the poll timeout, or both.

14

	Contents
	Introduction to Tuning HCP
	General Tuning Suggestions
	Component Tuning Levers
	Kafka Tuning
	Storm Tuning
	Parser Tuning
	Enrichment Tuning
	Modifying Enrichment Properties Using Ambari
	Modifying Enrichment Properties Using Flux (Advanced)

	Index Tuning
	Modifying Index Parameters Using Ambari
	Modifying Index Parameters Using Flux (Advanced)

	Use Case Specific Tuning Suggestions
	Performance Monitoring Tools
	Tooling
	View Kafka Offset Lags Example
	Parser Tuning Example
	Enrichment Tuning Example
	Indexing (HDFS) Tuning
	PCAP Tuning Example

	Issues

