
Hortonworks Data Platform

 (April 20, 2017)

Apache Kafka Component Guide

docs.cloudera.com

http://docs.cloudera.com


hdp-kafka-component-guide April 20, 2017

ii

Hortonworks Data Platform: Apache Kafka Component Guide
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode


hdp-kafka-component-guide April 20, 2017

iii

Table of Contents
1. Building a High-Throughput Messaging System with Apache Kafka ..............................  1
2. What's New .................................................................................................................  2

2.1. Apache Kafka ...................................................................................................  2
2.2. Content Updates ............................................................................................... 3

3. Apache Kafka Concepts ...............................................................................................  4
4. Installing Kafka ............................................................................................................  6

4.1. Prerequisites ...................................................................................................... 6
4.2. Installing Kafka Using Ambari ...........................................................................  6

5. Configuring Kafka for a Production Environment .......................................................  13
5.1. Preparing the Environment .............................................................................  13

5.1.1. Operating System Settings .................................................................... 13
5.1.2. File System Selection ............................................................................. 13
5.1.3. Disk Drive Considerations .....................................................................  14
5.1.4. Java Version .........................................................................................  14
5.1.5. Ethernet Bandwidth .............................................................................  15

5.2. Customizing Kafka Settings on an Ambari-Managed Cluster ............................  15
5.3. Kafka Broker Settings ...................................................................................... 17

5.3.1. Connection Settings .............................................................................. 17
5.3.2. Topic Settings .......................................................................................  18
5.3.3. Log Settings .........................................................................................  19
5.3.4. Compaction Settings ............................................................................. 21
5.3.5. General Broker Settings ........................................................................  21

5.4. Kafka Producer Settings ..................................................................................  23
5.4.1. Important Producer Settings ................................................................. 23

5.5. Kafka Consumer Settings ................................................................................  25
5.6. Configuring ZooKeeper for Use with Kafka .....................................................  25
5.7. Enabling Audit to HDFS for a Secure Cluster ....................................................  26

6. Mirroring Data Between Clusters: Using the MirrorMaker Tool ...................................  27
6.1. Running MirrorMaker ...................................................................................... 27
6.2. Checking Mirroring Progress ............................................................................ 29
6.3. Avoiding Data Loss .........................................................................................  30
6.4. Running MirrorMaker on Kerberos-Enabled Clusters ........................................  30

7. Creating a Kafka Topic ..............................................................................................  32
8. Developing Kafka Producers and Consumers ..............................................................  33



hdp-kafka-component-guide April 20, 2017

iv

List of Tables
6.1. MirrorMaker Options ..............................................................................................  28
6.2. Consumer Offset Checker Options ........................................................................... 29



hdp-kafka-component-guide April 20, 2017

1

1. Building a High-Throughput Messaging
System with Apache Kafka

Apache Kafka is a fast, scalable, durable, fault-tolerant publish-subscribe messaging system.
Common use cases include:

• Stream processing

• Messaging

• Website activity tracking

• Metrics collection and monitoring

• Log aggregation

• Event sourcing

• Distributed commit logging

Kafka works with Apache Storm and Apache Spark for real-time analysis and rendering of
streaming data. The combination of messaging and processing technologies enables stream
processing at linear scale.

For example, Apache Storm ships with support for Kafka as a data source using Storm’s
core API or the higher-level, micro-batching Trident API. Storm’s Kafka integration also
includes support for writing data to Kafka, which enables complex data flows between
components in a Hadoop-based architecture. For more information about Apache Storm,
see the Storm User Guide.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_storm-component-guide/content/ch_storm-overview.html


hdp-kafka-component-guide April 20, 2017

2

2. What's New
New features and changes for Apache Kafka have been introduced in Hortonworks
Data Platform, version 2.5, along with documentation updates. New features and
documentation updates are described in the following sections.

2.1. Apache Kafka
HDP 2.5 supports Apache Kafka version 0.10.0. Important new features include the
following:

Fault tolerance

Balancing replicas across racks This rack awareness feature limits the risk of data loss if
all brokers on a rack fail at once. The feature distributes
replicas of a partition across different racks, extending
guarantees that Kafka provides for broker failures so
that they now cover rack failure. For more information,
see Balancing Replicas Across Racks at apache.org.

Security

Security/SASL improvements Kafka supports authentication using SASL/PLAIN. For
more information, see Apache JIRA KAFKA-2658.

Application Development

New client-side event
interceptors

Two new plugin interfaces, ProducerInterceptor
on producer and ConsumerInterceptor on
consumer, allow developers to implement and
configure custom interceptors.

• The ProducerInterceptor interface allows processes
to intercept events happening to a producer record,
such as sending the producer record or receiving
an acknowledgment when a record is published.
For more information, see the ProducerInterceptor
javadoc.

• The ConsumerInterceptor interface allows processes
to intercept consumer events, such as record being
received or a record being consumed by a client.
For more information, see the ConsumerInterceptor
javadoc.

For more information, see Add Producer and Consumer
Interceptors at apache.org.

New Kafka Streams client library The Kafka Streams API allows developers to implement
distributed stream processing applications that consume
from and produce data to Kafka topics.

http://kafka.apache.org/documentation.html#basic_ops_racks
https://issues.apache.org/jira/browse/KAFKA-2658
https://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/producer/ProducerInterceptor.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/consumer/ConsumerInterceptor.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-42%3A+Add+Producer+and+Consumer+Interceptors
https://cwiki.apache.org/confluence/display/KAFKA/KIP-42%3A+Add+Producer+and+Consumer+Interceptors


hdp-kafka-component-guide April 20, 2017

3

Note that the Kafka Streams API is a technical preview;
the code is considered to be at alpha quality level. Public
APIs are likely to change in future releases.

For more information, see Streams API at apache.org.

New timestamp field for
messages

Messages are now tagged with timestamps when they
are produced. For more information, see Apache JIRA
KAFKA-3025.

New configuration parameter
max.poll.records

max.poll.records is a Kafka Consumer parameter
that allows developers to limit the number of
messages returned in a single call to poll(). For more
information, see Apache JIRA KAFKA-3007

For detailed information about new features in Kafka version 0.10.0, see the Apache
Release Notes for Kafka 0.10.0.

2.2. Content Updates
• Added detailed instructions for installing Kafka on an Ambari-managed cluster; see

Installing Kafka using Ambari.

• Added Configuring Kafka for a Production Environment.

http://kafka.apache.org/documentation.html#streamsapi
https://issues.apache.org/jira/browse/KAFKA-3025
https://issues.apache.org/jira/browse/KAFKA-3007
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12311720&version=12333882
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12311720&version=12333882
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_kafka-component-guide/content/ch_installing_kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_kafka-component-guide/content/ch_configuring_kafka.html


hdp-kafka-component-guide April 20, 2017

4

3. Apache Kafka Concepts
This chapter describes several basic concepts that support fault-tolerant, scalable messaging
provided by Apache Kafka:

• Topics

• Producers

• Consumers

• Brokers

For additional introductory information about Kafka, see the Apache introduction to
Kafka. For an example that simulates the use of streaming geo-location information (based
on a previous version of Kafka), see Simulating and Transporting the Real-Time Event
Stream with Apache Kafka.

Topics

Kafka maintains feeds of messages in categories called topics. Each topic has a user-defined
category (or feed name), to which messages are published.

For each topic, the Kafka cluster maintains a structured commit log with one or more
partitions:

Kafka appends new messages to a partition in an ordered, immutable sequence. Each
message in a topic is assigned a sequential number that uniquely identifies the message
within a partition. This number is called an offset, and is represented in the diagram by
numbers within each cell (such as 0 through 12 in partition 0).

Partition support for topics provides parallelism. In addition, because writes to a partition
are sequential, the number of hard disk seeks is minimized. This reduces latency and
increases performance.

http://kafka.apache.org/documentation.html#introduction
http://kafka.apache.org/documentation.html#introduction
https://hortonworks.com/hadoop-tutorial/simulating-transporting-realtime-events-stream-apache-kafka/
https://hortonworks.com/hadoop-tutorial/simulating-transporting-realtime-events-stream-apache-kafka/


hdp-kafka-component-guide April 20, 2017

5

Producers

Producers are processes that publish messages to one or more Kafka topics. The producer
is responsible for choosing which message to assign to which partition within a topic.
Assignment can be done in a round-robin fashion to balance load, or it can be based on a
semantic partition function.

Consumers

Consumers are processes that subscribe to one or more topics and process the feeds of
published messages from those topics. Kafka consumers keep track of which messages have
already been consumed by storing the current offset. Because Kafka retains all messages on
disk for a configurable amount of time, consumers can use the offset to rewind or skip to
any point in a partition.

Brokers

A Kafka cluster consists of one or more servers, each of which is called a broker. Producers
send messages to the Kafka cluster, which in turn serves them to consumers. Each broker
manages the persistence and replication of message data.

Kafka Brokers scale and perform well in part because Brokers are not responsible for
keeping track of which messages have been consumed. Instead, the message consumer is
responsible for this. This design feature eliminates the potential for back-pressure when
consumers process messages at different rates.



hdp-kafka-component-guide April 20, 2017

6

4. Installing Kafka
Although you can install Kafka on a cluster not managed by Ambari (see Installing and
Configuring Apache Kafka in the Non-Ambari Cluster Installation Guide), this chapter
describes how to install Kafka on an Ambari-managed cluster.

4.1. Prerequisites
Before installing Kafka, ZooKeeper must be installed and running on your cluster.

Note that the following underlying file systems are supported for use with Kafka:

• EXT4: supported and recommended

• EXT3: supported

Caution

Encrypted file systems such as SafenetFS are not supported for Kafka. Index file
corruption can occur.

4.2. Installing Kafka Using Ambari
Before you install Kafka using Ambari, refer to Adding a Service for background
information about how to install Hortonworks Data Platform (HDP) components using
Ambari.

To install Kafka using Ambari, complete the following steps.

1. Click the Ambari "Services" tab.

2. In the Ambari "Actions" menu, select "Add Service." This starts the Add Service wizard,
displaying the Choose Services page. Some of the services are enabled by default.

3. Scroll through the alphabetic list of components on the Choose Services page, and select
"Kafka".

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/ch_installing_kafka_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/ch_installing_kafka_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.5.0.3/bk_ambari-operations/content/adding_a_service_to_your_hadoop_cluster.html


hdp-kafka-component-guide April 20, 2017

7



hdp-kafka-component-guide April 20, 2017

8

4. Click "Next" to continue.

5. On the Assign Masters page, review the node assignments for Kafka nodes.

The following screen shows node assignment for a single-node Kafka cluster:

6. If you want Kafka to run with high availability, you must assign more than one node for
Kafka brokers, resulting in Kafka brokers running on multiple nodes.

Click the "+" symbol to add more broker nodes to the cluster:

The following screen shows node assignment for a multi-node Kafka cluster:



hdp-kafka-component-guide April 20, 2017

9

7. Click "Next" to continue.

8. On the Assign Slaves and Clients page, choose the nodes that you want to run
ZooKeeper clients:

9. Click "Next" to continue.

10.Ambari displays the Customize Services page, which lists a series of services:



hdp-kafka-component-guide April 20, 2017

10

For your initial configuration you should use the default values set by Ambari. If Ambari
prompts you with the message "Some configurations need your attention before you
can proceed," review the list of properties and provide the required information.

For information about optional settings that are useful in production environments, see
Configuring Apache Kafka for a Production Environment.

11.Click "Next" to continue.

12.When the wizard displays the Review page, ensure that all HDP components correspond
to HDP 2.5 or later:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_kafka-component-guide/content/ch_configuring_kafka.html


hdp-kafka-component-guide April 20, 2017

11

13.Click "Deploy" to begin installation.

14.Ambari displays the Install, Start and Test page. Monitor the status bar and messages for
progress updates:



hdp-kafka-component-guide April 20, 2017

12

15.When the wizard presents a summary of results, click "Complete" to finish installing
Kafka:

After Kafka is deployed and running, validate the installation. You can use the command-
line interface to create a Kafka topic, send test messages, and consume the messages. For
more information, see Validate Kafka in the Non-Ambari Cluster Installation Guide.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_command-line-installation/content/validate_kafka.html


hdp-kafka-component-guide April 20, 2017

13

5. Configuring Kafka for a Production
Environment

This chapter covers topics related to Kafka configuration, including:

• Preparing the environment

• Customizing settings for brokers, producers, and consumers

• Configuring ZooKeeper for use with Kafka

• Enabling audit to HDFS when running Kafka on a secure cluster

To configure Kafka for Kerberos security on an Ambari-managed cluster, see Configuring
Kafka for Kerberos Using Ambari in the Security Guide.

5.1. Preparing the Environment
The following factors can affect Kafka performance:

• Operating system settings

• File system selection

• Disk drive configuration

• Java version

• Ethernet bandwidth

5.1.1. Operating System Settings

Consider the following when configuring Kafka:

• Kafka uses page cache memory as a buffer for active writers and readers, so after you
specify JVM size (using -Xmx and -Xms Java options), leave the remaining RAM available
to the operating system for page caching.

• Kafka needs open file descriptors for files and network connections. You should set the
file descriptor limit to at least 128000.

• You can increase the maximum socket buffer size to enable high-performance data
transfer.

5.1.2. File System Selection

Kafka uses regular Linux disk files for storage. We recommend using the EXT4 or XFS file
system. Improvements to the XFS file system show improved performance characteristics
for Kafka workloads without compromising stability.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/configuring_kafka_for_kerberos_using_ambari.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/configuring_kafka_for_kerberos_using_ambari.html


hdp-kafka-component-guide April 20, 2017

14

Caution

• Do not use mounted shared drives or any network file systems with Kafka,
due to the risk of index failures and (in the case of network file systems)
issues related to the use of MemoryMapped files to store the offset index.

• Encrypted file systems such as SafenetFS are not supported for Kafka. Index
file corruption can occur.

5.1.3. Disk Drive Considerations

For throughput, we recommend dedicating multiple drives to Kafka data. More drives
typically perform better with Kafka than fewer. Do not share these Kafka drives with any
other application or use them for Kafka application logs.

You can configure multiple drives by specifying a comma-separated list of directories for
the log.dirs property in the server.properties file. Kafka uses a round-robin
approach to assign partitions to directories specified in log.dirs; the default value is /
tmp/kafka-logs.

The num.io.threads property should be set to a value equal to or greater than the
number of disks dedicated for Kafka. Recommendation: start by setting this property equal
to the number of disks.

Depending on how you configure flush behavior (see "Log Flush Management"), a faster
disk drive is beneficial if the log.flush.interval.messages property is set to flush
the log file after every 100,000 messages (approximately).

Kafka performs best when data access loads are balanced among partitions, leading to
balanced loads across disk drives. In addition, data distribution across disks is important.
If one disk becomes full and other disks have available space, this can cause performance
issues. To avoid slowdowns or interruptions to Kafka services, you should create usage
alerts that notify you when available disk space is low.

RAID can potentially improve load balancing among the disks, but RAID can cause
performance bottleneck due to slower writes. In addition, it reduces available disk space.
Although RAID can tolerate disk failures, rebuilding RAID array is I/O-intensive and
effectively disables the server. Therefore, RAID does not provide substantial improvements
in availability.

5.1.4. Java Version

With Apache Kafka on HDP 2.5, you should use the latest update for Java version 1.8 and
make sure that G1 garbage collection support is enabled. (G1 support is enabled by default
in recent versions of Java.) If you prefer to use Java 1.7, make sure that you use update u51
or later.

Here are several recommended settings for the JVM:



hdp-kafka-component-guide April 20, 2017

15

-Xmx6g 
-Xms6g 
-XX:MetaspaceSize=96m 
-XX:+UseG1GC
-XX:MaxGCPauseMillis=20 
-XX:InitiatingHeapOccupancyPercent=35 
-XX:G1HeapRegionSize=16M
-XX:MinMetaspaceFreeRatio=50 
-XX:MaxMetaspaceFreeRatio=80

To set JVM heap size for the Kafka broker, export KAFKA_HEAP_OPTS; for example:

export KAFKA_HEAP_OPTS="-Xmx2g -Xms2g"
./kafka-server-start.sh

5.1.5. Ethernet Bandwidth
Ethernet bandwidth can have an impact on Kafka performance; make sure it is sufficient
for your throughput requirements.

5.2. Customizing Kafka Settings on an Ambari-
Managed Cluster

To customize configuration settings during the Ambari installation process, click the "Kafka"
tab on the Customize Services page:

If you want to access configuration settings after installing Kafka using Ambari:



hdp-kafka-component-guide April 20, 2017

16

1. Click Kafka on the Ambari dashboard.

2. Choose Configs.

To view and modify settings, either scroll through categories and expand a category (such
as "Kafka Broker", as shown in the graphic), or use the "Filter" box to search for a property.

Settings in the Advanced kafka-env category are configured by Ambari; you should not
modify these settings:

To add configuration properties that are not listed by default in Ambari, navigate to the
Custom kafka-broker category:



hdp-kafka-component-guide April 20, 2017

17

5.3. Kafka Broker Settings
The following subsections describe configuration settings that influence the performance of
Kafka brokers.

5.3.1. Connection Settings

Review the following connection setting in the Advanced kafka-broker category, and
modify as needed:

zookeeper.session.timeout.msSpecifies ZooKeeper session timeout, in milliseconds.
The default value is 30000 ms.

If the server fails to signal heartbeat to ZooKeeper
within this period of time, the server is considered to be
dead. If you set this value too low, the server might be
falsely considered dead; if you set it too high it may take
too long to recognize a truly dead server.

If you see frequent disconnection from the ZooKeeper
server, review this setting. If long garbage collection



hdp-kafka-component-guide April 20, 2017

18

pauses cause Kafka to lose its ZooKeeper session, you
might need to configure longer timeout values.

Important

Do not change the following connection settings:

listeners A comma-separated list of URIs that Kafka will listen
on, and their protocols. Ambari sets this value to the
names of nodes where Kafka is being installed.. Do
not change this setting.

zookeeper.connect A comma-separated list of ZooKeeper
hostname:port pairs. Ambari sets this value. Do
not change this setting.

5.3.2. Topic Settings

For each topic, Kafka maintains a structured commit log with one or more partitions. These
topic partitions form the basic unit of parallelism in Kafka. In general, the more partitions
there are in a Kafka cluster, the more parallel consumers can be added, resulting in higher
throughput.

You can calculate the number of partitions based on your throughput requirements.
If throughput from a producer to a single partition is P and throughput from a single
partition to a consumer is C, and if your target throughput is T, the minimum number of
required partitions is

max (T/P, T/C).

Note also that more partitions can increase latency:

• End-to-end latency in Kafka is defined as the difference in time from when a message is
published by the producer to when the message is read by the consumer.

• Kafka only exposes a message to a consumer after it has been committed, after the
message is replicated to all in-sync replicas.

• Replication of one thousand partitions from one broker to another can take up 20ms.
This is too long for some real-time applications.

• In the new Kafka producer, messages are accumulated on the producer side; producers
buffer the message per partition. This approach allows users to set an upper bound
on the amount of memory used for buffering incoming messages. After enough data
is accumulated or enough time has passed, accumulated messages are removed and
sent to the broker. If you define more partitions, messages are accumulated for more
partitions on the producer side.

• Similarly, the consumer fetches batches of messages per partition. Consumer memory
requirements are proportional to the number of partitions that the consumer subscribes
to.

Important Topic Properties



hdp-kafka-component-guide April 20, 2017

19

Review the following settings in the Advanced kafka-broker category, and modify as
needed:

auto.create.topics.enable Enable automatic creation of topics on the server. If
this property is set to true, then attempts to produce,
consume, or fetch metadata for a nonexistent topic
automatically create the topic with the default
replication factor and number of partitions. The default
is enabled.

default.replication.factorSpecifies default replication factors for automatically
created topics. For high availability production systems,
you should set this value to at least 3.

num.partitions Specifies the default number of log partitions per topic,
for automatically created topics. The default value is 1.
Change this setting based on the requirements related
to your topic and partition design.

delete.topic.enable Allows users to delete a topic from Kafka using the
admin tool, for Kafka versions 0.9 and later. Deleting a
topic through the admin tool will have no effect if this
setting is turned off.

By default this feature is turned off (set to false).

5.3.3. Log Settings

Review the following settings in the Kafka Broker category, and modify as needed:

log.roll.hours The maximum time, in hours, before a new log segment is
rolled out. The default value is 168 hours (seven days).

This setting controls the period of time after which Kafka will
force the log to roll, even if the segment file is not full. This
ensures that the retention process is able to delete or compact
old data.

log.retention.hours The number of hours to keep a log file before deleting it. The
default value is 168 hours (seven days).

When setting this value, take into account your disk space
and how long you would like messages to be available. An
active consumer can read quickly and deliver messages to their
destination.

The higher the retention setting, the longer the data will
be preserved. Higher settings generate larger log files, so
increasing this setting might reduce your overall storage
capacity.

log.dirs A comma-separated list of directories in which log data is kept.
If you have multiple disks, list all directories under each disk.



hdp-kafka-component-guide April 20, 2017

20

Review the following setting in the Advanced kafka-broker category, and modify as
needed:

log.retention.bytes The amount of data to retain in the log for each topic
partition. By default, log size is unlimited.

Note that this is the limit for each partition, so multiply this
value by the number of partitions to calculate the total data
retained for the topic.

If log.retention.hours and log.retention.bytes
are both set, Kafka deletes a segment when either limit is
exceeded.

log.segment.bytes The log for a topic partition is stored as a directory of segment
files. This setting controls the maximum size of a segment file
before a new segment is rolled over in the log. The default is 1
GB.

Log Flush Management

Kafka writes topic messages to a log file immediately upon receipt, but the data is initially
buffered in page cache. A log flush forces Kafka to flush topic messages from page cache,
writing the messages to disk.

We recommend using the default flush settings, which rely on background flushes done
by Linux and Kafka. Default settings provide high throughput and low latency, and they
guarantee recovery through the use of replication.

If you decide to specify your own flush settings, you can force a flush after a period of time,
or after a specified number of messages, or both (whichever limit is reached first). You can
set property values globally and override them on a per-topic basis.

There are several important considerations related to log file flushing:

• Durability: unflushed data is at greater risk of loss in the event of a crash. A failed
broker can recover topic partitions from its replicas, but if a follower does not issue a
fetch request or consume from the leader's log-end offset within the time specified by
replica.lag.time.max.ms (which defaults to 10 seconds), the leader removes the
follower from the in-sync replica ("ISR"). When this happens there is a slight chance of
message loss if you do not explicitly set log.flush.interval.messages. If the
leader broker fails and the follower is not caught up with the leader, the follower can still
be under ISR for those 10 seconds and messages during leader transition to follower can
be lost.

• Increased latency: data is not available to consumers until it is flushed (the fsync
implementation in most Linux filesystems blocks writes to the file system).

• Throughput: a flush operation is typically an expensive operation.

• Disk usage patterns are less efficient.

• Page-level locking in background flushing is much more granular.



hdp-kafka-component-guide April 20, 2017

21

log.flush.interval.messages specifies the number of messages to accumulate on a
log partition before Kafka forces a flush of data to disk.

log.flush.scheduler.interval.ms specifies the amount of time (in milliseconds)
after which Kafka checks to see if a log needs to be flushed to disk.

log.segment.bytes specifies the size of the log file. Kafka flushes the log file to disk
whenever a log file reaches its maximum size.

log.roll.hours specifies the maximum length of time before a new log segment is
rolled out (in hours); this value is secondary to log.roll.ms. Kafka flushes the log file to
disk whenever a log file reaches this time limit.

5.3.4. Compaction Settings
Review the following settings in the Advanced kafka-broker category, and modify as
needed:

log.cleaner.dedupe.buffer.sizeSpecifies total memory used for log deduplication across
all cleaner threads.

By default, 128 MB of buffer is allocated. You may want
to review this and other log.cleaner configuration
values, and adjust settings based on your use of
compacted topics (__consumer_offsets and other
compacted topics).

log.cleaner.io.buffer.sizeSpecifies the total memory used for log cleaner I/O
buffers across all cleaner threads. By default, 512 KB of
buffer is allocated. You may want to review this and
other log.cleaner configuration values, and adjust
settings based on your usage of compacted topics
(__consumer_offsets and other compacted topics).

5.3.5. General Broker Settings
Review the following settings in the Advanced kafka-broker category, and modify as
needed:

auto.leader.rebalance.enableEnables automatic leader balancing. A background
thread checks and triggers leader balancing (if needed)
at regular intervals. The default is enabled.

unclean.leader.election.enableThis property allows you to specify a preference of
availability or durability. This is an important setting: If
availability is more important than avoiding data loss,
ensure that this property is set to true. If preventing
data loss is more important than availability, set this
property to false.

This setting operates as follows:

• If unclean.leader.election.enable is set to
true (enabled), an out-of-sync replica will be elected



hdp-kafka-component-guide April 20, 2017

22

as leader when there is no live in-sync replica (ISR).
This preserves the availability of the partition, but
there is a chance of data loss.

• If unclean.leader.election.enable is set to
false and there are no live in-sync replicas, Kafka
returns an error and the partition will be unavailable.

This property is set to true by default, which favors
availability.

If durability is preferable to availability, set
unclean.leader.election to false.

controlled.shutdown.enableEnables controlled shutdown of the server. The default
is enabled.

min.insync.replicas When a producer sets acks to "all",
min.insync.replicas specifies the minimum
number of replicas that must acknowledge a write
for the write to be considered successful. If this
minimum cannot be met, then the producer will raise an
exception.

When used together, min.insync.replicas and
producer acks allow you to enforce stronger durability
guarantees.

You should set min.insync.replicas to 2 for
replication factor equal to 3.

message.max.bytes Specifies the maximum size of message that the server
can receive. It is important that this property be set with
consideration for the maximum fetch size used by your
consumers, or a producer could publish messages too
large for consumers to consume.

Note that there are currently two versions of
consumer and producer APIs. The value of
message.max.bytes must be smaller than
the max.partition.fetch.bytes setting
in the new consumer, or smaller than the
fetch.message.max.bytes setting in the old
consumer. In addition, the value must be smaller than
replica.fetch.max.bytes.

replica.fetch.max.bytes Specifies the number of bytes of messages to
attempt to fetch. This value must be larger than
message.max.bytes.

broker.rack The rack awareness feature distributes replicas
of a partition across different racks. You can
specify that a broker belongs to a particular



hdp-kafka-component-guide April 20, 2017

23

rack through the "Custom kafka-broker" menu
option. For more information about the rack
awareness feature, see http://kafka.apache.org/
documentation.html#basic_ops_racks.

5.4. Kafka Producer Settings
If performance is important and you have not yet upgraded to the new Kafka producer
(client version 0.9.0.1 or later), consider doing so. The new producer is generally faster and
more fully featured than the previous client.

To use the new producer client, add the associated maven dependency on the client jar; for
example:

<dependency> 
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>0.9.0.0</version>
</dependency>

For more information, see the KafkaProducer javadoc.

The following subsections describe several types of configuration settings that influence the
performance of Kafka producers.

5.4.1. Important Producer Settings

The lifecycle of a request from producer to broker involves several configuration settings:

1. The producer polls for a batch of messages from the batch queue, one batch per
partition. A batch is ready when one of the following is true:

• batch.size is reached. Note: Larger batches typically have better compression ratios
and higher throughput, but they have higher latency.

• linger.ms (time-based batching threshold) is reached. Note: There is no simple
guideilne for setting linger.ms values; you should test settings on specific use cases.
For small events (100 bytes or less), this setting does not appear to have much impact.

• Another batch to the same broker is ready.

• The producer calls flush() or close().

2. The producer groups the batch based on the leader broker.

3. The producer sends the grouped batch to the broker.

The following paragraphs list additional settings related to the request lifecycle:

max.in.flight.requests.per.connection
(pipelining)

The maximum number of unacknowledged requests the
client will send on a single connection before blocking.
If this setting is greater than 1, pipelining is used when
the producer sends the grouped batch to the broker.
This improves throughput, but if there are failed sends

http://kafka.apache.org/documentation.html#basic_ops_racks
http://kafka.apache.org/documentation.html#basic_ops_racks
https://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html


hdp-kafka-component-guide April 20, 2017

24

there is a risk of out-of-order delivery due to retries (if
retries are enabled). Note also that excessive pipelining
reduces throughput.

compression.type Compression is an important part of a producer’s work,
and the speed of different compression types differs a
lot.

To specify compression type, use the
compression.type property. It accepts standard
compression codecs ('gzip', 'snappy', 'lz4'), as well
as 'uncompressed' (the default, equivalent to no
compression), and 'producer' (uses the compression
codec set by the producer).

Compression is handled by the user thread. If
compression is slow it can help to add more threads. In
addition, batching efficiency impacts the compression
ratio: more batching leads to more efficient
compression.

acks The acks setting specifies acknowledgments that
the producer requires the leader to receive before
considering a request complete. This setting defines the
durability level for the producer.

Acks Throughput Latency Durability

0 High Low No Guarantee.
The producer
does not
wait for
acknowledgment
from the server.

1 Medium Medium Leader writes
the record to
its local log,
and responds
without
awaiting full
acknowledgment
from all
followers.

-1 Low High Leader waits
for the full
set of in-sync
replicas (ISRs)
to acknowledge
the record. This
guarantees that
the record is not
lost as long as at
least one IRS is
active.

flush() The new Producer API supports an optional flush()
call, which makes all buffered records immediately
available to send (even if linger.ms is greater than 0).



hdp-kafka-component-guide April 20, 2017

25

When using flush(), the number of bytes between
two flush() calls is an important factor for
performance.

• In microbenchmarking tests, a setting of
approximately 4MB performed well for events 1KB in
size.

• A general guideline is to set batch.size equal to
the total bytes between flush()calls divided by
number of partitions:

(total bytes between flush()calls) / (partition
count)

Additional Considerations

A producer thread going to the same partition is faster than a producer thread that sends
messages to multiple partitions.

If a producer reaches maximum throughput but there is spare CPU and network capacity
on the server, additional producer processes can increase overall throughput.

Performance is sensitive to event size: larger events are more likely to have better
throughput. In microbenchmarking tests, 1KB events streamed faster than 100-byte events.

5.5. Kafka Consumer Settings
You can usually obtain good performance from consumers without tuning configuration
settings. In microbenchmarking tests, consumer performance was not as sensitive to event
size or batch size as was producer performance. Both 1KG and 100B events showed similar
throughput.

One basic guideline for consumer performance is to keep the number of consumer threads
equal to the partition count.

5.6. Configuring ZooKeeper for Use with Kafka
Here are several recommendations for ZooKeeper configuration with Kafka:

• Do not run ZooKeeper on a server where Kafka is running.

• When using ZooKeeper with Kafka you should dedicate ZooKeeper to Kafka, and not
use ZooKeeper for any other components.

• Make sure you allocate sufficient JVM memory. A good starting point is 4GB.

• To monitor the ZooKeeper instance, use JMX metrics.

Configuring ZooKeeper for Multiple Applications



hdp-kafka-component-guide April 20, 2017

26

If you plan to use the same ZooKeeper cluster for different applications (such as Kafka
cluster1, Kafka cluster2, and HBase), you should add a chroot path so that all Kafka data
for a cluster appears under a specific path.

The following example shows a sample chroot path:

c6401.ambari.apache.org:2181:/kafka-root,
c6402.ambari.apache.org:2181:/kafka-root

You must create this chroot path yourself before starting the broker, and consumers must
use the same connection string.

5.7. Enabling Audit to HDFS for a Secure Cluster
To enable audit to HDFS when running Kafka on a secure cluster, perform the steps listed
at the bottom of Manually Updating Ambari HDFS Audit Settings in the HDP Security
Guide.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/manually_updating_ambari_hdfs_audit_settings.html


hdp-kafka-component-guide April 20, 2017

27

6. Mirroring Data Between Clusters:
Using the MirrorMaker Tool

The process of replicating data between Kafka clusters is called "mirroring", to differentiate
cross-cluster replication from replication among nodes within a single cluster. A common
use for mirroring is to maintain a separate copy of a Kafka cluster in another data center.

Kafka's MirrorMaker tool reads data from topics in one or more source Kafka clusters, and
writes corresponding topics to a destination Kafka cluster (using the same topic names):

To mirror more than one source cluster, start at least one MirrorMaker instance for each
source cluster.

You can also use multiple MirrorMaker processes to mirror topics within the same
consumer group. This can increase throughput and enhance fault-tolerance: if one process
dies, the others will take over the additional load.

The source and destination clusters are completely independent, so they can have different
numbers of partitions and different offsets. The destination (mirror) cluster is not intended
to be a mechanism for fault-tolerance, because the consumer position will be different.
(The MirrorMaker process will, however, retain and use the message key for partitioning,
preserving order on a per-key basis.) For fault tolerance we recommend using standard
within-cluster replication.

6.1. Running MirrorMaker
Prerequisite: The source and destination clusters must be deployed and running.

To set up a mirror, run kafka.tools.MirrorMaker. The following table lists
configuration options.

At a minimum, MirrorMaker requires one or more consumer configuration files, a producer
configuration file, and either a whitelist or a blacklist of topics. In the consumer and
producer configuration files, point the consumer to the ZooKeeper process on the source



hdp-kafka-component-guide April 20, 2017

28

cluster, and point the producer to the ZooKeeper process on the destination (mirror)
cluster, respectively.

Table 6.1. MirrorMaker Options

Parameter Description Examples

--consumer.config Specifies a file that contains
configuration settings for the source
cluster. For more information
about this file, see the "Consumer
Configuration File" subsection.

--consumer.config hdp1-
consumer.properties

--producer.config Specifies the file that contains
configuration settings for the target
cluster. For more information
about this file, see the "Producer
Configuration File" subsection.

--producer.config hdp1-
producer.properties

--whitelist

--blacklist

(Optional) For a partial mirror, you
can specify exactly one comma-
separated list of topics to include (--
whitelist) or exclude (--blacklist).

In general, these options accept Java
regex patterns. For caveats, see the
note after this table.

--whitelist my-topic

--num.streams Specifies the number of consumer
stream threads to create.

--num.streams 4

--num.producers Specifies the number of producer
instances. Setting this to a value
greater than one establishes a
producer pool that can increase
throughput.

--num.producers 2

--queue.size Queue size: number of messages that
are buffered, in terms of number of
messages between the consumer and
producer. Default = 10000.

--queue.size 2000

--help List MirrorMaker command-line
options.

 

Note

• A comma (',') is interpreted as the regex-choice symbol ('|') for convenience.

• If you specify --white-list=".*", MirrorMaker tries to fetch data from
the system-level topic __consumer-offsets and produce that data to the
target cluster. This can result in the following error:

Producer cannot send requests to __consumer-offsets

Workaround: Specify topic names, or to replicate all topics, specify --
blacklist="__consumer-offsets".

The following example replicates topic1 and topic2 from sourceClusterConsumer
to targetClusterProducer:

/usr/hdp/current/kafka-broker/bin/kafka-run-class.sh kafka.tools.MirrorMaker
 --consumer.config sourceClusterConsumer.properties  --producer.config
 targetClusterProducer.properties --whitelist="topic1, topic"

Consumer Configuration File

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html


hdp-kafka-component-guide April 20, 2017

29

The consumer configuration file must specify the ZooKeeper process in the source cluster.

Here is a sample consumer configuration file:

zk.connect=hdp1:2181/kafka
zk.connectiontimeout.ms=1000000
consumer.timeout.ms=-1
groupid=dp-MirrorMaker-test-datap1
shallow.iterator.enable=true
mirror.topics.whitelist=app_log

Producer Configuration File

The producer configuration should point to the target cluster's ZooKeeper process (or use
the broker.list parameter to specify a list of brokers on the destination cluster).

Here is a sample producer configuration file:

zk.connect=hdp1:2181/kafka-test
producer.type=async
compression.codec=0
serializer.class=kafka.serializer.DefaultEncoder
max.message.size=10000000
queue.time=1000
queue.enqueueTimeout.ms=-1

6.2. Checking Mirroring Progress
You can use Kafka's Consumer Offset Checker command-line tool to assess how well your
mirror is keeping up with the source cluster. The Consumer Offset Checker checks the
number of messages read and written, and reports the lag for each consumer in a specified
consumer group.

The following command runs the Consumer Offset Checker for group KafkaMirror, topic
test-topic. The --zkconnect argument points to the ZooKeeper host and port on the
source cluster.

/usr/hdp/current/kafka/bin/kafka-run-class.sh kafka.tools.
ConsumerOffsetChecker --group KafkaMirror --zkconnect source-cluster-
zookeeper:2181 --topic test-topic

Group        Topic          Pid Offset     logSize     Lag     Owner
KafkaMirror  test-topic     0   5          5           0       none
KafkaMirror  test-topic     1   3          4           1       none
KafkaMirror  test-topic     2   6          9           3       none

Table 6.2. Consumer Offset Checker Options

--group (Required) Specifies the consumer group.

--zkconnect Specifies the ZooKeeper connect string. The default is
localhost:2181.

--broker-info Lists broker information

--help Lists offset checker options.

--topic Specifies a comma-separated list of consumer topics. If
you do not specify a topic, the offset checker will display
information for all topics under the given consumer group.



hdp-kafka-component-guide April 20, 2017

30

6.3. Avoiding Data Loss
If for some reason the producer cannot deliver messages that have been consumed and
committed by the consumer, it is possible for a MirrorMaker process to lose data.

To prevent data loss, use the following settings. (Note: these are the default settings.)

• For consumers:

• auto.commit.enabled=false

• For producers:

• max.in.flight.requests.per.connection=1

• retries=Int.MaxValue

• acks=-1

• block.on.buffer.full=true

• Specify the --abortOnSendFail option to MirrorMaker

The following actions will be taken by MirrorMaker:

• MirrorMaker will send only one request to a broker at any given point.

• If any exception is caught in the MirrorMaker thread, MirrorMaker will try to commit the
acked offsets and then exit immediately.

• On a RetriableException in the producer, the producer will retry indefinitely. If the
retry does not work, MirrorMaker will eventually halt when the producer buffer is full.

• On a non-retriable exception, if --abort.on.send.fail is specified, MirrorMaker will
stop.

If --abort.on.send.fail is not specified, the producer callback mechanism will
record the message that was not sent, and MirrorMaker will continue running. In this
case, the message will not be replicated in the target cluster.

6.4. Running MirrorMaker on Kerberos-Enabled
Clusters

To run MirrorMaker on a Kerberos/SASL-enabled cluster, configure producer and consumer
properties as follows:

1. Choose or add a new principal for MirrorMaker. Do not use kafka or any other service
accounts. The following example uses principal mirrormaker.

2. Create client-side Kerberos keytabs for your MirrorMaker principal. For example:

sudo kadmin.local -q "ktadd -k /tmp/mirrormaker.keytab mirrormaker/
HOSTNAME@EXAMPLE.COM"



hdp-kafka-component-guide April 20, 2017

31

3. Add a new Jaas configuration file to the node where you plan to run MirrorMaker:

-Djava.security.auth.login.config=/usr/hdp/current/kafka-broker/config/
kafka_mirrormaker_jaas.conf

4. Add the following settings to the KafkaClient section of the new Jaas configuration
file. Make sure the principal has permissions on both the source cluster and the target
cluster.

KafkaClient {
     com.sun.security.auth.module.Krb5LoginModule required
     useKeyTab=true
     keyTab="/tmp/mirrormaker.keytab"
     storeKey=true
     useTicketCache=false
     serviceName="kafka"
     principal="mirrormaker/HOSTNAME@EXAMPLE.COM";
    };

5. Run the following ACL command on the source and destination Kafka clusters:

bin/kafka-acls.sh --topic test-topic --add --allow-principal
 user:mirrormaker --operation ALL --config /usr/hdp/current/kafka-broker/
config/server.properties

6. In your MirrorMaker consumer.config and producer.config files, specify
security.protocol=SASL_PLAINTEXT.

7. Start MirrorMaker. Specify the new.consumer option in addition to your other options.
For example:

/usr/hdp/current/kafka-broker/bin/kafka-run-class.sh kafka.tools.MirrorMaker
 --consumer.config consumer.properties --producer.config target-cluster-
producer.properties --whitelist my-topic --new.consumer



hdp-kafka-component-guide April 20, 2017

32

7. Creating a Kafka Topic
As described in Apache Kafka Concepts, Kafka maintains feeds of messages in categories
called topics. Producers write data to topics and consumers read from topics. Since Kafka
is a distributed system, topics are partitioned and replicated across multiple nodes. Kafka
treats each topic partition as a log (an ordered set of messages). Each message in a
partition is assigned a unique offset.

Each topic has a user-defined category (or feed name), to which messages are published.

To create a Kafka topic, run kafka-topics.sh and specify topic name, replication factor,
and other attributes:

/bin/kafka-topics.sh --create \
    --zookeeper <hostname>:<port> \
    --topic <topic-name> \
    --partitions <number-of-partitions> \
    --replication-factor <number-of-replicating-servers>

The following example creates a topic named "test", with one partition and one replica:

bin/kafka-topics.sh --create \
    --zookeeper localhost:2181 \
    --replication-factor 1 \
    --partitions 1 \
    --topic test

To view the topic, run the list topic command:

> bin/kafka-topics.sh --list --zookeeper localhost:2181
test

To create topics on a cluster with Kerberos enabled, see Creating Kafka Topics in the HDP
Security Guide.

The auto.create.topics.enable property, when set to true, automatically
creates topics when applications attempt to produce, consume, or fetch metadata for a
nonexistent topic. For more information, see Kafka Broker Settings.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_kafka-component-guide/content/ch_overview_kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/secure-kafka-create-topics.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_kafka-component-guide/content/kafka-broker-settings.html


hdp-kafka-component-guide April 20, 2017

33

8. Developing Kafka Producers and
Consumers

The examples in this chapter contain code for a basic Kafka producer and consumer, and
similar examples for an SSL-enabled cluster. (To configure Kafka for SSL, see Enable SSL for
Kafka Clients in the HDP Security Guide.)

For examples of Kafka producers and consumers that run on a Kerberos-enabled cluster,
see Producing Events/Messages to Kafka on a Secured Cluster and Consuming Events/
Messages from Kafka on a Secured Cluster, in the Security Guide.

Basic Producer Example

package com.hortonworks.example.kafka.producer;

import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import java.util.Properties;
import java.util.Random;

public class BasicProducerExample {

   public static void main(String[] args){

       Properties props = new Properties();
       props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka.example.
com:6667");
       props.put(ProducerConfig.ACKS_CONFIG, "all");
       props.put(ProducerConfig.RETRIES_CONFIG, 0);
       props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringSerializer");
       props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringSerializer");

       Producer<String, String> producer = new KafkaProducer<String,
 String>(props);
       TestCallback callback = new TestCallback();
       Random rnd = new Random();
       for (long i = 0; i < 100 ; i++) {
           ProducerRecord<String, String> data = new ProducerRecord<String,
 String>(
                   "test-topic", "key-" + i, "message-"+i );
           producer.send(data, callback);
       }

       producer.close();
   }

   private static class TestCallback implements Callback {
       @Override

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/ch_wire-kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/ch_wire-kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/secure-kafka-produce-events.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/secure-kafka-consume-events.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.5/bk_security/content/secure-kafka-consume-events.html


hdp-kafka-component-guide April 20, 2017

34

       public void onCompletion(RecordMetadata recordMetadata, Exception e) {
           if (e != null) {
               System.out.println("Error while producing message to topic :" +
 recordMetadata);
               e.printStackTrace();
           } else {
               String message = String.format("sent message to topic:%s
 partition:%s  offset:%s", recordMetadata.topic(), recordMetadata.partition(),
 recordMetadata.offset());
               System.out.println(message);
           }
       }
   }

}

To run the producer example, use the following command:

$ java com.hortonworks.example.kafka.producer.BasicProducerExample

Producer Example for an SSL-Enabled Cluster

The following example adds three important configuration settings for SSL encryption
and three for SSL authentication. The two sets of configuration settings are prefaced by
comments.

package com.hortonworks.example.kafka.producer;

import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.config.SslConfigs;

import java.util.Properties;
import java.util.Random;

public class BasicProducerExample {

   public static void main(String[] args){

       Properties props = new Properties();
       props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka.example.
com:6667");

       //configure the following three settings for SSL Encryption
       props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL");
       props.put(SslConfigs.SSL_TRUSTSTORE_LOCATION_CONFIG, "/var/private/ssl/
kafka.client.truststore.jks");
       props.put(SslConfigs.SSL_TRUSTSTORE_PASSWORD_CONFIG,  "test1234");

       // configure the following three settings for SSL Authentication
       props.put(SslConfigs.SSL_KEYSTORE_LOCATION_CONFIG, "/var/private/ssl/
kafka.client.keystore.jks");
       props.put(SslConfigs.SSL_KEYSTORE_PASSWORD_CONFIG, "test1234");
       props.put(SslConfigs.SSL_KEY_PASSWORD_CONFIG, "test1234");
       



hdp-kafka-component-guide April 20, 2017

35

       props.put(ProducerConfig.ACKS_CONFIG, "all");
       props.put(ProducerConfig.RETRIES_CONFIG, 0);
       props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringSerializer");
       props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringSerializer");

       Producer<String, String> producer = new KafkaProducer<String,
 String>(props);
       TestCallback callback = new TestCallback();
       Random rnd = new Random();
       for (long i = 0; i < 100 ; i++) {
           ProducerRecord<String, String> data = new ProducerRecord<String,
 String>(
                   "test-topic", "key-" + i, "message-"+i );
           producer.send(data, callback);
       }

       producer.close();
   }

   private static class TestCallback implements Callback {
       @Override
       public void onCompletion(RecordMetadata recordMetadata, Exception e) {
           if (e != null) {
               System.out.println("Error while producing message to topic :" +
 recordMetadata);
               e.printStackTrace();
           } else {
               String message = String.format("sent message to topic:%s
 partition:%s  offset:%s", recordMetadata.topic(), recordMetadata.partition(),
 recordMetadata.offset());
               System.out.println(message);
           }
       }
   }

}

To run the producer example, use the following command:

$ java com.hortonworks.example.kafka.producer.BasicProducerExample

Basic Consumer Example

package com.hortonworks.example.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;

import java.util.Collection;
import java.util.Collections;
import java.util.Properties;

public class BasicConsumerExample {



hdp-kafka-component-guide April 20, 2017

36

   public static void main(String[] args) {

       Properties consumerConfig = new Properties();
       consumerConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka.
example.com:6667");
       consumerConfig.put(ConsumerConfig.GROUP_ID_CONFIG, "my-group");
       consumerConfig.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,
 "earliest");
       consumerConfig.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 "org.apache.kafka.common.serialization.StringDeserializer");
       consumerConfig.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.
apache.kafka.common.serialization.StringDeserializer");
       KafkaConsumer<byte[], byte[]> consumer = new
 KafkaConsumer<>(consumerConfig);
       TestConsumerRebalanceListener rebalanceListener = new
 TestConsumerRebalanceListener();
       consumer.subscribe(Collections.singletonList("test-topic"),
 rebalanceListener);

       while (true) {
           ConsumerRecords<byte[], byte[]> records = consumer.poll(1000);
           for (ConsumerRecord<byte[], byte[]> record : records) {
               System.out.printf("Received Message topic =%s, partition =%s,
 offset = %d, key = %s, value = %s\n", record.topic(), record.partition(),
 record.offset(), record.key(), record.value());
           }

           consumer.commitSync();
       }

   }

   private static class  TestConsumerRebalanceListener implements
 ConsumerRebalanceListener {
       @Override
       public void onPartitionsRevoked(Collection<TopicPartition> partitions)
 {
           System.out.println("Called onPartitionsRevoked with partitions:" +
 partitions);
       }

       @Override
       public void onPartitionsAssigned(Collection<TopicPartition> partitions)
 {
           System.out.println("Called onPartitionsAssigned with partitions:" +
 partitions);
       }
   }

}

To run the consumer example, use the following command:

# java com.hortonworks.example.kafka.consumer.BasicConsumerExample

Consumer Example for an SSL-Enabled Cluster



hdp-kafka-component-guide April 20, 2017

37

The following example adds three important configuration settings for SSL encryption
and three for SSL authentication. The two sets of configuration settings are prefaced by
comments.

package com.hortonworks.example.kafka.consumer;

import org.apache.kafka.clients.CommonClientConfigs;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRebalanceListener;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.TopicPartition;
import org.apache.kafka.common.config.SslConfigs;

import java.util.Collection;
import java.util.Collections;
import java.util.Properties;

public class BasicConsumerExample {

   public static void main(String[] args) {

       Properties props = new Properties();
       props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "kafka.example.
com:6667");
       
       //configure the following three settings for SSL Encryption
       props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG, "SSL");
       props.put(SslConfigs.SSL_TRUSTSTORE_LOCATION_CONFIG, "/var/private/ssl/
kafka.client.truststore.jks");
       props.put(SslConfigs.SSL_TRUSTSTORE_PASSWORD_CONFIG,  "test1234");
       
       //configure the following three settings for SSL Authentication
       props.put(SslConfigs.SSL_KEYSTORE_LOCATION_CONFIG, "/var/private/ssl/
kafka.client.keystore.jks");
       props.put(SslConfigs.SSL_KEYSTORE_PASSWORD_CONFIG, "test1234");
       props.put(SslConfigs.SSL_KEY_PASSWORD_CONFIG, "test1234");
       
       props.put(ConsumerConfig.GROUP_ID_CONFIG, "my-group");
       props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
       props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringDeserializer");
       props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.
kafka.common.serialization.StringDeserializer");
       KafkaConsumer<byte[], byte[]> consumer = new KafkaConsumer<>(props);
       TestConsumerRebalanceListener rebalanceListener = new
 TestConsumerRebalanceListener();
       consumer.subscribe(Collections.singletonList("test-topic"),
 rebalanceListener);

       while (true) {
           ConsumerRecords<byte[], byte[]> records = consumer.poll(1000);
           for (ConsumerRecord<byte[], byte[]> record : records) {
               System.out.printf("Received Message topic =%s, partition =%s,
 offset = %d, key = %s, value = %s\n", record.topic(), record.partition(),
 record.offset(), record.key(), record.value());
           }

           consumer.commitSync();



hdp-kafka-component-guide April 20, 2017

38

       }

   }

   private static class  TestConsumerRebalanceListener implements
 ConsumerRebalanceListener {
       @Override
       public void onPartitionsRevoked(Collection<TopicPartition> partitions)
 {
           System.out.println("Called onPartitionsRevoked with partitions:" +
 partitions);
       }

       @Override
       public void onPartitionsAssigned(Collection<TopicPartition> partitions)
 {
           System.out.println("Called onPartitionsAssigned with partitions:" +
 partitions);
       }
   }

}

To run the consumer example, use the following command:

$ java com.hortonworks.example.kafka.producer.BasicProducerExample


	Hortonworks Data Platform
	Table of Contents
	1. Building a High-Throughput Messaging System with Apache Kafka
	2. What's New
	2.1. Apache Kafka
	2.2. Content Updates

	3. Apache Kafka Concepts
	4. Installing Kafka
	4.1. Prerequisites
	4.2. Installing Kafka Using Ambari

	5. Configuring Kafka for a Production Environment
	5.1. Preparing the Environment
	5.1.1. Operating System Settings
	5.1.2. File System Selection
	5.1.3. Disk Drive Considerations
	5.1.4. Java Version
	5.1.5. Ethernet Bandwidth

	5.2. Customizing Kafka Settings on an Ambari-Managed Cluster
	5.3. Kafka Broker Settings
	5.3.1. Connection Settings
	5.3.2. Topic Settings
	5.3.3. Log Settings
	5.3.4. Compaction Settings
	5.3.5. General Broker Settings

	5.4. Kafka Producer Settings
	5.4.1. Important Producer Settings

	5.5. Kafka Consumer Settings
	5.6. Configuring ZooKeeper for Use with Kafka
	5.7. Enabling Audit to HDFS for a Secure Cluster

	6. Mirroring Data Between Clusters: Using the MirrorMaker Tool
	6.1. Running MirrorMaker
	6.2. Checking Mirroring Progress
	6.3. Avoiding Data Loss
	6.4. Running MirrorMaker on Kerberos-Enabled Clusters

	7. Creating a Kafka Topic
	8. Developing Kafka Producers and Consumers

