
Hortonworks Data Platform

 (August 29, 2016)

YARN Resource Management

docs.cloudera.com

http://docs.cloudera.com


hdp-yarn-resource-management August 29, 2016

ii

Hortonworks Data Platform: YARN Resource Management
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

For more information on Hortonworks technology, visit the Hortonworks Data Platform page. For more
information on Hortonworks services, visit either the Support or Training page. Feel free to contact us
directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode


hdp-yarn-resource-management August 29, 2016

iii

Table of Contents
1. Capacity Scheduler .......................................................................................................  1

1.1. Enabling Capacity Scheduler .............................................................................. 1
1.2. Setting up Queues ............................................................................................  1

1.2.1. Hierarchical Queue Characteristics ..........................................................  3
1.2.2. Scheduling Among Queues ..................................................................... 3

1.3. Controlling Access to Queues with ACLs ............................................................  4
1.4. Default Queue Mapping Based on User or Group .............................................. 5

1.4.1. Configuring Queue Mapping for Users and Groups to Specific
Queues ............................................................................................................  5
1.4.2. Configuring Queue Mapping for Users and Groups to Queues with
the Same Name ...............................................................................................  6
1.4.3. Enabling Override of Default Queue Mappings .......................................  7

1.5. Managing Cluster Capacity with Queues ...........................................................  7
1.6. Resource Distribution Workflow ........................................................................  8
1.7. Resource Distribution Workflow Example ..........................................................  9
1.8. Setting User Limits ..........................................................................................  10
1.9. Application Reservations .................................................................................  12
1.10. Using Flexible Scheduling Policies ................................................................... 12

1.10.1. FIFO vs. Fair Sharing ...........................................................................  13
1.10.2. Configuring Queue Ordering Policies ..................................................  13
1.10.3. Best Practices for Ordering Policies .....................................................  14

1.11. Starting and Stopping Queues ....................................................................... 14
1.12. Setting Application Limits ..............................................................................  15
1.13. Preemption ...................................................................................................  15

1.13.1. Preemption Workflow ........................................................................  16
1.13.2. Preemption Configuration ..................................................................  16

1.14. Scheduler User Interface ................................................................................ 17
2. CGroups .....................................................................................................................  19

2.1. Enabling CGroups ............................................................................................ 19
2.2. Using CGroups ................................................................................................  22

3. Using CPU Scheduling to Allocate Resources ..............................................................  23
3.1. About YARN Resource Allocation ....................................................................  23
3.2. Configuring CPU Scheduling ............................................................................  24
3.3. Using CPU Scheduling .....................................................................................  25

4. Log Aggregation for Long-running Applications .........................................................  26
4.1. Enable Log Aggregation .................................................................................  26
4.2. Including and Excluding Log Files in YARN Applications Running on Slider ........  27

5. Node Labels ...............................................................................................................  28
5.1. Configuring Node Labels .................................................................................  30
5.2. Using Node Labels ..........................................................................................  38

6. Running Applications on YARN Using Slider ...............................................................  43
6.1. System Requirements ......................................................................................  43
6.2. Operating System Requirements ...................................................................... 43
6.3. Installing Apache Slider ...................................................................................  44
6.4. Additional Configuration Steps for Secure Clusters ..........................................  44
6.5. Running Applications on Slider ........................................................................  44

6.5.1. The Slider Application Package .............................................................  45
6.5.2. Install the Application Package .............................................................  46



hdp-yarn-resource-management August 29, 2016

iv

6.5.3. Start the Application ............................................................................  46
6.5.4. Verify the Application ..........................................................................  47
6.5.5. Manage the Application Lifecycle .........................................................  48
6.5.6. The Application Registry .......................................................................  49

6.6. Running HBase on YARN via Slider ..................................................................  50
6.6.1. Downloading and Installing the HBase Application Package ..................  50
6.6.2. Configuring HBase on YARN via Slider ..................................................  51
6.6.3. Configuring HBase on YARN on Secure Clusters ....................................  52
6.6.4. Components in HBase on YARN ...........................................................  52
6.6.5. Launching an HBase Application Instance .............................................  53
6.6.6. Deployment Considerations ..................................................................  55

6.7. Running Accumulo on YARN via Slider ............................................................  58
6.7.1. Downloading and Installing the Accumulo Application Package ............  58
6.7.2. Configuring Accumulo on YARN ...........................................................  59
6.7.3. Configuring Accumulo on YARN on Secure Clusters ..............................  62
6.7.4. Launching an Accumulo Application Instance .......................................  63
6.7.5. Client Connections to Accumulo and Retrieving Effective accumulo-
site.xml .....................................................................................................  66
6.7.6. Deployment Considerations ..................................................................  66

7. Running Multiple MapReduce Versions Using the YARN Distributed Cache .................  71
8. Timeline Server ..........................................................................................................  75

8.1. Timeline Server 1.5 Overview ..........................................................................  75
8.2. Upgrading Timeline Server 1.0 to 1.5 ..............................................................  76
8.3. Configuring the Timeline Server ......................................................................  78
8.4. Enabling Generic Data Collection ..................................................................... 79
8.5. Configuring Per-Framework Data Collection ....................................................  80
8.6. Configuring the Timeline Server Store .............................................................  80
8.7. Configuring Timeline Server Security ................................................................ 81
8.8. Running the Timeline Server ............................................................................ 82
8.9. Accessing Generic Data from the Command- Line ............................................  82
8.10. Publishing Per-Framework Data in Applications .............................................  83

9. Using the YARN REST APIs to Manage Applications ...................................................  84
10. Work-Preserving Restart ...........................................................................................  87

10.1. Configuring the ResourceManager for Work-Preserving Restart .....................  87
10.2. Configuring NodeManagers for Work-Preserving Restart ...............................  91

11. Using the YARN CLI to View Logs for Running Applications ......................................  93
11.1. View all Log Files for a Running Application ..................................................  93
11.2. View a Specific Log Type for a Running Application .......................................  93
11.3. View ApplicationMaster Log Files ..................................................................  93
11.4. List Container IDs ..........................................................................................  93
11.5. View Log Files for One Container ..................................................................  94
11.6. Show Container Log File Information ............................................................  94
11.7. View a Portion of the Log Files for One Container .........................................  94
11.8. Download Logs for a Running Application ..................................................... 94
11.9. Display Help for YARN Logs ..........................................................................  94



hdp-yarn-resource-management August 29, 2016

1

1. Capacity Scheduler
This chapter describes how to use the Capacity Scheduler to allocate shared cluster
resources among users and groups.

The fundamental unit of scheduling in YARN is the queue. Each queue in the Capacity
Scheduler has the following properties:

• A short queue name.

• A full queue path name.

• A list of associated child-queues and applications.

• The guaranteed capacity of the queue.

• The maximum capacity of the queue.

• A list of active users and their corresponding resource allocation limits.

• The state of the queue.

• Access control lists (ACLs) governing access to the queue. The following sections will
describe how to configure these properties, and how Capacity Scheduler uses these
properties to make various scheduling decisions.

1.1. Enabling Capacity Scheduler
To enable the Capacity Scheduler, set the following property in the /etc/hadoop/conf/
yarn-site.xml file on the ResourceManager host:

<property>
 <name>yarn.resourcemanager.scheduler.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.
CapacityScheduler</value>
</property>

The settings for the Capacity Scheduler are contained in the /etc/hadoop/conf/
capacity-scheduler.xml file on the ResourceManager host. The Capacity Scheduler
reads this file when starting, and also when an administrator modifies the capacity-
scheduler.xml file and then reloads the settings by running the following command:

yarn rmadmin -refreshQueues

This command can only be run by cluster administrators. Administrator privileges are
configured with the yarn.admin.acl property on the ResourceManager.

1.2. Setting up Queues
The fundamental unit of scheduling in YARN is a queue. The capacity of each queue
specifies the percentage of cluster resources that are available for applications submitted



hdp-yarn-resource-management August 29, 2016

2

to the queue. Queues can be set up in a hierarchy that reflects the database structure,
resource requirements, and access restrictions required by the various organizations,
groups, and users that utilize cluster resources.

For example, suppose that a company has three organizations: Engineering, Support, and
Marketing. The Engineering organization has two sub-teams: Development and QA. The
Support organization has two sub-teams: Training and Services. And finally, the Marketing
organization is divided into Sales and Advertising. The following image shows the queue
hierarchy for this example:

Each child queue is tied to its parent queue with the
yarn.scheduler.capacity.<queue-path>.queues configuration property in the
capacity-scheduler.xml file. The top-level "support", "engineering", and "marketing" queues
would be tied to the "root" queue as follows:

Property: yarn.scheduler.capacity.root.queues

Value: support,engineering,marketing

Example:

<property>
 <name>yarn.scheduler.capacity.root.queues</name>
 <value>support,engineering,marketing</value>
 <description>The top-level queues below root.</description>
</property>

Similarly, the children of the "support" queue would be defined as follows:

Property: yarn.scheduler.capacity.support.queues

Value: training,services

Example:

<property>
 <name>yarn.scheduler.capacity.support.queues</name>
 <value>training,services</value>



hdp-yarn-resource-management August 29, 2016

3

 <description>child queues under support</description>
</property>

The children of the "engineering" queue would be defined as follows:

Property: yarn.scheduler.capacity.engineering.queues

Value: development,qa

Example:

<property>
 <name>yarn.scheduler.capacity.engineering.queues</name>
 <value>development,qa</value>
 <description>child queues under engineering</description>
</property>

And the children of the "marketing" queue would be defined as follows:

Property: yarn.scheduler.capacity.marketing.queues

Value: sales,advertising

Example:

<property>
 <name>yarn.scheduler.capacity.marketing.queues</name>
 <value>sales,advertising</value>
 <description>child queues under marketing</description>
</property>

1.2.1. Hierarchical Queue Characteristics

• There are two types of queues: parent queues and leaf queues.

• Parent queues enable the management of resources across organizations and sub-
organizations. They can contain more parent queues or leaf queues. They do not
themselves accept any application submissions directly.

• Leaf queues are the queues that live under a parent queue and accept applications.
Leaf queues do not have any child queues, and therefore do not have any configuration
property that ends with ".queues".

• There is a top-level parent root queue that does not belong to any organization, but
instead represents the cluster itself.

• Using parent and leaf queues, administrators can specify capacity allocations for various
organizations and sub-organizations.

1.2.2. Scheduling Among Queues

Hierarchical queues ensure that guaranteed resources are first shared among the sub-
queues of an organization before any remaining free resources are shared with queues



hdp-yarn-resource-management August 29, 2016

4

belonging to other organizations. This enables each organization to have control over the
utilization of its guaranteed resources.

• At each level in the hierarchy, every parent queue keeps the list of its child queues in
a sorted manner based on demand. The sorting of the queues is determined by the
currently used fraction of each queue’s capacity (or the full-path queue names if the
reserved capacity of any two queues is equal).

• The root queue understands how the cluster capacity needs to be distributed among the
first level of parent queues and invokes scheduling on each of its child queues.

• Every parent queue applies its capacity constraints to all of its child queues.

• Leaf queues hold the list of active applications (potentially from multiple users) and
schedules resources in a FIFO (first-in, first-out) manner, while at the same time adhering
to capacity limits specified for individual users.

1.3. Controlling Access to Queues with ACLs
Access-control lists (ACLs) can be used to restrict user and administrator access to queues.
Application submission can really only happen at the leaf queue level, but an ACL
restriction set on a parent queue will be applied to all of its descendant queues.

Note

To enable ACLs, you must set the value of the yarn.acl.enable property in
yarn-site.xml to true. The default value of this property is false.

In the Capacity Scheduler, ACLs are configured by granting queue access to a list of users
and groups with the acl_submit_applications property. The format of the list
is "user1,user2 group1,group2" -- a comma-separated list of users, followed by a space,
followed by a comma-separated list of groups.

The value of acl_submit_applications can also be set to "*" (asterisk) to allow access
to all users and groups, or can be set to "" (space character) to block access to all users and
groups.

As mentioned previously, ACL settings on a parent queue are applied to all of its
descendant queues. Therefore, if the parent queue uses the "*" (asterisk) value (or is not
specified) to allow access to all users and groups, its child queues cannot restrict access.
Similarly, before you can restrict access to a child queue, you must first set the parent queue
to "" (space character) to block access to all users and groups.

For example, the following properties would set the root acl_submit_applications value
to "" (space character) to block access to all users and groups, and also restrict access to
its child "support" queue to the users "sherlock" and "pacioli" and the members of the "cfo-
group" group:

<property>
 <name>yarn.scheduler.capacity.root.acl_submit_applications</name>
 <value> </value>
</property>



hdp-yarn-resource-management August 29, 2016

5

<property>
 <name>yarn.scheduler.capacity.root.support.acl_submit_applications</name>
 <value>sherlock,pacioli cfo-group</value>
</property>

A separate ACL can be used to control the administration of queues at various levels.
Queue administrators can submit applications to the queue, kill applications in the queue,
and obtain information about any application in the queue (whereas normal users are
restricted from viewing all of the details of other users' applications).

Administrator ACLs are configured with the acl_administer_queue property. ACLs
for this property are inherited from the parent queue if not specified. For example, the
following properties would set the root acl_administer_queue value to "" (space
character) to block access to all users and groups, and also grant administrator access to
its child "support" queue to the users "sherlock" and "pacioli" and the members of the "cfo-
group" group:

<property>
 <name>yarn.scheduler.capacity.root.acl_administer_queue</name>
 <value> </value>
</property>

<property>
 <name>yarn.scheduler.capacity.root.support.acl_administer_queue</name>
 <value>sherlock,pacioli cfo-group</value>
</property>

1.4. Default Queue Mapping Based on User or
Group

Administrators can define a default mapping policy to specify that applications submitted
by users are automatically submitted to queues. With a default mapping policy, users are
not required to specify the queue name when submitting their applications. The default
mapping policy can be configured to be overridden if the queue name is specified for the
submitted application.

Queue mapping is defined using a comma-separated list of mapping assignments. The
order of the mapping assignments list is important -- in cases where mulitple mapping
assignments are used, the Capacity Scheduler processes the mapping assignments in left-to-
right order to determine which mapping assignment to use first.

The Queue mapping assignment is defined using the
yarn.scheduler.capacity.queue-mappings property in the capacity-
scheduler.xml file. Queue mapping assignments can be defined for a user (using "u") or
for a group of users (using "g"). Each mapping assignment type is described in the following
sections.

1.4.1. Configuring Queue Mapping for Users and Groups to
Specific Queues

To specify that all applications submitted by a specific user are submitted to a specific
queue, use the following mapping assignment:



hdp-yarn-resource-management August 29, 2016

6

u:user1:queueA

This defines a mapping assignment for applications submitted by the "user1" user to be
submitted to queue "queueA" by default.

To specify that all applications submitted by a specific group of users are submitted to a
specific queue, use the following mapping assignment:

g:group1:queueB

This defines a mapping assignment for applications submitted by any user in the group
"group1" to be submitted to queue "queueB" by default.

The Queue Mapping definition can consist of multiple assignments, in order of priority.

Consider the following example:

<property>
  <name>yarn.scheduler.capacity.queue-mappings</name>
  <value>u:maria:engineering,g:webadmins:weblog</value>
</property>

In this example there are two queue mapping assignments. The u:maria:engineering
mapping will be respected first, which means all applications submitted by the user
"maria" will be submitted to the "engineering" queue . The g:webadmins:weblog
mapping will be processed after the first mapping -- thus, even if user "maria" belongs to
the "webadmins" group, applications submitted by "maria" will still be submitted to the
"engineering" queue.

1.4.2. Configuring Queue Mapping for Users and Groups to
Queues with the Same Name

To specify that all applications are submitted to the queue with the same name as a group,
use this mapping assignment:

u:%user:%primary_group

Consider the following example configuration. On this cluster, there are two groups:
"marketing" and "engineering". Each group has the following users:

In "marketing", there are 3 users: "angela", "rahul", and "dmitry".

In "engineering", there are 2 users: "maria" and "greg".

<property> 
  <name>yarn.scheduler.capacity.queue-mappings</name>
  <value>u:%user:%primary_group</value> 
</property>

With this queue mapping, any application submitted by members of the "marketing"
group -- "angela", "rahul", or "dmitry" -- will be submitted to the "marketing" queue. Any
application submitted by members of the "engineering" group -- "maria" or "greg" -- will be
submitted to the "engineering" queue.



hdp-yarn-resource-management August 29, 2016

7

To specify that all applications are submitted to the queue with the same name as a user,
use this mapping assignment:

u:%user:%user

This requires that queues are set up with the same name as the users. With this queue
mapping, applications submitted by user "greg" will be submitted to the queue "greg".

1.4.3. Enabling Override of Default Queue Mappings

If configured, you can override default queue mappings and submit applications that are
specified for queues, other than those defined in the default queue mappings. Override
default queue mapping is disabled (set to false) by default.

<property>
    <name>yarn.scheduler.capacity.queue-mappings-override.enable</name>
    <value>false</value>
    <description>
      If a queue mapping is present and override is set to true, it will
 override the queue value specified
      by the user. This can be used by administrators to place jobs in queues
      that are different than the one specified by the user.
      The default is false - user can specify to a non-default queue.
    </description>
</property>

To enable queue mapping override, set the property to true in the capacity-
scheduler.xml file.

Consider the following example in the case where queue mapping override has been
enabled:

<property>
    <name>yarn.scheduler.capacity.queue-mappings</name>
    <value>u:maria:engineering,g:webadmins:weblog</value>
</property> 

If user "maria" explicitly submits an application to the "marketing" queue, the default
queue assignment of "engineering" is overridden, and the application is submitted to the
"marketing" queue.

1.5. Managing Cluster Capacity with Queues
The Capacity Scheduler is designed to allow organizations to share compute clusters using
the very familiar notion of FIFO (first-in, first-out) queues. YARN does not assign entire
nodes to queues. Queues own a fraction of the capacity of the cluster, and this specified
queue capacity can be fulfilled from any number of nodes in a dynamic fashion.

Scheduling is the process of matching resource requirements -- of multiple applications from
various users, and submitted to different queues at multiple levels in the queue hierarchy
-- with the free capacity available on the nodes in the cluster. Because total cluster capacity
can vary, capacity configuration values are expressed as percents.



hdp-yarn-resource-management August 29, 2016

8

The capacity property can be used by administrators to allocate a percentage of cluster
capacity to a queue. The following properties would divide the cluster resources between
the Engineering, Support, and Marketing organizations in a 6:1:3 ratio (60%, 10%, and
30%).

Property: yarn.scheduler.capacity.root.engineering.capacity

Value: 60

Property: yarn.scheduler.capacity.root.support.capacity

Value: 10

Property: yarn.scheduler.capacity.root.marketing.capacity

Value: 30

Now suppose that the Engineering group decides to split its capacity between the
Development and QA sub-teams in a 1:4 ratio. That would be implemented by setting the
following properties:

Property:yarn.scheduler.capacity.root.engineering.development.capacity

Value: 20

Property: yarn.scheduler.capacity.root.engineering.qa.capacity

Value: 80

Note

The sum of capacities at any level in the hierarchy must equal 100%. Also, the
capacity of an individual queue at any level in the hierarchy must be 1% or
more (you cannot set a capacity to a value of 0).

The following image illustrates this cluster capacity configuration:

1.6. Resource Distribution Workflow
During scheduling, queues at any level in the hierarchy are sorted in the order of their
current used capacity, and available resources are distributed among them starting with
queues that are currently the most under-served. With respect to capacities alone, the
resource scheduling has the following workflow:



hdp-yarn-resource-management August 29, 2016

9

• The more under-served a queue is, the higher the priority it receives during resource
allocation. The most under-served queue is the queue with the least ratio of used
capacity as compared to the total cluster capacity.

• The used capacity of any parent queue is defined as the aggregate sum of used
capacity of all of its descendant queues, recursively.

• The used capacity of a leaf queue is the amount of resources used by the allocated
Containers of all of the applications running in that queue.

• Once it is decided to give a parent queue the currently available free resources, further
scheduling is done recursively to determine which child queue gets to use the resources --
based on the previously described concept of used capacities.

• Further scheduling happens inside each leaf queue to allocate resources to applications in
a FIFO order.

• This is also dependent on locality, user level limits, and application limits.

• Once an application within a leaf queue is chosen, scheduling also happens within the
application. Applications may have different priorities of resource requests.

• To ensure elasticity, capacity that is configured but not utilized by any queue due to lack
of demand is automatically assigned to the queues that are in need of resources.

1.7. Resource Distribution Workflow Example
Suppose our cluster has 100 nodes, each with 10 GB of memory allocated for YARN
Containers, for a total cluster capacity of 1000 GB (1 TB). According to the previously
described configuration, the Engineering organization is assigned 60% of the cluster
capacity, i.e., an absolute capacity of 600 GB. Similarly, the Support organization is assigned
100 GB, and the Marketing organization gets 300 GB.

Under the Engineering organization, capacity is distributed between the Development
team and the QA team in a in a 1:4 ratio. So Development gets 120 GB, and 480 GB is
assigned to QA.

Now consider the following timeline of events:

• Initially, the entire "engineering" queue is free with no applications running, while the
"support" and "marketing" queues are utilizing their full capacities.

• Users Sid and Hitesh first submit applications to the "development" leaf queue. Their
applications are elastic and can run with either all of the resources available in the cluster,
or with a subset of cluster resources (depending upon the state of the resource-usage).

• Even though the "development" queue is allocated 120 GB, Sid and Hitesh are each
allowed to occupy 120 GB, for a total of 240 GB.

• This can happen despite the fact that the "development" queue is configured to be run
with a capacity of 120 GB. Capacity Scheduler allows elastic sharing of cluster resources
for better utilization of available cluster resources. Since there are no other users in the
"engineering" queue, Sid and Hitesh are allowed to use the available free resources.



hdp-yarn-resource-management August 29, 2016

10

• Next, users Jian, Zhijie and Xuan submit more applications to the "development" leaf
queue. Even though each is restricted to 120 GB, the overall used capacity in the queue
becomes 600 GB -- essentially taking over all of the resources allocated to the "qa" leaf
queue.

• User Gupta now submits an application to the "qa" queue. With no free resources
available in the cluster, his application must wait.

• Given that the "development" queue is utilizing all of the available cluster resources,
Gupta may or may not be able to immediately get back the guaranteed capacity of his
"qa" queue -- depending upon whether or not preemption is enabled.

• As the applications of Sid, Hitesh, Jian, Zhijie, and Xuan finish running and resources
become available, the newly available Containers will be allocated to Gupta’s application.

This will continue until the cluster stabilizes at the intended 1:4 resource usage ratio for the
"development" and "qa" queues.

From this example, you can see that it is possible for abusive users to submit applications
continuously, and thereby lock out other queues from resource allocation until Containers
finish running or get preempted. To avoid this scenario, Capacity Scheduler supports limits
on the elastic growth of any queue. For example, to restrict the "development" queue from
monopolizing the "engineering" queue capacity, an administrator can set a the maximum-
capacity property:

Property:
yarn.scheduler.capacity.root.engineering.development.maximum-
capacity

Value: 40

Once this is set, users of the "development" queue can still go beyond their capacity of 120
GB, but they will not be allocated any more than 40% of the "engineering" parent queue's
capacity (i.e., 40% of 600 GB = 240 GB).

The capacity and maximum-capacity properties can be used to control sharing and elasticity
across the organizations and sub-organizations utilizing a YARN cluster. Administrators
should balance these properties to avoid strict limits that result in a loss of utilization, and
to avoid excessive cross-organization sharing.

Capacity and maximum capacity settings can be dynamically changed at run-time using
yarn rmadmin -refreshQueues.

1.8. Setting User Limits
The minimum-user-limit-percent property can be used to set the minimum
percentage of resources allocated to each leaf queue user. For example, to enable equal
sharing of the "services" leaf queue capacity among five users, you would set the minimum-
user-limit property to 20%:

Property: yarn.scheduler.capacity.root.support.services.minimum-user-
limit-percent



hdp-yarn-resource-management August 29, 2016

11

Value: 20

This setting determines the minimum limit that any user’s share of the queue capacity can
shrink to. Irrespective of this limit, any user can come into the queue and take more than
his or her allocated share if there are idle resources available.

The following table shows how the queue resources are adjusted as users submit jobs to a
queue with a minimum-user-limit-percent value of 20%:

• Queue resources are adjusted in the same manner for a single user submitting multiple
jobs in succession. If no other users are requesting queue resources, the first job would
receive 100% of the queue capacity. When the user submits a second job, each job
receives 50% of queue capacity. When the user submits a third job, each job receives 33%
of queue capacity. If a second user then submits a job, each job would receive 25% of
queue capacity. When the number of jobs submitted by all users reaches a total of five,
each job will receive 20% of queue capacity, and subsequent users must wait for queue
capacity to free up (assuming preemption is not enabled).

• The Capacity Scheduler also manages resources for decreasing numbers of users. As
users’ applications finish running, other existing users with outstanding requirements
begin to reclaim that share.

• Note that despite this sharing among users, the FIFO application scheduling order of
Capacity Scheduler does not change. This guarantees that users cannot monopolize
queues by submitting new applications continuously. Applications (and thus the
corresponding users) that are submitted first always get a higher priority than
applications that are submitted later.

Capacity Scheduler’s leaf queues can also use the user-limit-factor property to
control user resource allocations. This property denotes the fraction of queue capacity that
any single user can consume up to a maximum value, regardless of whether or not there
are idle resources in the cluster.

Property:  yarn.scheduler.capacity.root.support.user-limit-factor

Value: 1

The default value of "1" means that any single user in the queue can at maximum only
occupy the queue’s configured capacity. This prevents users in a single queue from
monopolizing resources across all queues in a cluster. Setting the value to "2" would restrict



hdp-yarn-resource-management August 29, 2016

12

the queue's users to twice the queue’s configured capacity. Setting it to a value of 0.5
would restrict any user from using resources beyond half of the queue capacity.

These settings can also be dynamically changed at run-time using yarn rmadmin -
refreshQueues.

1.9. Application Reservations
The Capacity Scheduler is responsible for matching free resources in the cluster with the
resource requirements of an application. Many times, a scheduling cycle occurs such that
even though there are free resources on a node, they are not sized large enough to satisfy
the application waiting for a resource at the head of the queue. This typically happens with
high-memory applications whose resource demand for Containers is much larger than the
typical application running in the cluster. This mismatch can lead to starving these resource-
intensive applications.

The Capacity Scheduler reservations  feature addresses this issue as follows:

• When a node reports in with a finished Container, the Capacity Scheduler selects an
appropriate queue to utilize the newly available resources based on capacity and
maximum capacity settings.

• Within that selected queue, the Capacity Scheduler looks at the applications in a
FIFO order along with the user limits. Once a needy application is found, the Capacity
Scheduler tries to see if the requirements of that application can be met by the node’s
free capacity.

• If there is a size mismatch, the Capacity Scheduler immediately creates a reservation on
the node for the application’s required Container.

• Once a reservation is made for an application on a node, those resources are not used
by the Capacity Scheduler for any other queue, application, or Container until the
application reservation is fulfilled.

• The node on which a reservation is made reports back when enough Containers finish
running such that the total free capacity on the node now matches the reservation size.
When that happens, the Capacity Scheduler marks the reservation as fulfilled, removes it,
and allocates a Container on the node.

• In some cases another node fulfills the resources required by the application, so the
application no longer needs the reserved capacity on the first node. In this situation, the
reservation is simply cancelled.

To prevent the number of reservations from growing in an unbounded manner, and to
avoid any potential scheduling deadlocks, the Capacity Scheduler maintains only one active
reservation at a time on each node.

1.10. Using Flexible Scheduling Policies
The default ordering policy in Capacity Scheduler is FIFO (First-In, First-Out). FIFO generally
works well for predicable, recurring batch jobs. but sometimes not as well for on-demand



hdp-yarn-resource-management August 29, 2016

13

or exploratory workloads. For these types of jobs, Fair Sharing is often a better choice.
Flexible scheduling policies enable you to assign FIFO or Fair ordering polices for different
types of workloads on a per-queue basis.

1.10.1. FIFO vs. Fair Sharing

Batch Example

In this example, two queues have the same resources available. One uses the FIFO ordering
policy, and the the other uses the Fair Sharing policy. A user submits three jobs to each
queue one right after another, waiting just long enough for each job to start. The first job
uses 6x the resource limit in the queue, the second 4x, and last 2x.

• In the FIFO queue, the 6x job would start and run to completion, then the 4x job would
start and run to completion, and then the 2x job. They would start and finish in the order
6x, 4x, 2x.

• In the Fair queue, the 6x job would start, then the 4x job, and then the 2x job. All three
would run concurrently, with each using 1/3 of the available application resources. They
would typically finish in the following order: 2x, 4x, 6x.

Ad Hoc Plus Batch Example

In this example, a job using 10x the queue resources is running. After the job is halfway
complete, the same user starts a second job needing 1x the queue resources.

• In the FIFO queue, the 10x job will run until it no longer uses all queue resources (map
phase complete, for example), and then the 1x job will start.

• In the Fair queue, the 1x job will start, run, and complete as soon as possible – picking up
resources from the 10x job by attrition.

1.10.2. Configuring Queue Ordering Policies

Ordering policies are configured in capacity-scheduler.xml.

To specify ordering policies on a per-queue basis, set the following property to fifo or
fair. The default setting is fifo.

<property>
  <name>yarn.scheduler.capacity.<queue-path>.ordering-policy</name>
  <value>fair</value>
</property>

You can use the following property to enable size-based weighting of resource allocation.
When this property is set to true, queue resources are assigned to individual applications
based on their size, rather than providing an equal share of queue resources to all
applications regardless of size. The default setting is false.

<property>
<name>yarn.scheduler.capacity.<queue-path>.ordering-policy.fair.enable-size-
based-weight</name>
<value>true</value>
</property>



hdp-yarn-resource-management August 29, 2016

14

1.10.3. Best Practices for Ordering Policies

• Ordering policies are configured on a per-queue basis, with the default ordering policy
set to FIFO. Fairness is usually best for on-demand, interactive, or exploratory workloads,
while FIFO can be more efficient for predictable, recurring batch processing. You
should segregate these different types of workloads into queues configured with the
appropriate ordering policy.

• In queues supporting both large and small applications, large applications can potentially
"starve" (not receive sufficient resources). To avoid this scenario, use different queues for
large and small jobs, or use size-based weighting to reduce the natural tendency of the
ordering logic to favor smaller applications.

• Use the yarn.scheduler.capacity.<queue-path>.maximum-am-
resource-percent property to restrict the number of concurrent applications
running in the queue to avoid a scenario in which too many applications are
running simultaneously. Limits on each queue are directly proportional to
their queue capacities and user limits. This property is specified as a float, for
example: 0.5 = 50%. The default setting is 10%. This property can be set for all
queues using the yarn.scheduler.capacity.maximum-am-resource-
percent property, and can also be overridden on a per-queue basis using the
yarn.scheduler.capacity.<queue-path>.maximum-am-resource-percent
property.

1.11. Starting and Stopping Queues
Queues in YARN can be in two states: RUNNING or STOPPED. A RUNNING state indicates
that a queue can accept application submissions, and a STOPPED queue does not accept
application submissions. The default state of any configured queue is RUNNING.

In Capacity Scheduler, parent queues, leaf queues, and the root queue can all be stopped.
For an application to be accepted at any leaf queue, all the queues in the hierarchy all the
way up to the root queue must be running. This means that if a parent queue is stopped,
all of the descendant queues in that hierarchy are inactive, even if their own state is
RUNNING.

The following example sets the value of the state property of the "support" queue to
RUNNING:

Property: yarn.scheduler.capacity.root.support.state

Value: RUNNING

Administrators can use the ability to stop and drain applications in a queue for a number of
reasons, such as when decommissioning a queue and migrating its users to other queues.
Administrators can stop queues at run-time, so that while current applications run to
completion, no new applications are admitted. Existing applications can continue until they
finish running, and thus the queue can be drained gracefully without any end-user impact.

Administrators can also restart the stopped queues by modifying the state configuration
property and then refreshing the queue using yarn rmadmin -refreshQueues as
previously described.



hdp-yarn-resource-management August 29, 2016

15

1.12. Setting Application Limits
To avoid system-thrash due to an unmanageable load -- caused either by malicious users,
or by accident -- the Capacity Scheduler enables you to place a static, configurable limit on
the total number of concurrently active (both running and pending) applications at any
one time. The maximum-applications configuration property is used to set this limit, with a
default value of 10,000:

Property: yarn.scheduler.capacity.maximum-applications

Value: 10000

The limit for running applications in any specific queue is a fraction of this total limit,
proportional to its capacity. This is a hard limit, which means that once this limit is reached
for a queue, any new applications to that queue will be rejected, and clients will have to
wait and retry later. This limit can be explicitly overridden on a per-queue basis with the
following configuration property:

Property:  yarn.scheduler.capacity.<queue-path>.maximum-applications

Value:  absolute-capacity * yarn.scheduler.capacity.maximum-
applications

There is another resource limit that can be used to set a maximum percentage of cluster
resources allocated specifically to ApplicationMasters. The maximum-am-resource-
percent property has a default value of 10%, and exists to avoid cross-application
deadlocks where significant resources in the cluster are occupied entirely by the Containers
running ApplicationMasters. This property also indirectly controls the number of concurrent
running applications in the cluster, with each queue limited to a number of running
applications proportional to its capacity.

Property:  yarn.scheduler.capacity.maximum-am-resource-percent

Value: 0.1

As with maximum-applications, this limit can also be overridden on a per-queue basis:

Property:  yarn.scheduler.capacity.<queue-path>.maximum-am-resource-
percent

Value: 0.1

All of these limits ensure that no single application, user, or queue can cause catastrophic
failure, or monopolize the cluster and cause excessive degradation of cluster performance.

1.13. Preemption
As mentioned previously, a scenario can occur in which a queue has a guaranteed level
of cluster resources, but must wait to run applications because other queues are utilizing
all of the available resources. If Preemption is enabled, higher-priority applications do not
have to wait because lower priority applications have taken up the available capacity.
With Preemption enabled, under-served queues can begin to claim their allocated cluster
resources almost immediately, without having to wait for other queues' applications to
finish running.



hdp-yarn-resource-management August 29, 2016

16

1.13.1. Preemption Workflow
Preemption is governed by a set of capacity monitor policies, which must be enabled by
setting the yarn.resourcemanager.scheduler.monitor.enable property to
"true". These capacity monitor policies apply Preemption in configurable intervals based on
defined capacity allocations, and in as graceful a manner as possible. Containers are only
killed as a last resort. The following image demonstrates the Preemption workflow:

1.13.2. Preemption Configuration
The following properties in the /etc/hadoop/conf/yarn-site.xml file on the
ResourceManager host are used to enable and configure Preemption.

• Property: yarn.resourcemanager.scheduler.monitor.enable

Value:  true

Description: Setting this property to "true" enables Preemption. It enables a set of
periodic monitors that affect the Capacity Scheduler. This default value for this property
is "false" (disabled).

• Property: yarn.resourcemanager.scheduler.monitor.policies

Value: 
org.apache.hadoop.yarn.server.resourcemanager.monitor.capacity.ProportionalCapacityPreemptionPolicy

Description: The list of SchedulingEditPolicy classes that interact with
the scheduler. The only policy currently available for preemption is the
“ProportionalCapacityPreemptionPolicy”.



hdp-yarn-resource-management August 29, 2016

17

• Property:
yarn.resourcemanager.monitor.capacity.preemption.monitoring_interval

Value:3000

Description: The time in milliseconds between invocations of this policy. Setting this value
to a longer time interval will cause the Capacity Monitor to run less frequently.

• Property:
yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill

Value:15000

Description: The time in milliseconds between requesting a preemption from an
application and killing the container. Setting this to a higher value will give applications
more time to respond to preemption requests and gracefully release Containers.

• Property:
yarn.resourcemanager.monitor.capacity.preemption.total_preemption_per_round

Value: 0.1

Description: The maximum percentage of resources preempted in a single round.
You can use this value to restrict the pace at which Containers are reclaimed from the
cluster. After computing the total desired preemption, the policy scales it back to this
limit. This should be set to (memory-of-one-NodeManager)/(total-cluster-memory). For
example, if one NodeManager has 32 GB, and the total cluster resource is 100 GB, the
total_preemption_per_round should set to 32/100 = 0.32. The default value is 0.1 (10%).

• Property:
yarn.resourcemanager.monitor.capacity.preemption.natural_termination_factor

Value: 0.2

Description: Similar to total_preemption_per_round, you can apply this factor to slow
down resource preemption after the preemption target is computed for each queue (for
example, “give me 5 GB back from queue-A”). For example, if 5 GB is needed back, in the
first cycle preemption takes back 1 GB (20% of 5GB), 0.8 GB (20% of the remaining 4 GB)
in the next, 0.64 GB (20% of the remaining 3.2 GB) next, and so on. You can increase this
value to speed up resource reclamation. The default value is 0.2, meaning that at most
20% of the target capacity is preempted in a cycle.

Note

For more information about Preemption, see Better SLAS Via Resource
Preemption in the YARN Capacity Scheduler.

1.14. Scheduler User Interface
You can use the Scheduler page in the Hadoop User Interface (UI) page to view the status
and settings of Capacity Scheduler queues. The following image shows the Hadoop UI
Scheduler page (http://<hostname>:8088/cluster/scheduler) with the "support" queue
selected:

https://hortonworks.com/blog/better-slas-via-resource-preemption-in-yarns-capacityscheduler/
https://hortonworks.com/blog/better-slas-via-resource-preemption-in-yarns-capacityscheduler/


hdp-yarn-resource-management August 29, 2016

18



hdp-yarn-resource-management August 29, 2016

19

2. CGroups
You can use CGroups to isolate CPU-heavy processes in a Hadoop cluster. If you are using
CPU scheduling, you should also use CGroups to constrain and manage CPU processes. If
you are not using CPU scheduling, do not enable CGroups.

When you enable CPU scheduling, queues are still used to allocate cluster resources,
but both CPU and memory are taken into consideration using a scheduler that utilizes
Dominant Resource Fairness (DRF). In the DRF model, resource allocation takes into
account the dominant resource required by a process. CPU-heavy processes (such as
Storm-on-YARN) receive more CPU and less memory. Memory-heavy processes (such as
MapReduce) receive more memory and less CPU. The DRF scheduler is designed to fairly
distribute memory and CPU resources among different types of processes in a mixed-
workload cluster.

CGroups compliments CPU scheduling by providing CPU resource isolation. It enables you to
set limits on the amount of CPU resources granted to individual YARN containers, and also
lets you set a limit on the total amount of CPU resources used by YARN processes.

CGroups represents one aspect of YARN resource management capabilities that includes
CPU scheduling, node labels, archival storage, and memory as storage. If CPU scheduling is
used, CGroups should be used along with it to constrain and manage CPU processes.

2.1. Enabling CGroups
CGroups is a Linux kernel feature. Currently HDP supports CGroups on RHEL6 and Centos6.
HDP does not support the default CGroups on Centos7 or RHEL7. However, Centos7 and
RHEL7 are supported if you set up your own CGroups. At this time there is no CGroups
equivalent for Windows. CGroups are not enabled by default on HDP. CGroups require that
the HDP cluster be Kerberos enabled.

Note

On RHEL7, the cpu and cpuacct controllers are managed together by
default. The default directory is /sys/fs/cgroup/cpu,cpuacct. Due to
the parsing logic of the container-executor, the presence of the comma in this
path may lead to failures when initializing the NodeManager (when using the
LinuxContainerExecutor).

To avoid this issue, create your own directory (such as /sys/fs/cgroup/
hadoop/cpu) and set the yarn.nodemanager.linux-container-
executor.cgroups.mount property to true. This will allow the
NodeManager to mount the cpu controller, and YARN will be able to enforce
CPU limits.

If you would like to mount CGroups yourself, you should
set the yarn.nodemanager.linux-container-
executor.cgroups.mount property to false and ensure that the
hierarchy specified in the yarn.nodemanager.linux-container-
executor.cgroups.hierarchy property exists in the mount location. You
must also ensure that there are no commas anywhere in the path names.



hdp-yarn-resource-management August 29, 2016

20

Enable CGroups

On Centos 6, CGroups are not set up by default. Run the following commands to set up
CGroups:

yum install libcgroup
sudo mkdir /cgroup
mount -t cgroup -o cpu cpu /cgroup

Set the following properties in the /etc/hadoop/conf/yarn-site.xml file on the
ResourceManager and NodeManager hosts:

Property: yarn.nodemanager.container-executor.class

Value:
org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor

Example:

<property>
 <name>yarn.nodemanager.container-executor.class</name>
 <value>org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor</
value>
</property>

Property: yarn.nodemanager.linux-container-executor.group

Value: hadoop

Example:

<property>
 <name>yarn.nodemanager.linux-container-executor.group</name>
 <value>hadoop</value>
</property>

Property: yarn.nodemanager.linux-container-executor.resources-
handler.class

Value:
org.apache.hadoop.yarn.server.nodemanager.util.CgroupsLCEResourcesHandler

Example:

<property>
 <name>yarn.nodemanager.linux-container-executor.resources-handler.class</
name>
 <value>org.apache.hadoop.yarn.server.nodemanager.util.
CgroupsLCEResourcesHandler</value>
</property>

Property: yarn.nodemanager.linux-container-executor.cgroups.hierarchy

Value: /yarn

Example:

<property>



hdp-yarn-resource-management August 29, 2016

21

 <name>yarn.nodemanager.linux-container-executor.cgroups.hierarchy</name>
 <value>/yarn</value>
</property>

Property: yarn.nodemanager.linux-container-executor.cgroups.mount

Value: true

Example:

<property>
 <name>yarn.nodemanager.linux-container-executor.cgroups.mount</name>
 <value>true</value>
</property>

Property: yarn.nodemanager.linux-container-executor.cgroups.mount-
path

Value: /cgroup

Example:

<property>
 <name>yarn.nodemanager.linux-container-executor.cgroups.mount-path</name>
 <value>/cgroup</value>
</property>

Set the Percentage of CPU used by YARN

Set the percentage of CPU that can be allocated for YARN containers. In most cases, the
default value of 100% should be used. If you have another process that needs to run on a
node that also requires CPU resources, you can lower the percentage of CPU allocated to
YARN to free up resources for the other process.

Property: yarn.nodemanager.resource.percentage-physical-cpu-limit

Value: 100

Example:

<property>
 <name>yarn.nodemanager.resource.percentage-physical-cpu-limit</name>
 <value>100</value>
</property>

Set Flexible or Strict CPU limits

CPU jobs are constrained with CPU scheduling and CGroups enabled, but by default these
are flexible limits. If spare CPU cycles are available, containers are allowed to exceed the
CPU limits set for them. With flexible limits, the amount of CPU resources available for
containers to use can vary based on cluster usage -- the amount of CPU available in the
cluster at any given time.

You can use CGroups to set strict limits on CPU usage. When strict limits are enabled, each
process receives only the amount of CPU resources it requests. With strict limits, a CPU
process will receive the same amount of cluster resources every time it runs.



hdp-yarn-resource-management August 29, 2016

22

Strict limits are not enabled (set to false) by default. To enable strict CPU limits, set the
following property to true.

Property: yarn.nodemanager.linux-container-executor.cgroups.strict-
resource-usage

Value: true

Example:

 <property>
 <name>yarn.nodemanager.linux-container-executor.cgroups.strict-resource-
usage</name>
 <value>true</value>
 </property>
    

Note

Irrespective of whether this property is true or false, at
no point will total container CPU usage exceed the limit set in
yarn.nodemanager.resource.percentage-physical-cpu-limit.

2.2. Using CGroups
Strict CGroup CPU limits can be used to constrain CPU processes in mixed workload clusters.

One example of a mixed workload is a cluster that runs both MapReduce and Storm-on-
YARN. MapReduce is not CPU-constrained (MapReduce containers do not ask for much
CPU). Storm-on-YARN is CPU-constrained: its containers ask for more CPU than memory.
As you start adding Storm jobs along with MapReduce jobs, the DRF scheduler attempts to
balance memory and CPU resources, but as more CPU-intensive Storm jobs are added, they
may begin to take up the majority of the cluster CPU resources.

You can use CGroups along with CPU scheduling to help manage mixed workloads.
CGroups provide isolation for CPU-heavy processes such as Storm-on-YARN, thereby
enabling you to predictably plan and constrain the CPU-intensive Storm containers.

When you enable strict CGroup CPU limits, each resource gets only what it asks for, even
if there is extra CPU available. This would be useful for scenarios involving charge-backs or
strict SLA enforcement, where you always need to know exactly what percentage or CPU is
being used.

Also, enabling strict CPU limits would make job performance predictable, whereas without
setting strict limits a CPU-intensive job would run faster when the cluster was not under
heavy use, but slower when more jobs were running in the cluster. Strict CPU limits would
therefore also be useful for benchmarking.

You could also use node labels in conjunction with CGroups and CPU scheduling to restrict
Storm-on-YARN jobs to a subset of cluster nodes.

If you are using CGroups and want more information on CPU performance, you can review
the statistics available in the /cgroup/cpu/yarn/cpu.stat file.



hdp-yarn-resource-management August 29, 2016

23

3. Using CPU Scheduling to Allocate
Resources

This chapter describes how to allocate shared CPU and memory resources among users and
groups in a Hadoop cluster.

CPU scheduling represents just one aspect of YARN resource management, which also
includes CGroups, node labels, archival storage, and memory as storage. CGroups should be
used with CPU scheduling to constrain and manage CPU processes.

Note

You should use CPU scheduling only in a Linux environment, because there is no
isolation mechanism (CGroups equivalent) for Windows.

3.1. About YARN Resource Allocation
As described in the Capacity Scheduler guide, the fundamental unit of scheduling in YARN
is the queue. The capacity of each queue specifies the percentage of cluster resources that
are available for applications submitted to the queue. You can set up queues in a hierarchy
that reflects the database structure, resource requirements, and access restrictions required
by the various organizations, groups, and users that utilize your cluster resources. When
you use the default resource calculator (DefaultResourceCalculator) resources are
allocated based on memory alone.

You can enable CPU scheduling is enabled by using the Dominant Resource Calculator
(DominantResourceCalculator) rather than the default resource calculator. The
Dominant Resource Calculator is based on the Dominant Resource Fairness (DRF) model of
resource allocation.

DRF uses the concept of the dominant resource to compare multidimensional resources.
The idea is that in a multiresource environment, resource allocation should be determined
by the dominant share of an entity (user or queue), which is the maximum share that the
entity has been allocated of any resource (memory or CPU). Essentially, the DRF seeks to
maximize the minimum dominant share across all entities.

For example, if user A runs CPU-heavy tasks and user B runs memory-heavy tasks, the DRF
attempts to equalize CPU share of user A with the memory share of user B. In this case, the
DRF allocates more CPU and less memory to the tasks run by user A, and allocates less CPU
and more memory to the tasks run by user B. In the single resource case -- where all jobs are
requesting the same resources -- the DRF reduces to max-min fairness for that resource.

When the Dominant Resource Calculator, queues are still used to allocate cluster resources,
but both CPU and memory are taken into consideration. In the DRF model, resource
allocation takes into account the dominant resource required by a process. The Dominant
Resource Calculator schedules both CPU-heavy and memory-heavy processes on the same
node. CPU-heavy processes (such as Storm-on-YARN) receive more CPU and less memory.
Memory-heavy processes (such as MapReduce) receive more memory and less CPU. The DRF



hdp-yarn-resource-management August 29, 2016

24

scheduler is designed to fairly distribute memory and CPU resources among different types
of processes in a mixed-workload cluster.

For more information about DRF, see Dominant Resource Fairness: Fair Allocation of
Mulitple Resources.

3.2. Configuring CPU Scheduling
Use the following steps to configure CPU scheduling.

1. Enable CPU Scheduling in capacity-scheduler.xml

CPU scheduling is not enabled by default. To enable CPU sheduling, set the following
property in the /etc/hadoop/conf/capacity-scheduler.xml file on the
ResourceManager and NodeManager hosts:

Replace the DefaultResourceCalculator portion of the <value> string with
DominantResourceCalculator:

Property:yarn.scheduler.capacity.resource-calculator

Value:org.apache.hadoop.yarn.util.resource.DominantResourceCalculator

<property>
 <name>yarn.scheduler.capacity.resource-calculator</name>
 <!-- <value>org.apache.hadoop.yarn.util.resource.
DefaultResourceCalculator</value> -->
 <value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</
value>
</property>

2. Set Vcores in yarn-site.xml

In YARN, vcores (virtual cores) are used to normalize CPU resources across the cluster.
The yarn.nodemanager.resource.cpu-vcores value sets the number of CPU
cores that can be allocated for containers.

You should set the number of vcores to match the number of physical CPU cores on the
NodeManager hosts. Set the following property in the /etc/hadoop/conf/yarn-
site.xml file on the ResourceManager and NodeManager hosts:

Property: yarn.nodemanager.resource.cpu-vcores

Value: <number_of_physical_cores>

Example:

<property>
 <name>yarn.nodemanager.resource.cpu-vcores</name>
<value>16</value>
</property>

You also should enable CGroups along with CPU scheduling. CGroups are used as the
isolation mechanism for CPU processes. With CGroups strict enforcement activated, each
CPU process receives only the resources it requests. Without CGroups activated, the DRF
scheduler attempts to balance the load, but unpredictable behavior may occur.

https://people.csail.mit.edu/matei/papers/2011/nsdi_drf.pdf
https://people.csail.mit.edu/matei/papers/2011/nsdi_drf.pdf


hdp-yarn-resource-management August 29, 2016

25

3.3. Using CPU Scheduling
MapReduce Jobs Only

If you primarily run MapReduce jobs on your cluster, you probably will not see much
of a change in performance if you enable CPU scheduling. The dominant resource for
MapReduce is memory, so the DRF scheduler continues to balance MapReduce jobs in a
manner similar to the default resource calculator. In the case of a single resource, the DRF
reduces to max-min fairness for that resource.

Mixed Workloads

One example of a mixed workload is a cluster that runs both MapReduce and Storm on
YARN. MapReduce is not CPU-constrained (MapReduce containers do require much CPU).
Storm on YARN is CPU-constrained: its containers require more CPU than memory. As you
start adding Storm jobs along with MapReduce jobs, the DRF scheduler tries to balance
memory and CPU resources, but you may start to see some degradation in performance. If
you then add more CPU-intensive Storm jobs, individual jobs start to take longer to run as
the cluster CPU resources are consumed.

CGroups can be used along with CPU scheduling to help manage mixed workloads.
CGroups provides isolation for CPU-intensive processes such as Storm on YARN, thereby
enabling you to predictably plan and constrain the CPU-intensive Storm containers.

You can also use node labels in conjunction with CPU scheduling and CGroups to restrict
Storm on YARN jobs to a subset of cluster nodes.



hdp-yarn-resource-management August 29, 2016

26

4. Log Aggregation for Long-running
Applications

This chapter describes how to use log aggregation to collect logs for long-running YARN
applications.

In Hadoop logs are collected for an application only when it finishes running. This works
well for applications that only run for a short time, but is not ideal for long-running
applications such as Storm and HBase running on YARN using Slider.

If an application runs for days or weeks, it is useful to collect log information while the
application is running. This log information can be used to:

• Debug hardware and software issues

• Review and optimize application performance

• Review application resource utilization

A long-running application may generate a large amount of log information. The
application can use log rotation to prevent the log file from becoming excessively large. The
YARN NodeManager will periodically aggregate the latest completed log files and make
them accessible.

4.1. Enable Log Aggregation
Log aggregation is enabled in the yarn-site.xml file. The yarn.log-aggregation-
enable property enables log aggregation for running applications. You must
also specify a log aggregation time interval using the yarn.nodemanager.log-
aggregation.roll-monitoring-interval-seconds property. The logs for running
applications are aggregated at the specified interval. The minimum monitoring interval
value is 3600 seconds (one hour).

You can also set the monitoring interval value to -1 to disable log aggregation for running
applications, and wait until the application finishes running to enable log aggregation.

 <property>
 <name>yarn.log-aggregation-enable</name>
 <value>true</value>
 </property>

 <property>
 <name>yarn.nodemanager.log-aggregation.roll-monitoring-interval-seconds</
name>
 <value>3600</value>
 </property>         
        

Note

Clients should roll over their logs using a log roll-over application such as log4j.



hdp-yarn-resource-management August 29, 2016

27

4.2. Including and Excluding Log Files in YARN
Applications Running on Slider

For YARN applications running on Slider, log aggregation is specified in the global section
of the resources.json: configuration file:

"global": { "yarn.log.include.patterns": "", "yarn.log.exclude.patterns": ""
 },

If yarn.log.include.patterns is empty, all container logs are included. You can
specify the name(s) of log files (for example, agent.log) that you do not want to
aggregate using yarn.log.exclude.patterns.

For example, the following resources.json property settings will aggregate all logs
beginning with "std", but exclude the stderr log.

"global": { "yarn.log.include.patterns": "std*", "yarn.log.exclude.patterns":
 "stderr"
 },

The aggregated logs are stored in the HDFS /app-logs/ directory. The following
command can be used to retrieve the logs: yarn logs -applicationId <app_id>

Note

For applications deployed directly on YARN, you can use
LogAggregationContext inside ApplicationSubmissionContext to
specify the include and exclude patterns.



hdp-yarn-resource-management August 29, 2016

28

5. Node Labels
This chapter describes how to use Node labels to run YARN applications on cluster nodes
that have a specified node label. Node labels can be set as exclusive or shareable:

• exclusive -- Access is restricted to applications running in queues associated with the
node label.

• sharable -- If idle capacity is available on the labeled node, resources are shared with all
applications in the cluster.

As discussed in Capacity Scheduler, the fundamental unit of scheduling in YARN is the
queue. The capacity of each queue specifies the percentage of cluster resources that are
available for applications submitted to the queue. Queues can be set up in a hierarchy
that reflects the resource requirements and access restrictions required by the various
organizations, groups, and users that utilize cluster resources.

Node labels enable you partition a cluster into sub-clusters so that jobs can be run on nodes
with specific characteristics. For example, you can use node labels to run memory-intensive
jobs only on nodes with a larger amount of RAM. Node labels can be assigned to cluster
nodes, and specified as exclusive or shareable. You can then associate node labels with
capacity scheduler queues. Each node can have only one node label.

Exclusive Node Labels

When a queue is associated with one or more exclusive node labels, all applications
submitted by the queue have exclusive access to nodes with those labels.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_yarn-resource-management/content/ch_capacity_scheduler.html


hdp-yarn-resource-management August 29, 2016

29

Shareable Node Labels

When a queue is associated with one or more shareable (non-exclusive) node labels,
all applications submitted by the queue get first priority on nodes with those labels.
If idle capacity is available on the labeled nodes, resources are shared with other non-
labeled applications in the cluster. Non-labeled applications will be preempted if labeled
applications request new resources on the labeled nodes.



hdp-yarn-resource-management August 29, 2016

30

Queues without Node Labels

If no node label is assigned to a queue, the applications submitted by the queue can run on
any node without a node label, and on nodes with shareable node labels if idle resources
are available.

Preemption

Labeled applications that request labeled resources preempt non-labeled applications
on labeled nodes. If a labeled resource is not explicitly requested, the normal rules of
preemption apply. Non-labeled applications cannot preempt labeled applications running
on labeled nodes.

5.1. Configuring Node Labels
To enable node labels, make the following configuration changes on the YARN
ResourceManager host.

1. Create a Label Directory in HDFS

Use the following commands to create a "node-labels" directory in which to store the node
labels in HDFS.

sudo su hdfs
hadoop fs -mkdir -p /yarn/node-labels
hadoop fs -chown -R yarn:yarn /yarn



hdp-yarn-resource-management August 29, 2016

31

hadoop fs -chmod -R 700 /yarn

-chmod -R 700 specifies that only the yarn user can access the "node-labels" directory.

You can then use the following command to confirm that the directory was created in
HDFS.

hadoop fs -ls /yarn

The new node label directory should appear in the list returned by the following command.
The owner should be yarn, and the permission should be drwx.

Found 1 items
drwx------ - yarn yarn 0 2014-11-24 13:09 /yarn/node-labels

Use the following commands to create a /user/yarn directory that is required by the
distributed shell.

hadoop fs -mkdir -p /user/yarn
hadoop fs -chown -R yarn:yarn /user/yarn
hadoop fs -chmod -R 700 /user/yarn

The preceding commands assume that the yarn user will be submitting jobs with the
distributed shell. To run the distributed shell with a different user, create the user, then
use /user/<user_name> in the file paths of the commands above to create a new user
directory.

2. Configure YARN for Node Labels

Add the following properties to the /etc/hadoop/conf/yarn-site.xml file on the
ResourceManager host.

Set the following property to enable node labels:

 <property>
      <name>yarn.node-labels.enabled</name>
      <value>true</value>
</property>

Set the following property to reference the HDFS node label directory:

<property>
      <name>yarn.node-labels.fs-store.root-dir</name>
      <value>hdfs://<host>:<port>/<absolute_path_to_node_label_directory></
value>
 </property>

For example:

<property>
     <name>yarn.node-labels.fs-store.root-dir</name>
     <value>hdfs://node-1.example.com:8020/yarn/node-labels/</value>
</property>

3. Start or Restart the YARN ResourceManager

In order for the configuration changes in the yarn-site.xml file to take effect, you must
stop and restart the YARN ResourceManager if it is running, or start the ResourceManager



hdp-yarn-resource-management August 29, 2016

32

if it is not running. To start or stop the ResourceManager, use the applicable commands in
Controlling HDP Services Manually.

4. Add Node Labels

Use the following command format to add node labels. You should run these commands
as the yarn user. Node labels must be added before they can be assigned to nodes and
associated with queues.

sudo su yarn
yarn rmadmin -addToClusterNodeLabels "<label1>(exclusive=<true|false>),
<label2>(exclusive=<true|false>)"

Note

If exclusive is not specified, the default value is true.

For example, the following commands add the node label "x" as exclusive, and "y" as
shareable (non-exclusive).

sudo su yarn
yarn rmadmin -addToClusterNodeLabels "x(exclusive=true),y(exclusive=false)"

You can use the yarn cluster --list-node-labels command to confirm that node
labels have been added:

[root@node-1 /]# yarn cluster --list-node-labels
15/07/11 13:55:43 INFO impl.TimelineClientImpl: Timeline service address:
 http://node-1.example.com:8188/ws/v1/timeline/
15/07/11 13:55:43 INFO client.RMProxy: Connecting to ResourceManager at
 node-1.example.com/240.0.0.10:8050
Node Labels: <x:exclusivity=true>,<y:exclusivity=false>

You can use the following command format to remove node labels:

yarn rmadmin -removeFromClusterNodeLabels "<label1>,<label2>"

Note

You cannot remove a node label if it is associated with a queue.

5. Assign Node Labels to Cluster Nodes

Use the following command format to add or replace node label assignments on cluster
nodes:

yarn rmadmin -replaceLabelsOnNode "<node1>:<port>=<label1> <node2>:<port>=
<label2>"

For example, the following commands assign node label "x" to "node-1.example.com", and
node label "y" to "node-2.example.com".

sudo su yarn
yarn rmadmin -replaceLabelsOnNode "node-1.example.com=x node-2.example.com=y"

Note

You can only assign one node label to each node. Also, if you do not specify a
port, the node label change will be applied to all NodeManagers on the host.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_reference/content/ch_controlling_hdp_svcs_manually.html


hdp-yarn-resource-management August 29, 2016

33

To remove node label assignments from a node, use -replaceLabelsOnNode, but do
not specify any labels. For example, you would use the following commands to remove the
"x" label from node-1.example.com:

sudo su yarn
yarn rmadmin -replaceLabelsOnNode "node-1.example.com"

6. Associating Node Labels with Queues

Now that we have created node labels, we can associate them with queues in the /etc/
hadoop/conf/capacity-scheduler.xml file.

You must specify capacity on each node label of each queue, and also ensure that the sum
of capacities of each node-label of direct children of a parent queue at every level is equal
to 100%. Node labels that a queue can access (accessible node labels of a queue) must be
the same as, or a subset of, the accessible node labels of its parent queue.

Example:

Assume that a cluster has a total of 8 nodes. The first 3 nodes (n1-n3) have node label=x,
the next 3 nodes (n4-n6) have node label=y, and the final 2 nodes (n7, n8) do not have any
node labels. Each node can run 10 containers.

The queue hierarchy is as follows:

Assume that queue “a” can access node labels “x” and “y”, and queue “b” can only access
node label “y”. By definition, nodes without labels can be accessed by all queues.

Consider the following example label configuration for the queues:

capacity(a) = 40, capacity(a, label=x) = 100, capacity(a, label=y) = 50; capacity(b) = 60,
capacity(b, label=y) = 50

This means that:

• Queue “a” can access 40% of the resources on nodes without any labels, 100% of the
resources on nodes with label=x, and 50% of the resources on nodes with label=y.



hdp-yarn-resource-management August 29, 2016

34

• Queue “b” can access 60% of the resources on nodes without any labels, and 50% of the
resources on nodes with label=y.

You can also see that for this configuration:

capacity(a) + capacity(b) = 100 capacity(a, label=x) + capacity(b, label=x) (b cannot access
label=x, it is 0) = 100 capacity(a, label=y) + capacity(b, label=y) = 100

For child queues under the same parent queue, the sum of the capacity for each label
should equal 100%.

Similarly, we can set the capacities of the child queues a1, a2, and b1:

a1 and a2: capacity(a.a1) = 40, capacity(a.a1, label=x) =30, capacity(a.a1, label=y)
=50 capacity(a.a2) = 60, capacity(a.a2, label=x) =70, capacity(a.a2, label=y) =50 b1:
capacity(b.b1) = 100 capacity(b.b1, label=y) = 100

You can see that for the a1 and a2 configuration:

capacity(a.a1) + capacity(a.a2) = 100 capacity(a.a1, label=x) + capacity(a.a2, label=x) = 100
capacity(a.a1, label=y) + capacity(a.a2, label=y) = 100

How many resources can queue a1 access?

Resources on nodes without any labels: Resource = 20 (total containers that can
be allocated on nodes without label, in this case n7, n8) * 40% (a.capacity) * 40%
(a.a1.capacity) = 3.2 (containers)

Resources on nodes with label=x

Resource = 30 (total containers that can be allocated on nodes with label=x, in this case n1-
n3) * 100% (a.label-x.capacity) * 30% = 9 (containers)

To implement this example configuration, you would add the following properties in the /
etc/hadoop/conf/capacity-scheduler.xml file.

 <property>
 <name>yarn.scheduler.capacity.root.queues</name>
 <value>a,b</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.accessible-node-labels.x.capacity</name>
 <value>100</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.accessible-node-labels.y.capacity</name>
 <value>100</value>
 </property>

 <!-- configuration of queue-a -->
 <property>
 <name>yarn.scheduler.capacity.root.a.accessible-node-labels</name>
 <value>x,y</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.capacity</name>



hdp-yarn-resource-management August 29, 2016

35

 <value>40</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.accessible-node-labels.x.capacity</name>
 <value>100</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.accessible-node-labels.y.capacity</name>
 <value>50</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.queues</name>
 <value>a1,a2</value>
 </property>

 <!-- configuration of queue-b -->
 <property>
 <name>yarn.scheduler.capacity.root.b.accessible-node-labels</name>
 <value>y</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.b.capacity</name>
 <value>60</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.b.accessible-node-labels.y.capacity</name>
 <value>50</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.b.queues</name>
 <value>b1</value>
 </property>

 <!-- configuration of queue-a.a1 -->
 <property>
 <name>yarn.scheduler.capacity.root.a.a1.accessible-node-labels</name>
 <value>x,y</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.a1.capacity</name>
 <value>40</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.a1.accessible-node-labels.x.capacity</
name>
 <value>30</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.a1.accessible-node-labels.y.capacity</
name>
 <value>50</value>



hdp-yarn-resource-management August 29, 2016

36

 </property>

 <!-- configuration of queue-a.a2 -->
 <property>
 <name>yarn.scheduler.capacity.root.a.a2.accessible-node-labels</name>
 <value>x,y</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.a2.capacity</name>
 <value>60</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.a2.accessible-node-labels.x.capacity</
name>
 <value>70</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.a.a2.accessible-node-labels.y.capacity</
name>
 <value>50</value>
 </property>

 <!-- configuration of queue-b.b1 -->
 <property>
 <name>yarn.scheduler.capacity.root.b.b1.accessible-node-labels</name>
 <value>y</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.b.b1.capacity</name>
 <value>100</value>
 </property>

 <property>
 <name>yarn.scheduler.capacity.root.b.b1.accessible-node-labels.y.capacity</
name>
 <value>100</value>
 </property>

7. Refresh Queues

After adding or updating queue node label properties in the capacity-scheduler.xml
file, you must run the following commands to refresh the queues:

sudo su yarn
yarn rmadmin -refreshQueues 

8. Confirm Node Label Assignments

You can use the following commands to view information about node labels.

• List all running nodes in the cluster: yarn node -list

Example:



hdp-yarn-resource-management August 29, 2016

37

[root@node-1 /]# yarn node -list
14/11/21 12:14:06 INFO impl.TimelineClientImpl: Timeline service address:
 http://node-1.example.com:8188/ws/v1/timeline/
14/11/21 12:14:07 INFO client.RMProxy: Connecting to ResourceManager at
 node-1.example.com/240.0.0.10:8050
Total Nodes:3
 Node-Id Node-State Node-Http-Address Number-of-Running-Containers
node-3.example.com:45454 RUNNING node-3.example.com:50060 0
node-1.example.com:45454 RUNNING node-1.example.com:50060 0
node-2.example.com:45454 RUNNING node-2.example.com:50060 0

• List all node labels in the cluster: yarn cluster --list-node-labels

Example:

[root@node-1 /]# yarn cluster --list-node-labels
15/07/11 13:55:43 INFO impl.TimelineClientImpl: Timeline service address:
 http://node-1.example.com:8188/ws/v1/timeline/
15/07/11 13:55:43 INFO client.RMProxy: Connecting to ResourceManager at
 node-1.example.com/240.0.0.10:8050
Node Labels: <x:exclusivity=true>,<y:exclusivity=false>

• List the status of a node (includes node labels): yarn node -status <Node_ID>

Example:

[root@node-1 /]# yarn node -status node-1.example.com:45454
14/11/21 06:32:35 INFO impl.TimelineClientImpl: Timeline service address:
 http://node-1.example.com:8188/ws/v1/timeline/
14/11/21 06:32:35 INFO client.RMProxy: Connecting to ResourceManager at
 node-1.example.com/240.0.0.10:8050
Node Report : 
 Node-Id : node-1.example.com:45454
 Rack : /default-rack
 Node-State : RUNNING
 Node-Http-Address : node-1.example.com:50060
 Last-Health-Update : Fri 21/Nov/14 06:32:09:473PST
 Health-Report : 
 Containers : 0
 Memory-Used : 0MB
 Memory-Capacity : 1408MB
 CPU-Used : 0 vcores
 CPU-Capacity : 8 vcores
 Node-Labels : x

Node labels are also displayed in the ResourceManager UI on the Nodes and Scheduler
pages.

Specifying a Child Queue with No Node Label

If no node label is specified for a child queue, it inherits the node label setting of its parent
queue. To specify a child queue with no node label, use a blank space for the value of the
node label.

For example:



hdp-yarn-resource-management August 29, 2016

38

 <property>
 <name>yarn.scheduler.capacity.root.b.b1.accessible-node-labels</name>
 <value> </value>
 </property>
 

Setting a Default Queue Node Label Expression

You can set a default node label on a queue. The default node label will be used if no label
is specified when the job is submitted.

For example, to set "x"as the default node label for queue "b1", you would add the
following property in the capacity-scheduler.xml file.

<property>
 <name>yarn.scheduler.capacity.root.b.b1.default-node-label-expression</name>
 <value>x</value>
</property> 

5.2. Using Node Labels
ResourceManger UI

The ResourceManager UI displays the node labels on the Node Labels page, the Nodes
page, and also on the Scheduler page.



hdp-yarn-resource-management August 29, 2016

39



hdp-yarn-resource-management August 29, 2016

40

Setting Node Labels when Submitting Jobs

You can use the following methods to specify node lablels when submitting jobs:

• ApplicationSubmissionContext.setNodeLabelExpression(<node_label_expression>)
-- sets the node label expression for all containers of the application.

• ResourceRequest.setNodeLabelExpression(<node_label_expression>)
-- sets the node label expression for individual resource
requests. This will override the node label expression set in
ApplicationSubmissionContext.setNodeLabelExpression(<node_label_expression>).

• Specify setAMContainerResourceRequest.setNodeLabelExpression in
ApplicationSubmissionContext to indicate the expected node label for the
ApplicationMaster container.

You can use one of these methods to specify a node label expression, and -queue to
specify a queue, when you submit YARN jobs using the distributed shell client. If the queue
has a label that satisfies the label expression, it will run the job on the labeled node(s). If
the label expression does not reference a label associated with the specified queue, the job
will not run and an error will be returned. If no node label is specified, the job will run only
on nodes without a node label, and on nodes with shareable node labels if idle resources
are available.



hdp-yarn-resource-management August 29, 2016

41

Note

You can only specify one node label in the .setNodeLabelExpression
methods.

For example, the following commands run a simple YARN distributed shell "sleep for a
long time" job. In this example we are asking for more containers than the cluster can
run so we can see which node the job runs on. We are specifying that the job should run
on queue "a1", which our user has permission to run jobs on. We are also using the -
node_label_expression parameter to specify that the job will run on all nodes with
label "x".

sudo su yarn
hadoop jar /usr/hdp/current/hadoop-yarn-client/hadoop-yarn-applications-
distributedshell.jar
 -shell_command "sleep 100" -jar /usr/hdp/current/hadoop-yarn-client/hadoop-
yarn-applications-distributedshell.jar
 -num_containers 30 -queue a1 -node_label_expression x 

If we run this job on the example cluster we configured previously, containers are allocated
on node-1, as this node has been assigned node label "x", and queue "a1" also has node
label "x":

The following commands run the same job that we specified for node label "x", but this
time we will specify queue "b1" rather than queue "a1".

sudo su yarn
hadoop jar /usr/hdp/current/hadoop-yarn-client/hadoop-yarn-applications-
distributedshell.jar
 -shell_command "sleep 100000" -jar /usr/hdp/current/hadoop-yarn-client/
hadoop-yarn-applications-distributedshell.jar
 -num_containers 30 -queue b1 -node_label_expression x

When we attempt to run this job on our example cluster, the job will fail with the following
error message because label "x" is not associated with queue "b1".

14/11/24 13:42:21 INFO distributedshell.Client: Submitting application to ASM
14/11/24 13:42:21 FATAL distributedshell.Client: Error running Client
org.apache.hadoop.yarn.exceptions.InvalidResourceRequestException: Invalid
 resource request, queue=b1 doesn't 
have permission to access all labels in resource request. labelExpression of
 resource request=x. Queue labels=y

MapReduce Jobs and Node Labels

Currently you cannot specify a node label when submitting a MapReduce job. However,
if you submit a MapReduce job to a queue that has a default node label expression, the
default node label will be applied to the MapReduce job.



hdp-yarn-resource-management August 29, 2016

42

Using default node label expressions tends to constrain larger portions of the cluster, which
at some point starts to become counter-productive for jobs -- such as MapReduce jobs --
that benefit from the advantages offered by distributed parallel processing.



hdp-yarn-resource-management August 29, 2016

43

6. Running Applications on YARN Using
Slider

Apache Slider lets you deploy distributed applications across a Hadoop cluster. Slider
leverages the YARN ResourceManager to allocate and distribute components of an
application across a cluster.

Key Slider features:

• Run applications on YARN without changing the application code (as long as the
application follows Slider developer guidelines). There is no need to develop a custom
Application Master or other YARN code.

• Use the application registry for publishing and discovery of dynamic metadata.

• Run multiple instances of applications with different configurations or versions in one
Hadoop cluster.

• Expand or shrink application component instances while an application is running.

• Transparently deploy applications in secure Kerberos clusters.

• Aggregate application logs from different containers.

• Run applications on a subset of cluster nodes using YARN node labels.

• Manage application, component, and container failures.

Slider leverages YARN capabilities to manage:

• Application recovery in cases of container failure

• Resource allocation (adding and removing containers)

6.1. System Requirements
Running Slider requires the following minimum system configuration:

• Hortonworks Data Platform 2.2

• Required Services: HDFS, YARN and ZooKeeper

• Oracle JDK 1.7 (64-bit)

• OpenSSL

• Python 2.6

6.2. Operating System Requirements
Slider is compatible with all operating systems supported by HDP.



hdp-yarn-resource-management August 29, 2016

44

Note

Accumulo on Slider is not supported on Windows, as Accumulo is not currently
supported on Windows.

6.3. Installing Apache Slider
• Recommended method:

To install Apache Slier using Ambari, select Actions > Add Service on the Ambari
dashboard, then use the Ambari Add Service wizard to install Apache Slider.

• Alternate method:

To install Apache Slider using the CLI, follow the instructions in the "Installing Apache
Slider" chapter of the Hortonworks CLI Installation Guide.

6.4. Additional Configuration Steps for Secure
Clusters

When running Slider on a secure cluster, you must perform the additional security
configuration steps described under "Security Options" on the Apache YARN Registry
Configuration page.

Note

You do not need to perform the steps described in the "Identifying the system
accounts hadoop.registry.system.acls" subsection. These steps are performed
automatically in HDP.

6.5. Running Applications on Slider
The following sections describe how to configure, load, start, and verify Slider applications.

The Slider Application Specification

Configuring a Slider application includes two specification components: the Resource
Specification (resources.json) and the Application Configuration (appConfig.json).

The Resource Specification

Slider needs to know what components (and how many components) are in an application
package to deploy.

As Slider creates each instance of a component in its own YARN container, it also needs to
know what to ask YARN for in terms of memory and CPU for those containers.

All this information goes into the Resources Specification file (“Resource Spec”) named
resources.json. The Resource Specification tells Slider how many instances of each
component in the application to deploy, and also the parameters for YARN.

Resource Specification Example -- Apache Memcached

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_reference/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_reference/content/ch_controlling_hdp_svcs_manually.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/registry/registry-configuration.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/registry/registry-configuration.html


hdp-yarn-resource-management August 29, 2016

45

{ "schema" : "http://example.org/specification/v2.0.0", "metadata" : {
 }, "global" : {
 }, "components": { "slider-appmaster": {
 }, "MEMCACHED": { "yarn.role.priority": "1", "yarn.component.instances": "1",
 "yarn.vcores": "1", "yarn.memory": "256"
 }
 }
}

The Application Configuration

The Application Configuration file includes parameters that are specific to the application,
rather than to YARN. The Application Configuration is applied to the default configuration
provided by the application definition and then handed off to the associated component
agent.

Application Configuration Example -- memcached

{ "schema": "http://example.org/specification/v2.0.0", "metadata": {
 }, "global": { "application.def": "jmemcached-1.0.0.zip", "java_home": "/
usr/jdk64/jdk1.7.0_45", "site.global.additional_cp": "/usr/hdp/current/hadoop-
client/lib/*", "site.global.xmx_val": "256m", "site.global.xms_val": "128m",
 "site.global.memory_val": "200M", "site.global.listen_port": "${MEMCACHED.
ALLOCATED_PORT}{PER_CONTAINER}"
 }, "components": { "slider-appmaster": { "jvm.heapsize": "256M"
 }
 }
} 

6.5.1. The Slider Application Package
The Slider application package includes all of the information needed to deploy a YARN
application using Slider. It includes the application configuration files, as well as all
application artifacts and the scripts required by the application.

Hortonworks provides the following application packages for Accumulo and HBase on
Linux:

centos6:

accumulo_pkg_url=http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/
2.4.2.0/slider-app-packages/accumulo/slider-accumulo-app-package-1.7.0.2.4.2.
0-258.zip
hbase_pkg_url=http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/2.
4.2.0/slider-app-packages/hbase/slider-hbase-app-package-1.1.2.2.4.2.0-258.zip

centos7:

accumulo_pkg_url=http://public-repo-1.hortonworks.com/HDP/centos7/2.x/updates/
2.4.2.0/slider-app-packages/accumulo/slider-accumulo-app-package-1.7.0.2.4.2.
0-258.zip
hbase_pkg_url=http://public-repo-1.hortonworks.com/HDP/centos7/2.x/updates/2.
4.2.0/slider-app-packages/hbase/slider-hbase-app-package-1.1.2.2.4.2.0-258.zip

suse11sp3

accumulo_pkg_url=http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/
2.4.2.0/slider-app-packages/accumulo/slider-accumulo-app-package-1.7.0.2.4.2.
0-258.zip



hdp-yarn-resource-management August 29, 2016

46

hbase_pkg_url=http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/2.
4.2.0/slider-app-packages/hbase/slider-hbase-app-package-1.1.2.2.4.2.0-258.zip

ubuntu12

accumulo_pkg_url=http://public-repo-1.hortonworks.com/HDP/ubuntu12/2.x/
updates/2.4.2.0/slider-app-packages/accumulo/slider-accumulo-app-package-1.7.
0.2.4.2.0-258.zip
hbase_pkg_url=http://public-repo-1.hortonworks.com/HDP/ubuntu12/2.x/updates/2.
4.2.0/slider-app-packages/hbase/slider-hbase-app-package-1.1.2.2.4.2.0-258.zip

ubuntu14

accumulo_pkg_url=http://public-repo-1.hortonworks.com/HDP/ubuntu14/2.x/
updates/2.4.2.0/slider-app-packages/accumulo/slider-accumulo-app-package-1.7.
0.2.4.2.0-258.zip
hbase_pkg_url=http://public-repo-1.hortonworks.com/HDP/ubuntu14/2.x/updates/2.
4.2.0/slider-app-packages/hbase/slider-hbase-app-package-1.1.2.2.4.2.0-258.zip

debian6

accumulo_pkg_url=http://public-repo-1.hortonworks.com/HDP/debian6/2.x/updates/
2.4.2.0/slider-app-packages/accumulo/slider-accumulo-app-package-1.7.0.2.4.2.
0-258.zip
hbase_pkg_url=http://public-repo-1.hortonworks.com/HDP/debian6/2.x/updates/2.
4.2.0/slider-app-packages/hbase/slider-hbase-app-package-1.1.2.2.4.2.0-258.zip

debian7

accumulo_pkg_url=http://public-repo-1.hortonworks.com/HDP/debian7/2.x/updates/
2.4.2.0/slider-app-packages/accumulo/slider-accumulo-app-package-1.7.0.2.4.2.
0-258.zip
hbase_pkg_url=http://public-repo-1.hortonworks.com/HDP/debian7/2.x/updates/2.
4.2.0/slider-app-packages/hbase/slider-hbase-app-package-1.1.2.2.4.2.0-258.zip

Note

As of HDP 2.3.0, Storm on Slider is no longer supported.

The HDP .msi installer file for Windows includes the application package for
HBase on Windows. Accumulo on Slider is not supported on Windows, as
Accumulo is not currently supported on Windows.

For more information on Apache Slider application packaging, see Apache Slider App
Packaging. For more information on creating a Slider application package for Memcached,
see Defining the Apache Slider package for YARN hosted jmemcached.

6.5.2. Install the Application Package
Use the following command format to install the application package on YARN.

/usr/hdp/current/slider-client/bin/./slider install-package --name <name> --
package <package_path_on_disk>

6.5.3. Start the Application
Once the steps above are completed, the Slider Command Line Interface (CLI) can be used
to start the application using the following command format:

http://slider.incubator.apache.org/docs/slider_specs/index.html
http://slider.incubator.apache.org/docs/slider_specs/index.html
http://slider.incubator.apache.org/docs/slider_specs/hello_world_slider_app.html


hdp-yarn-resource-management August 29, 2016

47

/usr/hdp/current/slider-client/bin/./slider create <application_name> --
template appConfig.json --resources resources.json

Default files (appConfig-default.json and resources-default.json) files are
included in each application package.

Note

You can create multiple instances of an application by running the Slider
create command with different application names. For example, you might
change configuration settings in appConfig.json and create a separate instance
to evaluate the new configuration.

6.5.4. Verify the Application
You can use the Slider status CLI command to verify the application launch:

/usr/hdp/current/slider-client/bin/./slider status <application_name>

You can also verify the successful launch of the application with the YARN Resource
Manager Web UI. In most instances, this UI is accessible via a web browser at port 8088 of
the Resource Manager Host:

The specific information for the running application is accessible via the
“ApplicationMaster” link that can be seen in the far right column of the row associated
with the running application (probably the top row):



hdp-yarn-resource-management August 29, 2016

48

6.5.5. Manage the Application Lifecycle
Once started, applications can be stopped, restarted, destroyed, and flexed as follows:

stop <name> [--force] [--wait time] [--message text]

Stops the application instance. The running application is stopped. Its settings are retained
in HDFS.

The --wait argument can specify a time in seconds to wait for the application instance to
be stopped.

The --force flag causes YARN asked directly to terminate the application instance. The --
message argument supplies an optional text message to be used in the request: this will
appear in the application's diagnostics in the YARN RM UI.

If an unknown (or already stopped) application instance is named, no error is returned.

Example:

/usr/hdp/current/slider-client/bin/./slider stop app1

start <name> [--wait milliseconds] [--out <filename>]  Start a stopped application instance,
recreating it from its previously saved state.

After the application is launched, if an --out argument specified a file, the "YARN
application report" will be saved as a .json document into the file specified.

Example

/usr/hdp/current/slider-client/bin/./slider start app1

destroy <name> Destroy a (stopped) application instance. Important: This deletes all
persistent data.

Example:

/usr/hdp/current/slider-client/bin/./slider destroy app1 

flex <name> [--component component count]* Flex the number of workers in an
application instance to the new value. If greater than before, new copies of the component
will be requested. If less, component instances will be destroyed.

This operation has a return value of 0 if the change was submitted. Changes are not
immediate and depend on the availability of resources in the YARN cluster

It returns -1 if there is no running application instance.

Examples:

slider flex app1 --component worker 8 --filesystem hdfs://<host>:<port>
slider flex app1 --component master 2 --filesystem hdfs://<host>:<port>

For more information on Slider CLI commands, see the Apache Slider documentation.

You can use the Slider help command to display a list of available commands.

[root@node-1 /]# /usr/hdp/current/slider-client/bin/./slider help
2014-10-31 09:20:10,852 [main] INFO client.SliderClient - Usage: slider 

http://slider.incubator.apache.org/docs/manpage.html


hdp-yarn-resource-management August 29, 2016

49

COMMAND [options] where COMMAND is one of
 am-suicide        Tell the Slider Application Master to simulate a 
                   process failure by terminating itself
 build             Build a Slider cluster specification -but do not start it
 create            Create a live Slider application
 update            Update template for a Slider application
 destroy           Destroy a frozen Slider application)
 diagnostics       Diagnose the configuration of the running slider 
                   application and slider client
 exists            Probe for an application running
 flex              Flex a Slider application
 stop              Stop a running application
 help              Print help information
 install-package   Install the application package in the home directory 
                   under sub-folder packages
 install-keytab    Install the Kerberos keytab file in the sub-folder 
                   'keytabs' of the user's Slider base directory
 kill-container    Kill a container in the application
 list              List running Slider applications
 registry          Query the registry of a YARN application
 resolve           Query the registry of a YARN application
 status            Get the status of an application
 start             Start a stopped application
 version           Print the Slider version information
Most commands print help when invoked without parameters
2014-10-31 09:20:10,856 [main] INFO util.ExitUtil - Exiting with status 0

Most commands display Help when invoked without parameters, similar to the usage
statement shown below:

[root@node-1 /]# slider status
2014-10-31 09:45:11,817 [main] ERROR main.ServiceLauncher - org.apache.
slider.core.exceptions.BadCommandArgumentsException: Not enough arguments 
for action: status Expected minimum 1 but got 0
Usage: slider status <application>
 --manager <manager>                Binding (usually hostname:port) 
                                          of the YARN resource manager 
                                          (optional)
 --basepath <basePath>              Slider base path on the filesystem 
                                          (optional)
 --filesystem <filesystemBinding>   Filesystem Binding (optional)
 -D <definitions>                   Definitions (optional)
 --debug                                  Debug mode (optional)
 -S <sysprops>                      System properties in the form name 
                                          value These are set after the JVM
 is 
                                          started. (optional)
 --out <output>                     Output file for the configuration 
                                          data (optional)

2014-10-31 09:45:11,826 [main] INFO util.ExitUtil - Exiting with status 40 
[root@node-1 /]#

6.5.6. The Application Registry

Each application publishes several artifacts that can be used by an application administrator
or an application client. Typical data published includes the applied configuration, links to
application JMX endpoint or monitoring UI, and log folders.



hdp-yarn-resource-management August 29, 2016

50

All published data is available at the publisher endpoint that is hosted by Application
Master launched by Slider. Here is an example of the publisher endpoint:

http://c6401.ambari.apache.org:47457/ws/v1/slider/publisher

From this endpoint, you can access several named property containing useful administrative
information.

Publisher URI Description

{publisher-endpoint}/slider/quicklinks Named URLs that the application publishes.

{publisher-endpoint}/slider/logfolders Log folders for the application components (YARN should be configured
to retain logs).

{publisher-endpoint}/slider/hbase-site Applied configurations by the application (for example, hbase-site).

Example output from /slider/quicklinks:

          
{ 
   "description": "QuickLinks", 
   "entries": { 
   "org.apache.slider.jmx": "http://c6401.ambari.apache.org:50154/api/cluster
         /summary", 
   "org.apache.slider.metrics": "http://c6401.ambari.apache.org/cgi-bin/rrd.
         py?c=Application2", 
   "org.apache.slider.monitor": "http://c6401.ambari.apache.org:41806", 
   "org.apache.slider.ganglia": "http://c6401.ambari.apache.org/ganglia?c=
         Application2"
   }, 
   "updated": 0, 
   "empty": false
}

6.6. Running HBase on YARN via Slider
Running HBase on YARN via Slider offers the following advantages:

• Easier installation and start-up.

• You can run mulitple HBase clusters on one Hadoop cluster.

• Process management (start/stop) is much easier with Slider.

• You can run different versions of HBase on the same Hadoop cluster.

• HBase cluster size is now a parameter that you can easily change.

6.6.1. Downloading and Installing the HBase Application
Package

To install the HBase Application Package:

1. Make a working directory for the HBase-on-Slider application package:

mkdir -p /usr/work/app-packages/hbase



hdp-yarn-resource-management August 29, 2016

51

2. Download the HBase-on-Slider application package for your operating system to
the /usr/work/app-packages/hbase directory. For example, use the following
command to download the centos6 version:

cd /usr/work/app-packages/hbase
wget http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/2.4.2.0/
slider-app-packages/hbase/slider-hbase-app-package-1.1.1.2.4.2.0-258.zip

For a complete list of available operating system application packages, see The Slider
Application Package.

3. Use the following command format to install the application package on YARN:

su <user>
/usr/hdp/current/slider-client/bin/./slider install-package --name HBASE --
package <package path>

Where <user> is the user who will create the HBase application instance.

For example, if you downloaded the HBase package to the /usr/work/app-
packages/hbase folder:

su <user>
/usr/hdp/current/slider-client/bin/./slider install-package --name HBASE --
package /usr/work/app-packages/hbase/2.4.2.0/slider-hbase-app-package-1.1.1.
2.4.2.0-258.zip

Note that the --name (in this case, "HBASE") should match the value of the <name>
element in the package metainfo.xml flle, and that the install destination in HDFS is in
the user's home directory under ./slider/package/HBASE/*.zip

6.6.2. Configuring HBase on YARN via Slider

Accessing the HBase Configuration Files

The HBase application package includes default application and resource specification
files. The package includes both non-secure (appConfig-default.json) and secure
(appConfig-secured-default.json) versions of the application specification. You
can save these files as another name, and then edit the files to customize the HBase
configuration.

You can use the unzip command to extract the HBase application and resource
specification files from the HBase-on-Slider application package. For example, you would
use the following command to extract the files from the HBase application package in the /
usr/work/app-packages/hbase directory:

unzip /usr/work/app-packages/hbase/slider-app-packages/hbase/2.4.2.0/slider-
hbase-app-package-1.1.1.2.4.2.0-258.zip appConfig-default.json -d /usr/work/
app-packages/hbase/
unzip /usr/work/app-packages/hbase/slider-app-packages/hbase/2.4.2.0/slider-
hbase-app-package-1.1.1.2.4.2.0-258.zip resources-default.json -d /usr/work/
app-packages/hbase/

You can use the following commands to copy and rename the default HBase application
and resource specification files in the /usr/work/app-packages/hbase/ directory:



hdp-yarn-resource-management August 29, 2016

52

cp /usr/work/app-packages/hbase/appConfig-default.json /usr/work/app-packages/
hbase/appConfig.json
cp /usr/work/app-packages/hbase/resources-default.json /usr/work/app-packages/
hbase/resources.json

The default configuration files should work as-is, but you can also edit the files to adjust the
HBase configuration.

6.6.3. Configuring HBase on YARN on Secure Clusters
As previously mentioned, the HBase-on-Slider application package includes both non-secure
(appConfig-default.json) and secure (appConfig-secured-default.json)
versions of the application specification.

On secure clusters, you should use the secure version of the application specification. The
security-related entries in the appConfig-secured.json file are listed below. You will
need to replace the values labeled "TODO" with the security settings for the cluster.

"site.hbase-site.hbase.coprocessor.master.classes": "org.apache.hadoop.hbase.
security.access.AccessController", "site.hbase-site.hbase.coprocessor.region.
classes" : "org.apache.hadoop.hbase.security.token.TokenProvider,org.apache.
hadoop.hbase.security.access.AccessController", "site.hbase-site.hbase.
regionserver.kerberos.principal": "${TODO-RS-PRINCIPAL}", "site.hbase-site.
hbase.regionserver.keytab.file": "${TODO-RS-KEYTAB}", "site.hbase-site.hbase.
master.kerberos.principal": "${TODO-MASTER-PRINCIPAL}", "site.hbase-site.
hbase.master.keytab.file": "${TODO-MASTER-KEYTAB}", "site.hbase-site.hbase.
rest.authentication.kerberos.keytab" : "${TODO-REST-AUTH-KEYTAB}", "site.
hbase-site.hbase.rest.kerberos.principal" : "${TODO-REST-PRINCIPAL}", "site.
hbase-site.hbase.rest.keytab.file" : "${TODO-REST-KEYTAB}", "site.hbase-site.
hbase.thrift.keytab.file" : "${TODO-THRIFT-KEYTAB}", "site.hbase-site.hbase.
thrift.kerberos.principal" : "${TODO-THRIFT-PRINCIPAL}", "site.hdfs-site.dfs.
namenode.kerberos.principal": "${TODO-NN-PRINCIPAL}", "site.hdfs-site.dfs.
namenode.kerberos.internal.spnego.principal": "${TODO-NN-SPNEGO-PRINCIPAL}",
 "site.hdfs-site.dfs.secondary.namenode.kerberos.principal": "${TODO-SNN-
PRINCIPAL}", "site.hdfs-site.dfs.secondary.namenode.kerberos.internal.spnego.
principal": "${TODO-SNN-SPNEGO-PRINCIPAL}", "site.hdfs-site.dfs.datanode.
kerberos.principal": "${TODO-DN-PRINCIPAL}",

Note: rest and thrift components are included above. The values in curly
 braces need to be filled out.
In components section: "slider-appmaster": { "jvm.heapsize": "256M", "slider.
am.keytab.local.path": "${TODO-HEADLESS-KEYTAB}", "slider.keytab.principal.
name": "${TODO-HEADLESS-PRINCIPAL}"
 },

Note

For more information on configuring HBase-on-Slider on secure clusters,
including information about keytab-associated properties and the available
keytab distribution options, see Apache Slider Security.

6.6.4. Components in HBase on YARN
You can specify the following components (also referred to as "roles") when deploying
HBase on YARN via Slider:

• HBASE_MASTER # This corresponds to HBase master process.

http://slider.incubator.apache.org/docs/security.html


hdp-yarn-resource-management August 29, 2016

53

• HBASE_REGIONSERVER # This corresponds to region server process.

• HBASE_REST # This corresponds to REST (aka Stargate) gateway.

• HBASE_THRIFT # This corresponds to Thrift gateway.

• HBASE_THRIFT2 # This corresponds to Thrift2 gateway.

The following is a sample resources.json file with each of these roles configured:

{ 
   "schema": "http://example.org/specification/v2.0.0", 
   "metadata": {
   }, 
   "global": { 
          "yarn.log.include.patterns": "", 
          "yarn.log.exclude.patterns": "", 
          "yarn.log.interval": "0"
   }, 
   "components": { 
          "HBASE_MASTER": { 
          "yarn.role.priority": "1", 
          "yarn.component.instances": "1"
          }, 
          "slider-appmaster": {
          }, 
          "HBASE_REGIONSERVER": { 
          "yarn.role.priority": "2", 
          "yarn.component.instances": "4"
          }, 
          "HBASE_THRIFT": { 
          "yarn.role.priority": "4", 
          "yarn.component.instances": "1", 
          "yarn.memory": "256"
          }, 
          "HBASE_THRIFT2": { 
          "yarn.role.priority": "5", 
          "yarn.component.instances": "0", 
          "yarn.memory": "256"
          }, 
          "HBASE_REST": { 
          "yarn.role.priority": "3", 
          "yarn.component.instances": "1", 
          "yarn.memory": "256"
          }
     }
}

Note

Thrift and Thrift2 provide similar functionality. You should use either Thrift or
Thrift2, but not both.

6.6.5. Launching an HBase Application Instance
Use the following command format to launch HBase:

su <user>



hdp-yarn-resource-management August 29, 2016

54

/usr/hdp/current/slider-client/bin/./slider create <hb_cluster_name> --
template appConfig.json --resources resources.json

Where <user> is the user who installed the HBase application package.

For example:

su <user>
/usr/hdp/current/slider-client/bin/./slider create hb1 --template /usr/work/
app-packages/hbase/appConfig.json --resources /usr/work/app-packages/hbase/
resources.json

Note

Cluster names may not include uppercase characters.

You can use the Slider CLI status command to verify the application launch:

/usr/hdp/current/slider-client/bin/./slider status <application_name>

You can also verify the successful launch of the HBase application with the YARN Resource
Manager Web UI. In most instances, this UI is accessible via a web browser at port 8088 of
the Resource Manager Host:

The specific information for the running application is accessible via the
“ApplicationMaster” link that can be seen in the far right column of the row associated
with the running application (probably the top row):



hdp-yarn-resource-management August 29, 2016

55

6.6.6. Deployment Considerations

For HA purposes, it is not advisable to deploy two Masters on the same host.

Thrift/Thrift2/REST gateways are likely to receive heavy traffic. They should be deployed on
dedicated hosts.

Memory Considerations for Running One Component on a Node

You can adjust the amount of memory given to a component to achieve mutual exclusion
of components, depending upon the NodeManager configuration on each node. Typically
all nodes have the same value independent of the actual memory.

Assuming the memory capacity for each NodeManager is known
(yarn.nodemanager.resource.memory-mb), you can configure the component to ask
for 51% (basically more than half) of the maximum capacity. You also need to ensure that
the maximum possible memory allocation (yarn.scheduler.maximum-allocation-
mb) allows that value.

For example, if yarn.nodemanager.resource.memory-mb =
yarn.scheduler.maximum-allocation-mb = 2048 Set yarn.memory = 1280 for the
RegionServer.

Then set the HBase Master/RegionServer max memory to be 256 MB less than that to allow
for the agent memory consumption # the agent should not be more than 100 MB but you
can just assume that it consumes ~256 MB. So you can set the HBase Master/RegionServer
variables for memory limit to 1024 MB.

Log Aggregation

Log aggregation is specified in the global section of resources.json:

"global": { 
                  "yarn.log.include.patterns": "", 
                  "yarn.log.exclude.patterns": "", 
                  "yarn.log.interval": "0"
     },

The yarn.log.interval unit is seconds.

You can specify the name(s) of log files (for example, agent.log) that you do not want to
aggregate using yarn.log.exclude.patterns.

The aggregated logs are stored in the HDFS /app-logs/ directory.

The following command can be used to retrieve the logs:

yarn logs -applicationId <app_id>

Reserving Nodes for HBase

You can use YARN node labels to reserve cluster nodes for applications and their
components.



hdp-yarn-resource-management August 29, 2016

56

Node labels are specified with the yarn.label.expression property. If no label is
specified, only non-labeled nodes are used when allocating containers for component
instances.

If label expression is specified for slider-appmaster, then it also becomes the default label
expression for all components. To take advantage of default label expression, leave out the
property (see HBASE_REGIONSERVER in the example). A label expression with an empty
string ("yarn.label.expression":"") is equivalent to nodes without labels.

For example, the following is a resources.json file for an HBase cluster that uses node
labels. The label for the application instance is "hbase1", and the label expression
for the HBASE_MASTER components is "hbase1_master". HBASE_REGIONSERVER
instances will automatically use label "hbase1". Alternatively, if you specify
("yarn.label.expression":"") for HBASE_REGIONSERVER then the containers will
only be allocated on nodes with no labels.

{ "schema": "http://example.org/specification/v2.0.0", 
  "metadata": {
  }, 
  "global": {
  }, 
  "components": { 
            "HBASE_MASTER": { 
                  "yarn.role.priority": "1", 
                  "yarn.component.instances": "1", 
                  "yarn.label.expression":"hbase1_master"
           }, 
           "HBASE_REGIONSERVER": { 
                  "yarn.role.priority": "1", 
                  "yarn.component.instances": "1",
           }, 
           "slider-appmaster": { 
                  "yarn.label.expression":"hbase1"
           }
     }
}
            

Specifically, for the above example you would need to:

• Create two node labels, "hbase1" and "hbase1_master" (using yarn rmadmin
commands)

• Assign the labels to nodes (using yarn rmadmin commands)

• Create a queue by defining it in the capacity-scheduler.xml configuration file.

• Allow the queue to access to the labels and ensure that appropriate min/max capacity is
assigned.

• Refresh the queues (yarn rmadmin -refreshQueues)

• Create the Slider application against the above queue using parameter --queue while
creating the application.

Retrieving Effective hbase-site.xml



hdp-yarn-resource-management August 29, 2016

57

Once HBase is running on Slider, you can use the following command to retrieve hbase-
site.xml so that your client can connect to the cluster:

slider registry --getconf hbase-site --name <cluster name> --format xml --
dest <path to local hbase-site.xml> --filesystem <hdfs namenode> --manager
 <resource manager>

Note that the hbase.tmp.dir in the returned file may be inside the YARN local directory
for the container (which is local to the host where the container is running).

For example:

 <property>
 <name>hbase.tmp.dir</name> <value>/grid/0/hadoop/yarn/
local/usercache/test/appcache/application_1413942326640_0001/
container_1413942326640_0001_01_000005/work/app/tmp</value>
 <source/>
 </property>

If the client does not have access to this directory, changing the hbase.tmp.dir to a
directory writable to the user would solve the permission issue.

Retrieving REST gateway for Slider HBase. You can retrieve quicklinks for Slider HBase
first. The "org.apache.slider.hbase.rest" entry would show hostname and port for REST
gateway.

Retrieving thrift gateway for Slider HBase You can retrieve quicklinks for Slider HBase
first. The "org.apache.slider.hbase.thrift" entry would show hostname and port for thrift
gateway.

Retrieving thrift2 gateway for Slider HBase You can retrieve quicklinks for Slider HBase
first. The "org.apache.slider.hbase.thrift2" entry would show hostname and port for thrift2
gateway.

Workaround for HBase Client Issue

After you create an HBase application instance in Slider, you can use the slider
registry command to retrieve the hbase-site.xml file:

slider registry --name hbase1 --getconf hbase-site --format xml --out hbase-
site.xml

The path of the hbase.tmp.dir property in the returned file will be inside the YARN local
directory for the container (which is local to the host where the container is running):

 <property>
 <name>hbase.tmp.dir</name> <value>/grid/0/hadoop/yarn/
local/usercache/test/appcache/application_1413942326640_0001/
container_1413942326640_0001_01_000005/work/app/tmp</value>
 <source/>
 </property>

The HBase client (specifically the HBase shell) expects to see a directory named "jars" in this
directory. If it is not there the HBase client attempts to create it, resulting in a failure to
perform shell operations:



hdp-yarn-resource-management August 29, 2016

58

[test@ip-10-0-0-66 hbase]$ hbase --config ./conf shell
...
hbase(main):001:0> status 'simple'
...
ERROR: Failed to create local dir /grid/0/hadoop/yarn/local/
usercache/test/appcache/application_1413942326640_0001/
container_1413942326640_0001_01_000005/work/app/tmp/local/jars,
 DynamicClassLoader failed to init

Workaround: Change the hbase.tmp.dir to a directory that is writable for the user
running "hbase shell" or to a directory which already has the "jars" directory.

6.7. Running Accumulo on YARN via Slider
Running Accumulo on YARN via Slider offers the following advantages:

• Easier installation and start-up.

• You can run multiple instances of Accumulo on one Hadoop cluster.

• Process management (start/stop) is much easier with Slider.

• You can run different versions of Accumulo on the same Hadoop cluster.

• You can take advantage of YARN features such as container restart and allocation
flexibility.

6.7.1. Downloading and Installing the Accumulo Application
Package

To install the Accumulo Application Package:

1. Make a working directory for the Accumulo-on-Slider application package:

mkdir -p /usr/work/app-packages/accumulo

2. Download the Accumulo-on-Slider application package for your operating system to the
/usr/work/app-packages/accumulo directory. For example, use the following
command to download the centos6 version:

cd /usr/work/app-packages/accumulo
wget http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/2.4.2.0/
slider-app-packages/accumulo/slider-accumulo-app-package-1.7.0.2.4.2.0-258.
zip

For a complete list of available operating system application packages, see The Slider
Application Package.

3. Use the following command format to install the application package on YARN:

su <user>
/usr/hdp/current/slider-client/bin/./slider install-package --name ACCUMULO
 --package <package path>



hdp-yarn-resource-management August 29, 2016

59

Where <user> is the user who will create the Accumulo application instance.

For example, if user "hw_qa" downloaded the Accumulo package to the /usr/work/
app-packages/accumulo folder:

su hw_qa
/usr/hdp/current/slider-client/bin/./slider install-package --name ACCUMULO
 --package /usr/work/app-packages/accumulo/sslider-app-packages/accumulo/
slider-accumulo-app-package-1.7.0.2.4.2.0-258.zip

Note that the --name (in this case, "ACCUMULO") should match the value of the
<name> element in the package metainfo.xml flle, and that the install destination in
HDFS is in the user's home directory under ./slider/package/ACCUMULO/*.zip

Note

Accumulo on Slider is not supported on Windows, as Accumulo is not currently
supported on Windows.

6.7.2. Configuring Accumulo on YARN

Accessing the Accumulo Configuration Files

The Accumulo application package includes default application and resource specification
files. The package includes both non-secure (appConfig-default.json) and secure
(appConfig-secured-default.json) versions of the application specification. You
can save these files as a another name, and then edit the files to customize the Accumulo
configuration.

You can use the unzip command to extract the Accumulo application and resource
specification files from the Accumulo-on-Slider application package. For example, you
would use the following command to extract the files from the Accumulo application
package in the /usr/work/app-packages/accumulo directory:

unzip /usr/work/app-packages/accumulo/slider-app-packages/accumulo/slider-
accumulo-app-package-1.7.0.2.4.2.0-258.zip appConfig-default.json -d /usr/
work/app-packages/accumulo
unzip /usr/work/app-packages/accumulo/slider-app-packages/accumulo/slider-
accumulo-app-package-1.7.0.2.4.2.0-258.zip resources-default.json -d /usr/
work/app-packages/accumulo

You can use the following commands to copy and rename the default Storm application
and resource specification files in the /usr/work/app-packages/accumulo directory:

cp /usr/work/app-packages/accumulo/appConfig-default.json /usr/work/app-
packages/accumulo/appConfig.json
cp /usr/work/app-packages/accumulo/resources-default.json /usr/work/app-
packages/accumulo/resources.json

Application Configuration for Accumulo on YARN

The following is an example of an appConfig.json file for Accumulo on YARN via Slider.
The basic properties to adjust for your system are the heap size, the Accumulo memory
properties, and the location of JAVA_HOME. The directories and classpaths are configured



hdp-yarn-resource-management August 29, 2016

60

properly for HDP in the default appConfig-default.json file, but you must set the
JAVA_HOME value in the "global" section of the appConfig.json file to match your
system JAVA_HOME setting.

{ 
    "schema": "http://example.org/specification/v2.0.0", 
    "metadata": {
    }, 
    "global": { "application.def": ".slider/package/ACCUMULO/slider-accumulo-
app-package-1.7.0.2.4.2.0-258.zip", 
    "java_home": "/usr/hadoop-jdk1.6.0_31", 
    "site.global.app_root": "${AGENT_WORK_ROOT}/app/install/accumulo-1.7.0.2.
4.2.0-258", 
    "site.global.app_user": "${USER}", 
    "site.global.user_group": "hadoop", 
    
    "site.accumulo-env.java_home": "${JAVA_HOME}", 
    "site.accumulo-env.tserver_heapsize": "256m", 
    "site.accumulo-env.master_heapsize": "128m", 
    "site.accumulo-env.monitor_heapsize": "64m", 
    "site.accumulo-env.gc_heapsize": "64m", 
    "site.accumulo-env.other_heapsize": "128m", 
    "site.accumulo-env.hadoop_prefix": "/usr/hdp/current/hadoop-client", 
    "site.accumulo-env.hadoop_conf_dir": "/etc/hadoop/conf", 
    "site.accumulo-env.zookeeper_home": "${zk.dir}", 
    
    "site.client.instance.name": "${USER}-${CLUSTER_NAME}", 
    
    "site.global.accumulo_root_password": "NOT_USED", 
    "site.global.ssl_cert_dir": "ssl", 
    "site.global.monitor_protocol": "http", 
    
    "site.accumulo-site.instance.volumes": "${DEFAULT_DATA_DIR}/data", 
    "site.accumulo-site.instance.zookeeper.host": "${ZK_HOST}", 
    "site.accumulo-site.instance.security.authenticator": "org.apache.slider.
accumulo.CustomAuthenticator", 
    
    "site.accumulo-site.general.security.credential.provider.paths": "jceks://
hdfs/user/${USER}/accumulo-${CLUSTER_NAME}.jceks", 
    "site.accumulo-site.instance.rpc.ssl.enabled": "false", 
    "site.accumulo-site.instance.rpc.ssl.clientAuth": "false", 
    "site.accumulo-site.general.kerberos.keytab": "", 
    "site.accumulo-site.general.kerberos.principal": "", 
    
    "site.accumulo-site.tserver.memory.maps.native.enabled": "false", 
    "site.accumulo-site.tserver.memory.maps.max": "80M", 
    "site.accumulo-site.tserver.cache.data.size": "7M", 
    "site.accumulo-site.tserver.cache.index.size": "20M", 
    "site.accumulo-site.tserver.sort.buffer.size": "50M", 
    "site.accumulo-site.tserver.walog.max.size": "40M", 
    
    "site.accumulo-site.trace.user": "root", 
    
    "site.accumulo-site.master.port.client": "0", 
    "site.accumulo-site.trace.port.client": "0", 
    "site.accumulo-site.tserver.port.client": "0", 
    "site.accumulo-site.gc.port.client": "0", 
    "site.accumulo-site.monitor.port.client": "${ACCUMULO_MONITOR.
ALLOCATED_PORT}", 



hdp-yarn-resource-management August 29, 2016

61

    "site.accumulo-site.monitor.port.log4j": "0", 
    "site.accumulo-site.master.replication.coordinator.port": "0", 
    "site.accumulo-site.replication.receipt.service.port": "0", 
    
    "site.accumulo-site.general.classpaths": "$ACCUMULO_HOME/lib/accumulo-
server.jar,\n$ACCUMULO_HOME/lib/accumulo-core.jar,\n$ACCUMULO_HOME/lib/
accumulo-start.jar,\n$ACCUMULO_HOME/lib/accumulo-fate.jar,\n$ACCUMULO_HOME/
lib/accumulo-proxy.jar,\n$ACCUMULO_HOME/lib/[^.].*.jar,\n$ZOOKEEPER_HOME/
zookeeper[^.].*.jar,\n$HADOOP_CONF_DIR,\n$HADOOP_PREFIX/[^.].*.jar,\n
$HADOOP_PREFIX/lib/[^.].*.jar,\n$HADOOP_PREFIX/share/hadoop/common/.*.jar,\n
$HADOOP_PREFIX/share/hadoop/common/lib/.*.jar,\n$HADOOP_PREFIX/share/hadoop/
hdfs/.*.jar,\n$HADOOP_PREFIX/share/hadoop/mapreduce/.*.jar,\n$HADOOP_PREFIX/
share/hadoop/yarn/.*.jar,\n/usr/hdp/current/hadoop-client/.*.jar,\n/usr/hdp/
current/hadoop-client/lib/.*.jar,\n/usr/hdp/current/hadoop-hdfs-client/.*.jar,
\n/usr/hdp/current/hadoop-mapreduce-client/.*.jar,\n/usr/hdp/current/hadoop-
yarn-client/.*.jar,"
 }, 
 "credentials": { 
    "jceks://hdfs/user/${USER}/accumulo-${CLUSTER_NAME}.jceks": ["root.
initial.password", "instance.secret", "trace.token.property.password"]
 }, 
 "components": { 
    "slider-appmaster": { 
       "jvm.heapsize": "256M", 
       "slider.am.keytab.local.path": "", 
       "slider.keytab.principal.name": ""
    }
  }
}

Resource Components in Accumulo on YARN

You can specify the following components (also referred to as "roles") when deploying
Accumulo on YARN via Slider:

• ACCUMULO_MASTER # Accumulo master process.

• ACCUMULO_TSERVER # Accumulo tablet server process.

• ACCUMULO_MONITOR # Accumulo monitor web UI

• ACCUMULO_GC # Accumulo garbage collector process

• ACCUMULO_TRACER # Accumulo trace collector process

The following is an example of an Accumulo resources.json file with these roles
configured:

{ 
   "schema": "http://example.org/specification/v2.0.0", 
   "metadata": {
    }, 
    "global": { 
       "yarn.log.include.patterns": "", 
       "yarn.log.exclude.patterns": ""
    }, 
    "components": { 



hdp-yarn-resource-management August 29, 2016

62

       "ACCUMULO_MASTER": { 
          "yarn.role.priority": "1", 
          "yarn.component.instances": "1", 
          "yarn.memory": "256"
       }, 
       "slider-appmaster": {
       }, 
       "ACCUMULO_TSERVER": { 
          "yarn.role.priority": "2", 
          "yarn.component.instances": "1", 
          "yarn.memory": "512"
       }, 
       "ACCUMULO_MONITOR": { 
          "yarn.role.priority": "3", 
          "yarn.component.instances": "1", 
          "yarn.memory": "128"
       }, 
       "ACCUMULO_GC": { 
          "yarn.role.priority": "4", 
          "yarn.component.instances": "1", 
          "yarn.memory": "128"
       }, 
       "ACCUMULO_TRACER": { 
          "yarn.role.priority": "5", 
          "yarn.component.instances": "1", 
          "yarn.memory": "256"
      }
   }
}

The memory and number of instances of each component should be adjusted for
your system and desired application instance size. You typically only need to request
one instance of the ACCUMULO_MONITOR, ACCUMULO_GC, and ACCUMULO_TRACER
processes. For HA (High Availability) purposes, you will generally want two instances of
ACCUMULO_MASTER, and enough instances of ACCUMULO_TSERVER to support your
application.

6.7.3. Configuring Accumulo on YARN on Secure Clusters

As previously mentioned, the Accumulo-on-Slider application package includes both
non-secure (appConfig-default.json) and secure (appConfig-secured-
default.json) versions of the application specification. On secure clusters, you should
use the secure version of the application specification.

To configure Accumulo for Kerberos, the following properties should be changed in the
appConfig.json file to specify a keytab and principal for Accumulo processes to use.
You must generate the keytabs on all the hosts and provide their location to Accumulo in
the keytab property. If the keytab is not headless, the recommended form for the principal
is accumulo/_HOST@<realm>, with the realm for your system. The Slider Application
Master also needs a keytab and a principal, which can be (but does not need to be) the
same one used for the Accumulo processes.



hdp-yarn-resource-management August 29, 2016

63

"global": { 
     "site.accumulo-site.general.kerberos.keytab": "", 
     "site.accumulo-site.general.kerberos.principal": "",
   }, 
   "components": { 
      "slider-appmaster": { 
         "slider.am.keytab.local.path": "", 
         "slider.keytab.principal.name": ""
     }
   }
 

should be changed to:

"global": { 
   "site.accumulo-site.general.kerberos.keytab": <keytab file abs path>, 
   "site.accumulo-site.general.kerberos.principal": <principal name>,
   }, 
   "components": { 
      "slider-appmaster": { 
         "slider.am.keytab.local.path": <keytab file abs path>, 
         "slider.keytab.principal.name": <principal name>
    }
  }
  

Note

For more information on configuring Accumulo-on-Slider on secure clusters,
including information about keytab-associated properties and the available
keytab distribution options, see Apache Slider Security.

6.7.4. Launching an Accumulo Application Instance
1. Iniatialize Accumulo Passwords

Before starting an Accumulo cluster on YARN, you must initialize the passwords
needed by Accumulo. These passwords are specified in the credentials section of the
appConfig.json file. By default they are the root.initial.password (the
initial password for the root user, which can be changed later using the Accumulo API),
the instance.secret (a shared secret needed by Accumulo server processes), and
the trace.token.property.password (the password for the user that collects
traces, which is the root user in the default configuration — so it should match the
root.initial.password).

These passwords can be created using the following commands:

/usr/hdp/current/hadoop-client/bin/hadoop credential create root.initial.
password -provider jceks://hdfs/user/<user>/accumulo-<accumulo_cluster_name>.
jceks -v <root password>
/usr/hdp/current/hadoop-client/bin/hadoop credential create instance.secret
 -provider jceks://hdfs/user/<user>/accumulo-<accumulo_cluster_name>.jceks -v
 <instance secret>
/usr/hdp/current/hadoop-client/bin/hadoop credential create trace.
token.property.password -provider jceks://hdfs/user/<user>/accumulo-
<accumulo_cluster_name>.jceks -v <root password again>

http://slider.incubator.apache.org/docs/security.html


hdp-yarn-resource-management August 29, 2016

64

Where <user> is the user who will create the Accumulo application instance and
<accumulo_cluster_name> is the name of the Accumulo cluster that will be used in the
Slider create command.

For example, using the user "hw_qa" and the Accumulo cluster name "accumulo1":

/usr/hdp/current/hadoop-client/bin/hadoop credential create root.initial.
password -provider jceks://hdfs/user/hw_qa/accumulo-accumulo1.jceks -v
 testRootPassword1
/usr/hdp/current/hadoop-client/bin/hadoop credential create instance.secret -
provider jceks://hdfs/user/hw_qa/accumulo-accumulo1.jceks -v instanceSecret1
/usr/hdp/current/hadoop-client/bin/hadoop credential create trace.token.
property.password -provider jceks://hdfs/user/hw_qa/accumulo-accumulo1.jceks -
v testRootPassword1

2. Launch the Accumulo Application Instance

Use the following command format to launch Accumulo:

su <user>
/usr/hdp/current/slider-client/bin/./slider create <accumulo_cluster_name> --
template appConfig.json --resources resources.json

Where <user> and <accumulo_cluster_name> are the user and cluster name that
were used when the Accumulo passwords were created.

For example:

su hw_qa
/usr/hdp/current/slider-client/bin/./slider create accumulo1 --template /usr/
work/app-packages/accumulo/appConfig.json --resources /usr/work/app-packages/
accumulo/resources.json

Note

The cluster name may not include uppercase characters.

You can use the Slider CLI status command to verify the application launch:

/usr/hdp/current/slider-client/bin/./slider status <accumulo_cluster_name>

You can also use the Slider CLI list command to verify the application launch:

/usr/hdp/current/slider-client/bin/./slider list <accumulo_cluster_name>

The Accumulo instance name will have the format <user name>-
<accumulo_cluster_name>.

The successful launch of the Accumulo cluster can also be verified via the YARN Resource
Manager Web UI. This UI is usually accessible via a Web browser at port 8088 of the
Resource Manager Host:



hdp-yarn-resource-management August 29, 2016

65

The specific information for the running Accumulo cluster is accessible via the
“ApplicationMaster” link that can be seen in the far right column of the row associated
with the running application (probably the top row):

Accesssing the Accumulo Monitor

On the Slider App Master page, one of the links should end with publisher/slider, for
example:

http://node-1.example.com:52413/ws/v1/slider/publisher/slider

Add "quicklinks" to that URL, for example:

http://node-1.example.com:52413/ws/v1/slider/publisher/slider/
quicklinks



hdp-yarn-resource-management August 29, 2016

66

That page will list some .json code. The value of the "org.apache.slider.monitor" key is
the URL of the Accumulo monitor page. If you go to the quicklinks page right after the
application instance is created, it will not be ready right away, because the monitor has to
come up and register itself. But if you keep reloading the quicklinks URL, it will come up
eventually (if the cluster is healthy).

6.7.5. Client Connections to Accumulo and Retrieving
Effective accumulo-site.xml

The most efficient method for obtaining a client for Accumulo would be to install the
Accumulo .rpm (yum install accumulo) and the Accumulo configuration .rpm
(yum install accumulo-conf-standalone). Then copy all of the Accumulo
default configuration files from the /usr/hdp/<version_number>/etc/accumulo/
conf.dist/templates/ directory into your desired Accumulo configuration directory
(e.g. /etc/accumulo/conf).

The next step is to obtain some configuration files from the registry for your Slider
Accumulo cluster to enable your client to connect to the instance of Accumulo you created.
Once Slider Accumulo is running, you can use the following commands to retrieve the
necessary configurations from the registry into the Accumulo conf directory you are
setting up.

slider registry --getconf accumulo-site --name <cluster name> --format xml --
dest <accumulo_conf_dir>/accumulo-site.xml
slider registry --getconf client --name <cluster name> --format properties --
dest <accumulo_conf_dir>/client.conf
slider registry --getconf accumulo-env --name <cluster name> --format json --
dest accumulo-env.json
python -c "import json; file = open('accumulo-env.json'); content = json.
load(file); file.close(); print content['content']" > <accumulo_conf_dir>/
accumulo-env.sh

You should now be able to connect to Accumulo with the following command:

accumulo shell -u root

If there are multiple Slider Accumulo clusters running, you can connect to any of them
from the same client installation. You still must download the configuration files from the
registry for one running cluster, but you only need to do that once, and can then connect
to other clusters with the following command:

accumulo shell -zh <zookeeper host(s)> -zi <instance name> -u root

Remember that the Accumulo instance name will be <user name>-<slider cluster
name> if you are using the default setting in the appConfig.json file (which is strongly
recommended).

6.7.6. Deployment Considerations

Memory Considerations for Running One Component on a Node

You can adjust the amount of memory given to a component to achieve mutual exclusion
of components, depending upon the NodeManager configuration on each node. Typically
all nodes have the same value independent of the actual memory.



hdp-yarn-resource-management August 29, 2016

67

Assuming the memory capacity for each NodeManager is known
(yarn.nodemanager.resource.memory-mb), you can configure the component to ask
for 51% (basically more than half) of the maximum capacity. You also need to ensure that
the maximum possible memory allocation (yarn.scheduler.maximum-allocation-
mb) allows that value.

For example, if yarn.nodemanager.resource.memory-mb =
yarn.scheduler.maximum-allocation-mb = 2048 Set yarn.memory = 1280 for the
ACCUMULO_MASTER and ACCUMULO_TSERVER properties in the resources.json file.

Then in the appConfig.json file, set the ACCUMULO_MASTER and ACCUMULO_TSERVER
heap sizes (including the ACCUMULO_TSERVER off-heap memory properties, if native maps
are enabled) to be 256 MB less than the memory requested for the YARN containers to
allow for the agent memory consumption -- the agent should not use more than 100 MB,
but you can assume that it consumes ~256 MB. So you can set the ACCUMULO_MASTER and
ACCUMULO_TSERVER variables for memory limit to fit within 1024 MB.

Log Aggregation

Log aggregation is specified in the yarn-site.xml file. The yarn.log-aggregation-
enable property enables log aggregation for running applications. If a monitoring interval
is also set, it will aggregate logs while an application is running, with the specified interval.
The minimum i nterval is 3600 seconds.

<property>
   <name>yarn.log-aggregation-enable</name>
   <value>true</value>
</property>

<property>
   <name>yarn.nodemanager.log-aggregation.roll-monitoring-interval-seconds</
name>
   <value>3600</value>
</property>

Log aggregation is specified in the global section of resources.json:

 "global": { 
           "yarn.log.include.patterns": "", 
           "yarn.log.exclude.patterns": ""
    },

If yarn.log.include.patterns is empty, all container logs are included. You can
specify the name(s) of log files (for example, agent.log) that you do not want to
aggregate using yarn.log.exclude.patterns.

The aggregated logs are stored in the HDFS /app-logs/ directory. The following
command can be used to retrieve the logs:

yarn logs -applicationId <app_id>

Reserving Nodes for Accumulo

You can use YARN node labels to reserve cluster nodes for applications and their
components. You could use node labels to reserve cluster nodes for Accumulo to ensure



hdp-yarn-resource-management August 29, 2016

68

that ACCUMULO_MASTER and ACCUMULO_TSERVER provide a consistent performance
level.

Node labels are specified with the yarn.label.expression property. If no label is
specified, only non-labeled nodes are used when allocating containers for component
instances.

A brief summary is that you could label particular YARN nodes for Accumulo,
say with labels “accumulo1” and “accumulo1_master”, and create a separate
queue for assigning containers to these nodes. To use these labeled nodes,
you would add yarn.label.expression parameters to the Accumulo
components in your resources.json file (including the slider-appmaster), e.g.
"yarn.label.expression": "accumulo1_master". When you run the slider
create command for your Accumulo cluster, you would add the parameter “--queue
<queue_name>”.

Configuring Accumulo for SSL

Accumulo can be configured to use SSL (Secure Sockets Layer) for its internal RPC
communications, and its monitor web UI can also be configured to use SSL. The Slider
Accumulo application package is set up to use the same SSL certs for both, although the
features can be enabled independently.

The SSL certificates must be provided. To distribute the certificates in HDFS, upload them
to the directory specified in “site.global.ssl_cert_dir” (by default, /user/
<user name>/ssl). There should be a truststore.jks file and a .jks file for
each host named <hostname>.jks. You must add the passwords for the certificates
to the credential provider by adding them to the list in the “credentials” section of the
appConfig.json file as shown below. To turn on SSL, set the Accumulo SSL properties
below to true. To turn on https for the monitor UI, change the monitor_protocol to
https.

The properties are as follows:

"global": { 
     "site.global.ssl_cert_dir": "ssl", 
     "site.global.monitor_protocol": "http", 
     "site.accumulo-site.instance.rpc.ssl.enabled": "false", 
     "site.accumulo-site.instance.rpc.ssl.clientAuth": "false",
  }, 
  "credentials": { 
     "jceks://hdfs/user/${USER}/accumulo-${CLUSTER_NAME}.jceks": ["root.
initial.password", "instance.secret", "trace.token.property.password"]
  },
 

Change these to:



hdp-yarn-resource-management August 29, 2016

69

"global": { 
     "site.global.ssl_cert_dir": "ssl", 
     "site.global.monitor_protocol": "https", 
     "site.accumulo-site.instance.rpc.ssl.enabled": "true", 
     "site.accumulo-site.instance.rpc.ssl.clientAuth": "true",
   }, 
   "credentials": { 
      "jceks://hdfs/user/${USER}/accumulo-${CLUSTER_NAME}.jceks": ["root.
initial.password", "instance.secret", "trace.token.property.password", "rpc.
javax.net.ssl.keyStorePassword", "rpc.javax.net.ssl.trustStorePassword",
 "monitor.ssl.keyStorePassword", "monitor.ssl.trustStorePassword"]
   },

If you would like to distribute the certs yourself rather than through HDFS, simply set the
following properties to the locations of the .jks files in the local files ystem (the keystore
file should have the same name on all hosts for this configuration).

"global": {
   "site.accumulo-site.rpc.javax.net.ssl.keyStore": "<keystore file>",
   "site.accumulo-site.rpc.javax.net.ssl.trustStore": "<truststore file>",
  },

If clientAuth is enabled, you must have a client.conf file in your client
Accumulo conf directory, or a .accumulo/config file in your home directory.
Your keystore.jks and truststore.jks SSL certs for the client can be
placed in an ssl directory in the Accumulo conf directory (or their locations
can be specified by also specifying the rpc.javax.net.ssl.keyStore and
rpc.javax.net.ssl.trustStore properties). If the client user is the same
user that created the Accumulo cluster, it can use the same credential provider
as the app, jceks://hdfs/user/<user name>/accumulo-<cluster
name>.jceks, but otherwise the client user will have to create their own
credential provider using the hadoop credential command. The user must set
the credential provider in their client.conf file, and make sure the specified
credential provider contains the rpc.javax.net.ssl.keyStorePassword and
rpc.javax.net.ssl.trustStorePassword.

A client.conf file for the Accumulo instance can be retrieved with the following
command:

slider registry --getconf client --name <cluster name> --format properties --
dest <path to local client.conf>

Building Accumulo Native Libraries

Accumulo performs better when it uses a native in-memory map for newly written
data. To build the native libraries for your system, perform the following steps
to add them to your application package. Then set the “site.accumulo-
site.tserver.memory.maps.native.enabled” property to true in your
appConfig.json file, and be sure to adjust the ACCUMULO_TSERVER heapsize
parameter so that it no longer includes the tserver.memory.maps.max memory.

unzip <app package name>.zip package/files/accumulo*gz
cd package/files/
gunzip accumulo-<version>-bin.tar.gz
tar xvf accumulo-<version>-bin.tar
accumulo-1.6.0/bin/build_native_library.sh



hdp-yarn-resource-management August 29, 2016

70

tar uvf accumulo-<version>-bin.tar accumulo-<version>
rm -rf accumulo-<version>
gzip accumulo-<version>-bin.tar
cd ../../
zip <app package name>.zip -r package
rm -rf package



hdp-yarn-resource-management August 29, 2016

71

7. Running Multiple MapReduce Versions
Using the YARN Distributed Cache

Beginning in HDP 2.2, multiple versions of the MapReduce framework can be deployed
using the YARN Distributed Cache. By setting the appropriate configuration properties, you
can run jobs using a different version of the MapReduce framework than the one currently
installed on the cluster.

Distributed cache ensures that the MapReduce job framework version is consistent
throughout the entire job lifecycle. This enables you to maintain consistent results from
MapReduce jobs during a rolling upgrade of the cluster. Without using Distributed Cache, a
MapReduce job might start with one framework version, but finish with the new (upgrade)
version, which could lead to unpredictable results.

YARN Distributed Cache enables you to efficiently distribute large read-only files (text files,
archives, .jar files, etc) for use by YARN applications. Applications use URLs (hdfs://) to
specify the files to be cached, and the Distributed Cache framework copies the necessary
files to the applicable nodes before any tasks for the job are executed. Its efficiency stems
from the fact that the files are copied only once per job, and archives are extracted after
they are copied to the applicable nodes. Note that Distributed Cache assumes that the files
to be cached (and specified via hdfs:// URLs) are already present on the HDFS file system
and are accessible by every node in the cluster.

Configuring MapReduce for the YARN Distributed Cache

• Copy the tarball that contains the version of MapReduce you would like to use into an
HDFS directory that applications can access.

$HADOOP_HOME/bin/hdfs dfs -put mapreduce.tar.gz /mapred/framework/

• In the mapred-site.xml file, set the value of the
mapreduce.application.framework.path property URL to point to the archive
file you just uploaded. The URL allows you to create an alias for the archive if a URL
fragment identifier is specified. In the following example, ${hdp.version} should be
replaced with the applicable HDP version, and mr-framework is specified as the alias:

<property>
 <name>mapreduce.application.framework.path</name>
 <value>hdfs:/hdp/apps/${hdp.version}/mapreduce/mapreduce.tar.gz#mr-
framework</value>
</property>

• In the mapred-site.xml file, the default value of the
mapreduce.application.classpath uses the ${hdp.version} environment
variable to reference the currently installed version of HDP:

<property>
 <name>mapreduce.application.classpath</name>
 <value>$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-framework/
hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-framework/hadoop/share/hadoop/
common/*:$PWD/mr-framework/hadoop/share/hadoop/common/lib/*:$PWD/mr-
framework/hadoop/share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/
yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:$PWD/mr-framework/



hdp-yarn-resource-management August 29, 2016

72

hadoop/share/hadoop/hdfs/lib/*:/usr/hdp/${hdp.version}/hadoop/lib/hadoop-
lzo-0.6.0.${hdp.version}.jar</value>
</property>

Change the value of the mapreduce.application.classpath property to
reference the applicable version of the MapReduce framework .jar files. In this case
we need to replace ${hdp.version} with the applicable HDP version, which in our
example is 2.2.0.0-2041. Note that in the following example the mr-framework
alias is used in the path references.

<property>
 <name>mapreduce.application.classpath</name> 
<value>$PWD/mr-framework/hadoop/share/hadoop/mapreduce/*:$PWD/mr-framework/
hadoop/share/hadoop/mapreduce/lib/*:$PWD/mr-framework/hadoop/share/hadoop/
common/*:$PWD/mr-framework/hadoop/share/hadoop/common/lib/*:$PWD/mr-
framework/hadoop/share/hadoop/yarn/*:$PWD/mr-framework/hadoop/share/hadoop/
yarn/lib/*:$PWD/mr-framework/hadoop/share/hadoop/hdfs/*:$PWD/mr-framework/
hadoop/share/hadoop/hdfs/lib/*:/usr/hdp/2.2.0.0-2041/hadoop/lib/hadoop-
lzo-0.6.0.2.2.0.0-2041.jar</value>
</property>

With this configuration in place, MapReduce jobs will run on the version 2.2.0.0-2041
framework referenced in the mapred-site.xml file.

You can upload multiple versions of the MapReduce framework to HDFS and create a
separate mapred-site.xml file to reference each version of the framework. Users
can then run jobs against a specific version by referencing the applicable mapred-
site.xml file. The following example would run a MapReduce job on version 2.1 of the
MapReduce framework:

hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-*.jar pi -conf
 etc/hdp-2.1.0.0/mapred-site.xml 10 10

You can use the ApplicationMaster log file to confirm that the job ran on the localized
version of MapReduce on the Distributed Cache. For example:

2014-06-10 08:19:30,199 INFO [main] org.mortbay.log: Extract jar: file:/
<nm-local-dirs>/filecache/10/hadoop-2.3.0.tar.gz/hadoop-2.3.0/share/
hadoop/yarn/hadoop-yarn-common-2.3.0.jar!/webapps/mapreduce to /tmp/
Jetty_0_0_0_0_42544_mapreduce____.pryk9q/webapp

Limitations

Support for deploying the MapReduce framework via the YARN Distributed Cache
currently does not address the job client code used to submit and query jobs. It also
does not address the ShuffleHandler code that runs as an auxiliary service within each
NodeManager. Therefore, the following limitations apply to MapReduce versions that can
be successfully deployed via the Distributed Cache:

• The MapReduce version must be compatible with the job client code used to submit and
query jobs. If it is incompatible, the job client must be upgraded separately on any node
on which jobs are submitted using the new MapReduce version.

• The MapReduce version must be compatible with the configuration files used by the job
client submitting the jobs. If it is incompatible with that configuration (that is, a new
property must be set, or an existing property value must be changed), the configuration
must be updated before submitting jobs.



hdp-yarn-resource-management August 29, 2016

73

• The MapReduce version must be compatible with the ShuffleHandler version running on
the cluster nodes. If it is incompatible, the new ShuffleHandler code must be deployed
to all nodes in the cluster, and the NodeManagers must be restarted to pick up the new
ShuffleHandler code.

Troubleshooting Tips

• You can use the ApplicationMaster log file to check the version of MapReduce being
used by a running job. For example:

2014-11-20 08:19:30,199 INFO [main] org.mortbay.log: Extract jar: file:/
<nm-local-dirs>/filecache/{...}/hadoop-2.6.0.tar.gz/hadoop-2.6.0/share/
hadoop/yarn/hadoop-yarn-common-2.6.0.jar!/webapps/mapreduce to /tmp/
Jetty_0_0_0_0_42544_mapreduce____.pryk9q/webapp

• If shuffle encryption is enabled, MapReduce jobs may fail with the following exception:

2014-10-10 02:17:16,600 WARN [fetcher#1] org.apache.hadoop.mapreduce.
task.reduce.Fetcher: Failed to connect to junping-du-centos6.x-3.cs1cloud.
internal:13562 with 1 map outputs
javax.net.ssl.SSLHandshakeException: sun.security.validator.
ValidatorException: PKIX path building failed: sun.security.provider.
certpath.SunCertPathBuilderException: unable to find valid certification
 path to requested target
 at com.sun.net.ssl.internal.ssl.Alerts.getSSLException(Alerts.java:174)
 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.fatal(SSLSocketImpl.
java:1731)
 at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE(Handshaker.java:241)
 at com.sun.net.ssl.internal.ssl.Handshaker.fatalSE(Handshaker.java:235)
 at com.sun.net.ssl.internal.ssl.ClientHandshaker.
serverCertificate(ClientHandshaker.java:1206)
 at com.sun.net.ssl.internal.ssl.ClientHandshaker.
processMessage(ClientHandshaker.java:136)
 at com.sun.net.ssl.internal.ssl.Handshaker.processLoop(Handshaker.java:593)
 at com.sun.net.ssl.internal.ssl.Handshaker.process_record(Handshaker.
java:529)
 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readRecord(SSLSocketImpl.
java:925)
 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.
performInitialHandshake(SSLSocketImpl.java:1170)
 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.
java:1197)
 at com.sun.net.ssl.internal.ssl.SSLSocketImpl.startHandshake(SSLSocketImpl.
java:1181)
 at sun.net.www.protocol.https.HttpsClient.afterConnect(HttpsClient.
java:434)
 at sun.net.www.protocol.https.AbstractDelegateHttpsURLConnection.
setNewClient(AbstractDelegateHttpsURLConnection.java:81)
 at sun.net.www.protocol.https.AbstractDelegateHttpsURLConnection.
setNewClient(AbstractDelegateHttpsURLConnection.java:61)
 at sun.net.www.protocol.http.HttpURLConnection.
writeRequests(HttpURLConnection.java:584)
 at sun.net.www.protocol.http.HttpURLConnection.
getInputStream(HttpURLConnection.java:1193)
 at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:379)
 at sun.net.www.protocol.https.HttpsURLConnectionImpl.
getResponseCode(HttpsURLConnectionImpl.java:318)
 at org.apache.hadoop.mapreduce.task.reduce.Fetcher.
verifyConnection(Fetcher.java:427)



hdp-yarn-resource-management August 29, 2016

74

....

To fix this problem, create a sub-directory under $HADOOP_CONF ($HADOOP_HOME/
etc/hadoop by default), and copy the ssl-client.xml file to that directory. Add
this new directory path (/etc/hadoop/conf/secure) to the MapReduce classpath specified
in mapreduce.application.classpath in the mapred-site.xml file.



hdp-yarn-resource-management August 29, 2016

75

8. Timeline Server
This chapter describes how to configure and run the Timeline Server, which enables you to
collect generic and per-framework information about YARN applications.

The Timeline Server maintains historical state and provides metrics visibility for YARN
applications, similar to the functionality the Job History Server provides for MapReduce.

The Timeline Server provides the following information:

• Generic Information about Completed Applications. Generic information includes
application-level data such as queue name, user information, information about
application attempts, a list of Containers that were run under each application attempt,
and information about each Container. Generic data about completed applications can
be accessed using the web UI or via REST APIs.

• Per-Framework Information for Running and Completed Applications. Per-framework
information is specific to an application or framework. For example, the Hadoop
MapReduce framework can include pieces of information such as the number of map
tasks, reduce tasks, counters, etc. Application developers can publish this information to
the Timeline Server via the TimelineClient (from within a client), the ApplicationMaster,
or the application's Containers. This information can then be queried via REST APIs that
enable rendering by application/framework-specific UIs.

The Timeline Server is a stand-alone server daemon that is deployed to a cluster node. It
may or may not be co-located with the ResourceManager.

8.1. Timeline Server 1.5 Overview
In HDP 2.2.9, Timeline Server 1.5 includes changes and fixes that improve scalability. Version
1.5 incorporates changes and improvements to the whole stack; it introduces new client
APIs, a new storage architecture (the EntityGroupFSTimelineStore), and supports
a “plugin” mechanism to work with YARN applications. The most significant change, on
the YARN side, is the EntityGroupFSTimelineStore. This storage system has a reader
part and a writer part. To work with this new version 1.5 architecture, applications can
use the newly introduced client APIs to write to version 1.5, and provide a plugin that
assists version 1.5 on the reader part. Tez currently provides this support and can work with
version 1.5 natively.

• RollingLevelDbTimelineStore improves the performance for ATS (Application
Timeline Server) operations that need to purge data regarding obsolete entries. Instead
of deleting one row at a time, the store is organized as a list of databases so that an
entire database can be dropped when all the entries contained within it are obsolete.

• EntityGroupFSTimelineStore enables a completely different reader-writer
architecture for the ATS. It has two parts, a writer part and a reader part. The writer
part involves configuring Tez with the ATSV15Plugin. The reader part involves specifying
the configurations below. The writer in this instance writes summary information to the
ATS and the bulk of the data to the filesystem location specified by the configuration
path. Before this store can be used the directory has to be created with the correct
permissions.



hdp-yarn-resource-management August 29, 2016

76

• Changed properties:

• Property: yarn.timeline-service.store-class

• Old value:
org.apache.hadoop.yarn.server.timeline.LeveldbTimelineStore

• New value:
org.apache.hadoop.yarn.server.timeline.EntityGroupFSTimelineStore

• Property: yarn.timeline-service.leveldb-timeline-store.path

• Old value: ${yarn.log.dir}/timeline

• New value: <Data disk>/ats/leveldb/

• New properties:

• tez.history.logging.service.class

• yarn.timeline-service.entity-group-fs-store.active-dir

• yarn.timeline-service.entity-group-fs-store.cleaner-interval-
seconds

• yarn.timeline-service.entity-group-fs-store.done-dir

• yarn.timeline-service.entity-group-fs-store.group-id-plugin-
classes

• yarn.timeline-service.entity-group-fs-store.retain-seconds

• yarn.timeline-service.entity-group-fs-store.scan-interval-
seconds

• yarn.timeline-service.entity-group-fs-store.summary-store

• yarn.timeline-service.version

8.2. Upgrading Timeline Server 1.0 to 1.5

Warning

Upgrading from ATS v1 to v1.5 may cause data stored in ATS v1.0 storage to be
inaccessible.

The upgrade process is not rolling: applications may lose previous data stored in
ATS v1.0 during upgrade.

Before launching ATS v1.5, ensure your system is compliant with the following:

• yarn.timeline-service.entity-group-fs-store.active-dir and
yarn.timeline-service.entity-group-fs-store.done-dir must exist on the



hdp-yarn-resource-management August 29, 2016

77

cluster on HDFS. Active-dir should have permission 01777, owned by YARN, group admin-
group. Done-dir should have permission 0700, owned by yarn, group admin-group.

• You must manually create yarn.timeline-service.entity-group-fs-
store.active-dir in HDFS before you start RM and ATS.

• The Tez cache plugin class must be in the timeline server’s classpath.

• yarn.timeline-service.leveldb-timeline-store.path must be a path on
the local filesystem and must be created with permissions 755. The owner must be the
same user that timeline server is running as.

1. To upgrade to ATS 1.5, configure the following:

 <property>
 <name>yarn.timeline-service.version</name>
 <value>1.5</value>
<description>Timeline service version we’re currently using.</description>
  </property>

  <property>
 <name>yarn.timeline-service.store-class</name>
 <value>org.apache.hadoop.yarn.server.timeline.EntityGroupFSTimelineStore</
value>
<description>Main storage class for YARN timeline server. </description>
  </property>

  <property>
 <name>yarn.timeline-service.entity-group-fs-store.active-dir</name>
 <value>/ats/active/</value>
<description>DFS path to store active application’s timeline data</
description>
  </property>

  <property>
 <name>yarn.timeline-service.entity-group-fs-store.done-dir</name>
 <value>/ats/done/</value>
<description>DFS path to store done application’s timeline data</
description>
  </property>

2. The following configuration exists in ATS v1.0, ensure it is pointing to the correct
directory:

  <property>
 <name>yarn.timeline-service.leveldb-timeline-store.path</name>
 <value><Data disk>/ats/leveldb/</value>
<description>Local FS path to store the leveldbs that hold the application
 summary data</description>
  </property>

3. If you have Tez enabled, the tez-client must be installed on the ATS server. You must also
perform this additional step:



hdp-yarn-resource-management August 29, 2016

78

  <property>
    <name>yarn.timeline-service.entity-group-fs-store.group-id-plugin-
classes</name>
    <value>org.apache.tez.dag.history.logging.ats.TimelineCachePluginImpl</
value>
    <description>Plugins that can translate a timeline entity read request
 into a list of timeline cache ids, separated by commas. </description>
  </property>

4. Configure the yarn.timeline-service.entity-group-fs-store.summary-store property:

<property>
     <name>yarn.timeline-service.entity-group-fs-store.summary-store</name> 
     <description>Summary storage for ATS v1.5</description>
     <value>org.apache.hadoop.yarn.server.timeline.
RollingLevelDBTimelineStore</value>
</property>

8.3. Configuring the Timeline Server
Required Properties

Only one property needs to be specified in the etc/hadoop/conf/yarn-site.xml file
in order to enable the Timeline Server: yarn.timeline-service.hostname. The host
name of the Timeline Server web application.

Example:

 <property>
 <description>The hostname of the timeline server web application.</
description>
 <name>yarn.timeline-service.hostname</name>
 <value>0.0.0.0</value>
</property>

Important

If the Timeline Server is running on the same host as the NameNode and is
under heavy load, it may be shut down by the system OOM (Out of Memory)
killer. Therefore you should consider deploying the Timeline Server on a
separate host if you anticipate read-heavy loads.

Advanced Properties

In addition to the host name, administrators can also configure the ports of the RPC and
the web interfaces, as well as the number of RPC handler threads.

• yarn.timeline-service.address

The default address for the Timeline Server to start the RPC server.

Example:



hdp-yarn-resource-management August 29, 2016

79

<property>
 <description>This is default address for the timeline server to start the
 RPC server.</description>
 <name>yarn.timeline-service.address</name>
 <value>${yarn.timeline-service.hostname}:10200</value>
</property>

• yarn.timeline-service.webapp.address

The HTTP address of the Timeline Server web application.

Example:

<property>
 <description>The http address of the timeline server web application.</
description>
 <name>yarn.timeline-service.webapp.address</name>
 <value>${yarn.timeline-service.hostname}:8188</value>
</property>

• yarn.timeline-service.webapp.https.address

The HTTPS address of the Timeline Server web application.

Example:

<property>
 <description>The https adddress of the timeline server web application.</
description>
 <name>yarn.timeline-service.webapp.https.address</name>
 <value>${yarn.timeline-service.hostname}:8190</value>
</property>

• yarn.timeline-service.handler-thread-count

The handler thread count to serve the client RPC requests.

Example:

<property>
 <description>Handler thread count to serve the client RPC requests.</
description>
 <name>yarn.timeline-service.handler-thread-count</name>
 <value>10</value>
</property>

8.4. Enabling Generic Data Collection
• yarn.resourcemanager.system-metrics-publisher.enabled

This property indicates to the ResourceManager, as well as to clients, whether or not the
Generic History Service (GHS) is enabled. If the GHS is enabled, the ResourceManager
begins recording historical data that the GHS can consume, and clients can redirect to the
GHS when applications finish running.

Example:



hdp-yarn-resource-management August 29, 2016

80

<property>
 <description>Enable or disable the GHS</description>
 <name>yarn.resourcemanager.system-metrics-publisher.enabled</name>
 <value>true</value>
</property>

8.5. Configuring Per-Framework Data Collection
• yarn.timeline-service.enabled

Indicates to clients whether or not the Timeline Server is enabled. If it is enabled, the
TimelineClient library used by end-users will post entities and events to the Timeline
Server.

Example:

<property>
 <description>Enable or disable the Timeline Server.</description>
 <name>yarn.timeline-service.enabled</name>
 <value>true</value>
</property>

8.6. Configuring the Timeline Server Store
• yarn.timeline-service.store-class

The class name for the Timeline store.

Example:

<property>
 <description>Store class name for timeline store</description>
 <name>yarn.timeline-service.store-class</name>
 <value>org.apache.hadoop.yarn.server.timeline.LeveldbTimelineStore</value>
</property>

• yarn.timeline-service.leveldb-timeline-store.path

The store file path and name for the Timeline Server LevelDB store (if the LevelDB store is
used).

Example:

<property>
 <description>Store file name for leveldb timeline store</description>
 <name>yarn.timeline-service.leveldb-timeline-store.path</name>
 <value>${hadoop.tmp.dir}/yarn/timeline/value>
</property>

• yarn.timeline-service.ttl-enable

Enable age-off of timeline store data.

Example:

<property>



hdp-yarn-resource-management August 29, 2016

81

 <description>Enable age off of timeline store data.</description>
 <name>yarn.timeline-service.ttl-enable</name>
 <value>true</value>
</property>

• yarn.timeline-service.ttl-ms

The Time-to-live for timeline store data (in milliseconds).

Example:

<property>
 <description>Time to live for timeline store data in milliseconds.</
description>
 <name>yarn.timeline-service.ttl-ms</name>
 <value>604800000</value>
</property>

8.7. Configuring Timeline Server Security
Configuring Kerberos Authentication

To configure Kerberos Authentication for the Timeline Server, add the following properties
to the yarn-site.xml file.

<property>
 <name>yarn.timeline-service.http-authentication.type</name>
 <value>kerberos</value>
</property>

<property>
 <name>yarn.timeline-service.http-authentication.kerberos.principal</name>
 <value>HTTP/localhost@EXAMPLE.COM</value>
</property>

<property>
 <name>yarn.timeline-service.http-authentication.kerberos.keytab</name>
 <value>/etc/krb5.keytab</value>
</property>

Configuring Timeline Server Authorization (ACLs)

Timeline Server ACLs are configured in the same way as other YARN ACLs. To configure
Timeline Server authorization with ACLs, add the following properties to the yarn-
site.xml file.

<property>
 <name>yarn.acl.enable</name>
 <value>true</value>
</property>

<property>
 <name>yarn.admin.acl</name>
 <value> </value>
</property>

Configuring Timeline Server SSL



hdp-yarn-resource-management August 29, 2016

82

Timeline Server SSL is configured in the same way as other Hadoop components. To
configure Timeline Server SSL, add the following properties to the core-site.xml file.

<property>
 <name>hadoop.ssl.require.client.cert</name>
 <value>false</value>
</property>

<property>
 <name>hadoop.ssl.hostname.verifier</name>
 <value>DEFAULT</value>
</property>

<property>
 <name>hadoop.ssl.keystores.factory.class</name>
 <value>org.apache.hadoop.security.ssl.FileBasedKeyStoresFactory</value>
</property>

<property>
 <name>hadoop.ssl.server.conf</name>
 <value>ssl-server.xml</value>
</property>

<property>
 <name>hadoop.ssl.client.conf</name>
 <value>ssl-client.xml</value>
</property>

Note

You should also configure YARN SSL settings.

8.8. Running the Timeline Server
To start the Timeline Server, run the following command:

yarn timelineserver

To start the Timeline Server as a daemon, run the following command:

sbin/yarn-daemon.sh start timelineserver

8.9. Accessing Generic Data from the Command-
Line

You can use the following commands to access application generic history data from the
command-line. Note that these same commands can be used to obtain corresponding
information about running applications.

yarn application -status <Application ID>
yarn applicationattempt -list <Application ID>
yarn applicationattempt -status <Application Attempt ID>
yarn container -list <Application Attempt ID>
yarn container -status <Container ID>



hdp-yarn-resource-management August 29, 2016

83

8.10. Publishing Per-Framework Data in
Applications

Developers can define the information they would like to record for their applications by
composing TimelineEntity and TimelineEvent objects, and then putting the entities
and events to the Timeline server via TimelineClient. For example:

 // Create and start the Timeline client
 TimelineClient client = TimelineClient.createTimelineClient();
 client.init(conf);
 client.start();

 TimelineEntity entity = null;
 // Compose the entity
 try {
 TimelinePutResponse response = client.putEntities(entity);
 } catch (IOException e) {
 // Handle the exception
 } catch (YarnException e) {
 // Handle the exception
 }

 // Stop the Timeline client
 client.stop();



hdp-yarn-resource-management August 29, 2016

84

9. Using the YARN REST APIs to Manage
Applications

This chapter describes how to use the YARN REST APIs to submit, monitor, and kill
applications.

Get an Application ID

You can use the New Application API to get an application ID, which can then be used to
submit an application. For example:

curl -v -X POST 'http://localhost:8088/ws/v1/cluster/apps/new-application'

The response returns the application ID, and also includes the maximum resource
capabilities available on the cluster. For example:

    {
    application-id: application_1409421698529_0012", 
    "maximum-resource-capability":{"memory":"8192","vCores":"32"}
    } 
  

Set Up an Application .json File

Before you submitting an application, you must set up a .json file with the parameters
required by the application. This is analogous to creating your own ApplicationMaster.
The application .json file contains all of the fields you are required to submit in order to
launch the application.

The following is an example of an application .json file:

 { 
    "application-id":"application_1404203615263_0001", 
    "application-name":"test", 
    "am-container-spec":
    { 
       "local-resources":
       { 
          "entry":
         [
            { 
               "key":"AppMaster.jar", 
               "value":
               { 
                  "resource":"hdfs://hdfs-namenode:9000/user/testuser/
DistributedShell/demo-app/AppMaster.jar", 
                  "type":"FILE", 
                  "visibility":"APPLICATION", 
                  "size": "43004", 
                  "timestamp": "1405452071209"
               }
            }



hdp-yarn-resource-management August 29, 2016

85

          ]
       }, 
       "commands":
       { 
          "command":"{{JAVA_HOME}}/bin/java -Xmx10m org.apache.hadoop.yarn.
applications.distributedshell.ApplicationMaster --container_memory 10 --
container_vcores 1 --num_containers 1 --priority 0 1><LOG_DIR>/AppMaster.
stdout 2><LOG_DIR>/AppMaster.stderr"
       }, 
       "environment":
       { 
          "entry":
          [ 
             { 
                "key": "DISTRIBUTEDSHELLSCRIPTTIMESTAMP", 
                "value": "1405459400754"
             },
             {
                "key": "CLASSPATH", 
                "value": "{{CLASSPATH}}<CPS>./
*<CPS>{{HADOOP_CONF_DIR}}<CPS>{{HADOOP_COMMON_HOME}}/share/hadoop/
common/*<CPS>{{HADOOP_COMMON_HOME}}/share/hadoop/common/lib/
*<CPS>{{HADOOP_HDFS_HOME}}/share/hadoop/hdfs/*<CPS>{{HADOOP_HDFS_HOME}}/
share/hadoop/hdfs/lib/*<CPS>{{HADOOP_YARN_HOME}}/share/hadoop/yarn/
*<CPS>{{HADOOP_YARN_HOME}}/share/hadoop/yarn/lib/*<CPS>./log4j.properties"
             },
             { 
                "key": "DISTRIBUTEDSHELLSCRIPTLEN", 
                "value": "6"
             },
             { 
                "key": "DISTRIBUTEDSHELLSCRIPTLOCATION", 
                "value": "hdfs://hdfs-namenode:9000/user/testuser/demo-app/
shellCommands"
             } 
          ]
       }
    }, 
    "unmanaged-AM":"false", 
    "max-app-attempts":"2", 
    "resource":
    { 
       "memory":"1024", 
       "vCores":"1"
    }, 
    "application-type":"YARN", 
    "keep-containers-across-application-attempts":"false"
  }
 

Submit an Application

You can use the Submit Application API to submit applications. For example:

curl -v -X POST -d @example-submit-app.json -H "Content-type: application/
json"'http://localhost:8088/ws/v1/cluster/apps'

After you submit an application the response includes the following field:

HTTP/1.1 202 Accepted



hdp-yarn-resource-management August 29, 2016

86

The response also includes the Location field, which you can use to get the status of the
application (app ID). The following is an example of a returned Location code:

Location: http://localhost:8088/ws/v1/cluster/apps/
application_1409421698529_0012

Monitor an Application

You can use the Application State API to query the application state. To return only the
state of a running application, use the following command format:

curl 'http://localhost:8088/ws/v1/cluster/apps/application_1409421698529_0012/
state'

You can also use the value of the Location field (returned in the application submission
response) to check the application status. For example:

curl -v 'http://localhost:8088/ws/v1/cluster/apps/
application_1409421698529_0012'

You can use the following command format to check the logs:

yarn logs -appOwner 'dr.who' -applicationId application_1409421698529_0012 |
 less

Kill an Application

You can also use the Application State API to kill an application by using a PUT operation to
set the application state to KILLED. For example:

curl -v -X PUT -d '{"state": "KILLED"}''http://localhost:8088/ws/v1/cluster/
apps/application_1409421698529_0012'

Access the Apache YARN REST API Specification

For more information, see the Apache YARN REST APIs documentation.

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html#Cluster_Writeable_APIs


hdp-yarn-resource-management August 29, 2016

87

10. Work-Preserving Restart
This chapter describes how to configure YARN to preserve the work of running
applications in the event of a ResourceManager or NodeManager restart. Work-preserving
ResourceManager and NodeManager restart ensures that node restart or fail-over is
completely transparent to end-users, with minimal impact to running applications.

10.1. Configuring the ResourceManager for Work-
Preserving Restart

Work-preserving ResourceManager restart ensures that applications continuously function
during a ResourceManager restart with minimal impact to end-users. The overall concept
is that the ResourceManager preserves application queue state in a pluggable state store,
and reloads that state on restart. While the ResourceManager is down, ApplicationMasters
and NodeManagers continuously poll the ResourceManager until it restarts. When the
ResourceManager comes back online, the ApplicationMasters and NodeManagers re-
register with the newly started ResourceManger. When the ResourceManager restarts,
it also recovers container information by absorbing the container statuses sent from all
NodeManagers. Thus, no work will be lost due to a ResourceManager crash-reboot event

To configure work-preserving restart for the ResourceManager, set the following properties
in the yarn-site.xml file.

Property:

yarn.resourcemanager.recovery.enabled

Value:

true

Description:

Enables ResourceManager restart. The default value is false. If this configuration
property is set to true, running applications will resume when the ResourceManager is
restarted.

Example:

<property>
    <name>yarn.resourcemanager.recovery.enabled</name>
    <value>true</value>
 </property>

Property:

yarn.resourcemanager.store.class

Value:

<specified_state_store>



hdp-yarn-resource-management August 29, 2016

88

Description:

Specifies the state-store used to store application and application-attempt state and other
credential information to enable restart. The available state-store implementations are:

• org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore
– a state-store implementation persisting state to a file system such as HDFS. This is the
default value.

• org.apache.hadoop.yarn.server.resourcemanager.recovery.LeveldbRMStateStore
– a LevelDB-based state-store implementation.

• org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
– a ZooKeeper-based state-store implementation.

Example:

<property>
    <name>yarn.resourcemanager.store.class</name>
    <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.
FileSystemRMStateStore</value>
 </property>

FileSystemRMStateStore Configuration

The following properties apply only if
org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore
has been specified as the state-store in the yarn.resourcemanager.store.class
property.

Property:

yarn.resourcemanager.fs.state-store.uri

Value:

<hadoop.tmp.dir>/yarn/system/rmstore

Description:

The URI pointing to the location of the file system path where the RM state will be stored
(e.g. hdfs://localhost:9000/rmstore). The default value is <hadoop.tmp.dir>/
yarn/system/rmstore.

Example:

<property>
    <name>yarn.resourcemanager.fs.state-store.uri</name>
    <value>hdfs://localhost:9000/rmstore</value>
 </property

Property:

yarn.resourcemanager.fs.state-store.retry-policy-spec

Value:



hdp-yarn-resource-management August 29, 2016

89

2000, 500

Description:

The Hadoop FileSystem client retry policy specification. Hadoop FileSystem client retry is
always enabled. This is pecified in pairs of sleep-time and number-of-retries i.e. (t0, n0), (t1,
n1), ..., the first n0 retries sleep t0 milliseconds on average, the following n1 retries sleep t1
milliseconds on average, and so on. The default value is (2000, 500).

Example:

<property>
    <name>yarn.resourcemanager.fs.state-store.retry-policy-spec</name>
    <value>2000, 500</value>
 </property

LeveldbRMStateStore Configuration

The following properties apply only if
org.apache.hadoop.yarn.server.resourcemanager.recovery.LeveldbRMStateStore
has been specified as the state-store in the yarn.resourcemanager.store.class
property.

Property:

yarn.resourcemanager.leveldb-state-store.path

Value:

<hadoop.tmp.dir>/yarn/system/rmstore

Description:

The local path where the RM state will be stored.

Example:

<property>
    <name>yarn.resourcemanager.leveldb-state-store.path</name>
    <value><hadoop.tmp.dir>/yarn/system/rmstore</value>
 </property

ZKRMStateStore Configuration

The following properties apply only if
org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
has been specified as the state-store in the yarn.resourcemanager.store.class
property.

Property:

yarn.resourcemanager.zk-address

Value:

<host>:<port>

Description:



hdp-yarn-resource-management August 29, 2016

90

A comma-separated list of <host>:<port> pairs, each corresponding to a server in a
ZooKeeper cluster where the ResourceManager state will be stored.

Example:

<property>
    <name>yarn.resourcemanager.zk-address</name>
    <value>127.0.0.1:2181</value>
 </property

Property:

yarn.resourcemanager.zk-state-store.parent-path

Value:

/rmstore

Description:

The full path of the root znode where RM state will be stored. The default value is /
rmstore.

Example:

<property>
    <name>yarn.resourcemanager.zk-state-store.parent-path</name>
    <value>/rmstore</value>
 </property

Property:

yarn.resourcemanager.zk-num-retries

Value:

500

Description:

The number of times the ZooKeeper-client running inside the ZKRMStateStore tries to
connect to ZooKeeper in case of connection timeouts. The default value is 500.

Example:

<property>
    <name>yarn.resourcemanager.zk-num-retries</name>
    <value>500</value>
 </property

Property:

yarn.resourcemanager.zk-retry-interval-ms

Value:

2000

Description:



hdp-yarn-resource-management August 29, 2016

91

The interval in milliseconds between retries when connecting to a ZooKeeper server. The
default value is 2 seconds.

Example:

<property>
    <name>yarn.resourcemanager.zk-retry-interval-ms</name>
    <value>2000</value>
 </property

Property:

yarn.resourcemanager.zk-timeout-ms

Value:

10000

Description:

The ZooKeeper session timeout in milliseconds. This configuration is used by the ZooKeeper
server to determine when the session expires. Session expiration happens when the server
does not hear from the client (i.e. no heartbeat) within the session timeout period specified
by this property. The default value is 10 seconds.

Example:

<property>
    <name>yarn.resourcemanager.zk-timeout-ms</name>
    <value>10000</value>
 </property

Property:

yarn.resourcemanager.zk-acl

Value:

world:anyone:rwcda

Description:

The ACLs to be used for setting permissions on ZooKeeper znodes. The default value is
world:anyone:rwcda. Example

<property> 
    <name>yarn.resourcemanager.zk-acl</name>
    <value>world:anyone:rwcda</value> 
</property>

10.2. Configuring NodeManagers for Work-
Preserving Restart

NodeManager work-preserving enables a NodeManager to be restarted without losing
the active containers running on the node. At a high level, the NodeManager stores any



hdp-yarn-resource-management August 29, 2016

92

necessary state to a local state store as it processes container management requests. When
the NodeManager restarts, it recovers by first loading the state for various subsystems, and
then lets those subsystems perform recovery using the loaded state.

To configure work-preserving restart for NodeManagers, set the following properties in the
yarn-site.xml file on all NodeManagers in the cluster.

Property:

yarn.nodemanager.recovery.enabled

Value:

true

Description:

Enables the NodeManager to recover after a restart.

Example:

<property
    <name>yarn.nodemanager.recovery.enabled</name>
    <value>true</value>
 </property>

Property:

yarn.nodemanager.recovery.dir

Value:

<yarn_log_dir_prefix>/nodemanager/recovery-state

Description:

The local file system directory in which the NodeManager will store state information when
recovery is enabled.

Example:

<property>
    <name>yarn.nodemanager.recovery.dir</name>
    <value><yarn_log_dir_prefix>/nodemanager/recovery-state</value>
 </property>

You should also confirm that the yarn.nodemanager.address port is set to a non-zero
value, e.g. 45454:

<property>
    <name>yarn.nodemanager.address</name>
    <value>0.0.0.0:45454</value>
 </property>



hdp-yarn-resource-management August 29, 2016

93

11. Using the YARN CLI to View Logs for
Running Applications

This chapter describes how to use the YARN CLI (Command Line Interface) to view
log files for running applications. You can access container log files using the YARN
ResourceManager web UI, but more options are available when you use the yarn logs
CLI command.

11.1. View all Log Files for a Running Application
Use the following command format to view all logs for a running application:

yarn logs -applicationId <Application ID>

11.2. View a Specific Log Type for a Running
Application

Use the following command format to view all logs of a particular type for a running
application:

yarn logs -applicationId <Application ID> -log_files <log_file_type>

For example, to view only the stderr error logs:

yarn logs -applicationId <Application ID> -log_files stderr

The -logFiles option also supports Java regular expressions, so the following format
would return all types of log files:

yarn logs -applicationId <Application ID> -log_files .* 

11.3. View ApplicationMaster Log Files
Use the following command format to view all ApplicationMaster container log files for a
running application:

yarn logs -applicationId <Application ID> -am ALL

Use the following command format to view only the first ApplicationMaster containter log
files:

yarn logs -applicationId <Application ID> -am 1

11.4. List Container IDs
Use the following command format to list all container IDs for a running application:

yarn logs -applicationId <Application ID> -show_application_log_info



hdp-yarn-resource-management August 29, 2016

94

11.5. View Log Files for One Container
Once you have the container IDs, you can use the following command format to list the log
files for a particular container:

yarn logs -applicationId <Application ID> -containerId <Container ID>

11.6. Show Container Log File Information
Use the following command format to list all of the container log file names (types) for a
running application:

yarn logs -applicationId <Application ID> -show_container_log_info

You can then use the -logFiles option to view a particular log type.

11.7. View a Portion of the Log Files for One
Container

For large container log files, you can use the following command format to list only a
portion of the log files for a particular container:

yarn logs -applicationId <Application ID> -containerId <Container ID> -size
 <bytes>

To view the first 1000 bytes:

yarn logs -applicationId <Application ID> -containerId <Container ID> -size
 1000

To view the last 1000 bytes:

yarn logs -applicationId <Application ID> -containerId <Container ID> -size
 -1000

11.8. Download Logs for a Running Application
Use the following command format to download logs to a local folder:

yarn logs -applicationId <Application ID> -out <path_to_local_folder>

The container log files are organized in parent folders labeled with the applicable node ID.

11.9. Display Help for YARN Logs
To display Help for yarn logs, run the following commmand:

yarn logs -help


	Hortonworks Data Platform
	Table of Contents
	1. Capacity Scheduler
	1.1. Enabling Capacity Scheduler
	1.2. Setting up Queues
	1.2.1. Hierarchical Queue Characteristics
	1.2.2. Scheduling Among Queues

	1.3. Controlling Access to Queues with ACLs
	1.4. Default Queue Mapping Based on User or Group
	1.4.1. Configuring Queue Mapping for Users and Groups to Specific Queues
	1.4.2. Configuring Queue Mapping for Users and Groups to Queues with the Same Name
	1.4.3. Enabling Override of Default Queue Mappings

	1.5. Managing Cluster Capacity with Queues
	1.6. Resource Distribution Workflow
	1.7. Resource Distribution Workflow Example
	1.8. Setting User Limits
	1.9. Application Reservations
	1.10. Using Flexible Scheduling Policies
	1.10.1. FIFO vs. Fair Sharing
	1.10.2. Configuring Queue Ordering Policies
	1.10.3. Best Practices for Ordering Policies

	1.11. Starting and Stopping Queues
	1.12. Setting Application Limits
	1.13. Preemption
	1.13.1. Preemption Workflow
	1.13.2. Preemption Configuration

	1.14. Scheduler User Interface

	2. CGroups
	2.1. Enabling CGroups
	2.2. Using CGroups

	3. Using CPU Scheduling to Allocate Resources
	3.1. About YARN Resource Allocation
	3.2. Configuring CPU Scheduling
	3.3. Using CPU Scheduling

	4. Log Aggregation for Long-running Applications
	4.1. Enable Log Aggregation
	4.2. Including and Excluding Log Files in YARN Applications Running on Slider

	5. Node Labels
	5.1. Configuring Node Labels
	5.2. Using Node Labels

	6. Running Applications on YARN Using Slider
	6.1. System Requirements
	6.2. Operating System Requirements
	6.3. Installing Apache Slider
	6.4. Additional Configuration Steps for Secure Clusters
	6.5. Running Applications on Slider
	6.5.1. The Slider Application Package
	6.5.2. Install the Application Package
	6.5.3. Start the Application
	6.5.4. Verify the Application
	6.5.5. Manage the Application Lifecycle
	6.5.6. The Application Registry

	6.6. Running HBase on YARN via Slider
	6.6.1. Downloading and Installing the HBase Application Package
	6.6.2. Configuring HBase on YARN via Slider
	6.6.3. Configuring HBase on YARN on Secure Clusters
	6.6.4. Components in HBase on YARN
	6.6.5. Launching an HBase Application Instance
	6.6.6. Deployment Considerations

	6.7. Running Accumulo on YARN via Slider
	6.7.1. Downloading and Installing the Accumulo Application Package
	6.7.2. Configuring Accumulo on YARN
	6.7.3. Configuring Accumulo on YARN on Secure Clusters
	6.7.4. Launching an Accumulo Application Instance
	6.7.5. Client Connections to Accumulo and Retrieving Effective accumulo-site.xml
	6.7.6. Deployment Considerations


	7. Running Multiple MapReduce Versions Using the YARN Distributed Cache
	8. Timeline Server
	8.1. Timeline Server 1.5 Overview
	8.2. Upgrading Timeline Server 1.0 to 1.5
	8.3. Configuring the Timeline Server
	8.4. Enabling Generic Data Collection
	8.5. Configuring Per-Framework Data Collection
	8.6. Configuring the Timeline Server Store
	8.7. Configuring Timeline Server Security
	8.8. Running the Timeline Server
	8.9. Accessing Generic Data from the Command- Line
	8.10. Publishing Per-Framework Data in Applications

	9. Using the YARN REST APIs to Manage Applications
	10. Work-Preserving Restart
	10.1. Configuring the ResourceManager for Work-Preserving Restart
	10.2. Configuring NodeManagers for Work-Preserving Restart

	11. Using the YARN CLI to View Logs for Running Applications
	11.1. View all Log Files for a Running Application
	11.2. View a Specific Log Type for a Running Application
	11.3. View ApplicationMaster Log Files
	11.4. List Container IDs
	11.5. View Log Files for One Container
	11.6. Show Container Log File Information
	11.7. View a Portion of the Log Files for One Container
	11.8. Download Logs for a Running Application
	11.9. Display Help for YARN Logs


