Hortonworks Data Platform

Apache Spark Component Guide

(August 29, 2016)

http://docs.cloudera.com

hdp-spark-component-guide August 29, 2016

Hortonworks Data Platform: Apache Spark Component Guide
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

hdp-spark-component-guide August 29, 2016

Table of Contents

1. Analyzing Data with Apache SPark ... 1
2. INStalliNG SPATK .o 3
2.1. Installing Spark Using Ambariuuuuumiiiiiiiii 3
2.2. Verify Spark Configuration for Hive ACCesscoooeiiiiiiiiiiiiii 7
2.3. Installing the Spark Thrift Server After Deploying Sparkccccceuemememinennnnnnne 8
2.4. Validating the Spark Installation ... 9
3. CONFIGUIING SPATK ...eeeeiiiiiiiiiiiiiiie e 10
3.1. Customizing the Spark Thrift Server Port ... 10
3.2. Configuring the LiVY SEIVETueiiiiiiiiiiiiiieiiiieeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeneennennnennne 10
3.3. Configuring the Spark HiStory SErVEreuuueueiiiiiiiiiiiiiiiiiiiiviieieieeeveveieeeeeees 10
3.4. Configuring Dynamic Resource Allocationcccevveeviiiiiiiiiiiiiiiiiiiiieieieeeeeeeee 10
3.4.1. Customizing Dynamic Resource Allocation Settings on an Ambari-
(Y T a e =T B @ DT =T PP PP 11
3.4.2. Configuring Cluster Dynamic Resource Allocation Manually 12
3.4.3. Configuring a Job for Dynamic Resource Allocationcccoeeviieennnnnen. 13
3.4.4. Dynamic Resource Allocation Propertiescccccueueeeuuumnineneninininennnens 13
3.5. Configuring Spark for Wire Encryptioncooooioeoiiiiiiiei e 14
3.6. Configuring Spark for a Kerberos-Enabled Clustercccooiiiiiiin. 16
3.6.1. Configuring the Spark History Servercccoovviiimeieieimieieiiieieeieeneeenes 16
3.6.2. Configuring the Spark Thrift SErver ... 17
3.6.3. Setting Up Access for Submitting JObSccccoiimiiiiiiiiiiiiiiiies 17
4. Developing and Submitting Spark Applications ... 19
4.1. Running Spark AppPlicationsocouuuuiiiiie e 19
L I TR o =14 S o PSPPSR PPPPPPPPPPPPPPPPPIR 19
I 2 V1 o T o [o U o PR 20
4.2. Specifying Which Version of Spark t0 USEeueuiiiiiiiiiiiiiiiiiiiiiiiieieeeieneeeeeeenes 22
4.3. Using the Spark DataFrame APlouuiiiiiimiiiiiiiii e 23
4.4. Adding Libraries to SPark ... 25
4.5, USING SPArK SQL .. s 25
4.5.1. Accessing Spark SQL Through the Spark Shellccn. 26
4.5.2. Accessing Spark SQL through JDBC or ODBCcccvvriririririreririrereeenenn. 27
4.5.3. Forming JDBC Connection Strings for Spark SQLueuiiiiiiininennnnes 28
4.5.4. Calling Hive User-Defined FUNCEIONSuuuimimimiiiiiiiiie 29
4.6. USING SPArk StrEamiNge.eeieeeeeieeiiiieeiiieeeeieeeeaeaeaeaeaeseaeeeeesesssessssssesssnsssssnssnnnes 30
T I o =T =T T LY PP 31
4.6.2. Building and Running a Secure Spark Streaming JObevviiiiieennes 31
4.6.3. Running Spark Streaming Jobs on a Kerberos-Enabled Cluster 33
4.6.4. Sample pom xm File for Spark Streaming with Kafka 34
4.7. Spark on HBase: Using the HBase CONNECEONccvvvririiiiiiiiiiiiiiiiineeeeeeeeeeeeen 36
4.8. Accessing ORC Data in Hive Tablescoooiiiiiiii e 37
4.8.1. Accessing ORC Files from SPparkcccceceovoriie 37
4.8.2. Enabling Predicate Push-Down Optimizationcccccccciiiiiiiiiiiiiiiinnnnnn. 38
4.8.3. Loading ORC Data into DataFrames by Using Predicate Push-Down 39
4.8.4. Optimizing Queries Through Partition Pruningeeeeeeeeeieeeennnnns 39
4.8.5. Additional RESOUICEScooiiiuiiiie ettt eeee e e e e eeees 40
4.9. Accessing HDFS Files from Spark ... 40
4.9.1. Specifying COMPIresSIONccceeiiiiiiiiieiieee e 40
4.9.2. Accessing HDFS from PySpark ... 40

hdp-spark-component-guide August 29, 2016

5. Using Spark from R: SParkRcooeiiiiiiiiiiiie et e e e e e eenes 42
5.1, Prer@QUISITEScoiieiiiiiiiei ettt e e e e et et e e e e e e e eeeba e e e e aaeeeen 42

I o ¥ 10 3R -2/ o L= 42

5.3. Additional RESOUICESeeeiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeetaeeeeeeseeseeesssssssssnsssssensnnnes 43

LT U] TV Y o = o SR 44
6.1. Provisioning Hardware ... 44

32 @ g T=Ye (] g Te T o] o IR - {0 L3S 44

6.3. Checking JOb HiStory ..o 44

6.4. Improving Software Performanceoooeoiiuiiiii i 45
6.4.1. Configuring YARN Memory Allocation for Sparkeeeeeeeeeieeenennns 45

hdp-spark-component-guide August 29, 2016

List of Tables

1.1. Spark Feature SUPPOIt DY VEISiONccoooiiiiiiiiiiiiee e 1
3.1. Dynamic Resource Allocation Properties ..o 14
3.2. Optional Dynamic Resource Allocation Propertiesccouuuuuieieiiiiieeeiiiciieeeeeeeeeees 14

hdp-spark-component-guide August 29, 2016

1. Analyzing Data with Apache Spark

Hortonworks Data Platform (HDP) supports Apache Spark, a fast, large-scale data
processing engine.

Deep integration of Spark with YARN allows Spark to operate as a cluster tenant alongside
Apache engines such as Hive, Storm, and HBase, all running simultaneously on a single
data platform. Instead of creating and managing a set of dedicated clusters for Spark
applications, you can store data in a single location, access and analyze it with multiple
processing engines, and leverage your resources.

Spark on YARN leverages YARN services for resource allocation, runs Spark executors in
YARN containers, and supports workload management and Kerberos security features. It
has two modes:

* YARN-cluster mode, optimized for long-running production jobs
* YARN-client mode, best for interactive use such as prototyping, testing, and debugging

Spark shell and the Spark Thrift server run in YARN-client mode only.

Table 1.1. Spark Feature Support by Version

Spark Version 1.6.2 1.6.2 1.6.1 1.6.0 1.5.2 1.4.1 1.3.1 1.21

HDP Version(s) 2.5.0 243 2.4.2 2.4.0 234 2.3.2 2.2.8 2.2.4
2.3.4.7 2.2.9 2.2.6
2.3.6 2.3.0

Feature:

Spark Core Yes Yes Yes Yes Yes Yes Yes Yes

Spark on YARN Yes Yes Yes Yes Yes Yes Yes Yes

Spark on YARN, Yes Yes Yes Yes Yes Yes Yes Yes

Kerberos-enabled

clusters

Spark history server Yes Yes Yes Yes Yes Yes Yes Yes
Hive support 1.21 1.21 1.21 1.21 1.21 0.13.1 0.13.1

Spark MLlib Yes Yes Yes Yes Yes Yes Yes Yes
ML Pipeline API Yes Yes Yes Yes Yes Yes

DataFrame API Yes Yes Yes Yes Yes Yes TP

ORC Files Yes Yes Yes Yes Yes Yes TP

PySpark Yes Yes Yes Yes Yes Yes TP

SparkR Yes TP TP TP TP TP

Spark SQL Yes Yes Yes Yes Yes TP TP TP
Spark Thrift server Yes Yes Yes Yes Yes TP TP

(JDBC, ODBC)

Spark Streaming Yes Yes Yes Yes Yes TP TP TP
Dynamic resource allocation Yes* Yes* Yes* Yes* Yes* TP TP
HBase connector Yes TP TP

hdp-spark-component-guide August 29, 2016

TP: Tech Preview
* Note: Dynamic Resource Allocation does not work with Spark Streaming.

The following features are available as technical previews, and are considered under
development. Do not use these features in your production systems. If you have questions
regarding these features, contact Support by logging a case on the Hortonworks Support
Portal at https://support.hortonworks.com.

* Spark 2.0, including side-by-side installation with Spark 1.6.2 (see Installing Spark)

* GraphX

» DataSet API

The following features and associated tools are not officially supported by Hortonworks:

* Direct use of the Livy server and REST API. (The Livy server is accessible through the %livy
interpreter, within Zeppelin.)

» Spark Standalone
* Spark on Mesos

* Jupyter (formerly IPython) Notebook

https://support.hortonworks.com
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/ch_installing-spark.html

hdp-spark-component-guide August 29, 2016

2. Installing Spark

Before installing Spark, ensure that your cluster meets the following prerequisites:

* HDP cluster stack version 2.5.0 or later

» (Optional) Ambari version 2.4.0 or later

* HDFS and YARN deployed on the cluster

Additionally, note the following requirements and recommendations for optional features:
* Spark Thrift server requires Hive deployed on the cluster.

* PySpark requires Python installed on all nodes.

* SparkR requires R binaries installed on all nodes.

* SparkR is not currently supported on SLES.

* Spark access from Zeppelin using Livy requires the Livy server installed on the cluster
(described in Installing Spark Using Ambari).

* For optimal performance with MLlib, consider installing the net | i b- j ava library.

Although you can install Spark on a cluster not managed by Ambari (see Installing and
Configuring Apache Spark in the Non-Ambari Cluster Installation Guide), this chapter
describes how to install Spark on an Ambari-managed cluster.

2.1. Installing Spark Using Ambari

The following diagram shows the Spark installation process using Ambari. Before you install
Spark using Ambari, refer to Adding a Service for background information about how to
install Hortonworks Data Platform (HDP) components using Ambari.

Agzign

nodas for Spark
Hadaop A Salect Spark |_Hr

Admin Sarvice Spark History Ready
Senver &
Spark Cliant

c Caution

During the installation process, Ambari creates and edits several configuration
files. If you configure and manage your cluster using Ambari, do not edit these
files during or after installation. Instead, use the Ambari web Ul to revise
configuration settings.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/install-spark-over-ambari.html
https://github.com/fommil/netlib-java
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/ch_installing_spark_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/ch_installing_spark_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/adding_a_service.html

hdp-spark-component-guide August 29, 2016

To install Spark using Ambari, complete the following steps.
1. Click the Ambari "Services" tab.
2. In the Ambari "Actions" menu, select "Add Service."

This starts the Add Service wizard, displaying the Choose Services page. Some of the
services are enabled by default.

3. Scroll through the alphabetic list of components on the Choose Services page, and select

"Spark™:
B Spark 1.6.2 Apacha Spark i a fast and general engine for larpe-scale dala procassing
Spark2 0.0 Apache Spark 2.0 Is a fast and goenaral engine for large-scale data processing, This

saryice & Technical Praview.

3 Note
If you want to install the Spark2 technical preview (not for production use),
you can also select Spark2. Ambari installs it alongside Spark 1.6.

When running two Spark versions side by side, see Specifying Which Version
of Spark to Use for information about choosing which Spark version runs a

job.
4. Click "Next" to continue.

5. On the Assign Masters page, review the node assignment for the Spark history server,
modify the assignment if desired, and click "Next":

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/spark-choose-version.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/spark-choose-version.html

hdp-spark-component-guide

August 29, 2016

Assign Masters

Assign master componants to hosts you want 12 run tham on.
& HivaSarsoer2 and WebMCat Senver will be hosted on the same host.

Namabloda:

SNamebode:

History Senver:

App Timeling Server:

ResourcehManager:

Hive Matastons:

WebHCat Servar:

HivaServar2:

Zookpeper Server:

FookBeper Senver

ZooKpeper Server

DAPC Sorver:

Nimbaes:

Storm U Server:

Metrics Collactor:

£7001.ambari.apache.org (3.6 € J
67002.ambari apache.o (36 C - |
e7002.ambari.apache.omg (3.6 C j
c7002. ambari.apache.on (3.6 C j
67002.ambar apache.om (3.6 C - |
©7D02.ambarl apache.org (3.6 C J
£7002 ambar.apache.orge
7002.ambar.apache.org (3.6 C J
c7003.ambari apache.org (36 ¢ ~| @
7001 .armbar. apache.og (3.6 G j D
67002 ambar apache.org (3.6 € j o
7002 amban.apache.org (3.6 C j
67002 .ambart.apache.o 36 ¢ -| @
cT002.ambari. apache.org (3.6 C j

e7003.ambar.apache.ong (3.6 C j

Spark History Server:

7001.ambar.apache.org (3.6 G j

Kafka Broxer:

SmartSensa HST Server;

7001 .ambar. apache.or (3.6 C j D

7001, ambar apache.ong (3.6 € J

cTd1.ambari.apache.ong (3.6 GB, 4 cores)
c=

SmartSense HET Senver

G2 . ambari.apache.org (3.6 GB, 4 comns)

003 amban. apache.org (3.6 GB, 4 coms)

6. On the Assign Slaves and Clients page, choose the nodes that you want to run Spark
clients; these are the nodes from which Spark jobs can be submitted to YARN:

hdp-spark-component-guide August 29, 2016

Assign Slaves and Clients

Assign slave and clant componenis to hosts you want o ren them on

Hosts that ane assigned master compongnts s shown with e,
"Cliant”™ will install HDFS Client, MapReduca? Clent, YARN Client, Taz Cliant, HCat Cliant, Hive Clent, P 8 ZooKsapar Client
and Spark Cliant
all | none all | none all | none all | none all | none all | none all | none
apache.orgs & DataNode NFSGateway o NodeManager B Supervisocr B Flume Spark Thrift Sarver Client
apache.orgs B DataNoda NFSGateway B NodoMmnager B Suparvisor B Fluma & Spark Thrift Sarver Clignt
apache.orge B DataNoda NFSGateway @& NodeManager B Supervisor B Flume Spark Thrft Server B Client
2 r H & %+ H
E—
~— Back Maxt —

7. To install the optional Spark Thrift server for ODBC or JDBC access now, review node
assignments on the Assign Slaves and Clients page and assign one or two nodes to it, as
needed. Deploying the Thrift server on multiple hosts increases scalability of the Thrift
server; the number of hosts should take into consideration the cluster capacity allocated
to Spark.

To install the Thrift server after Ambari finishes installing Spark, see Installing the Spark
Thrift Server after Deploying Spark.

8. To install the optional Livy server (for features such as user identity propagation from
Zeppelin to Spark), check the "Livy Server" box for the desired node assignment on the
Assign Slaves and Clients page.

9. Click "Next" to continue.

10Unless you are installing the Spark Thrift server now, use the default values displayed on
the Customize Services page:

Customize Services

Wa have coma up with recommended configurations for the services you selacted. Customiza them as you see fit
FS MapReduce2 YARM Tez Hiwve HBass Pig ZooKesper Storm Flume Kafka Spark Misc

Group Default (1) - Manage Config Groups -

111f you are installing the Spark Thrift server at this time, complete the following steps:

a. Click the "Spark" tab on the Customize Services page.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/install-sts-after-spark-install.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/install-sts-after-spark-install.html

hdp-spark-component-guide August 29, 2016

b. Navigate to the "Advanced spark-thrift-sparkconf" group.

c. Set the spar k. yar n. queue value to the name of the YARN queue that you want to
use.

12 Click "Next" to continue.

13When the wizard displays the Review page, ensure that all HDP components shown
correspond to HDP 2.5.0 or later.

14 Click "Deploy" to begin installation.

15When Ambari displays the Install, Start and Test page, monitor the status bar and
messages for progress updates:

Install, Start and Test

Ploasy wait whila the selacted sarvices ans instalad and starsd.
3 % overndl
.. ;

Haost Status Mossngo

c7001.ambari.apache.ong [3% Waiting to install DataModo

£ 7002 amban.apache.om | 3% Waiting to install DataMNods

7003 amban.apachi.ong | 3% Waiting to install DataNode

25 . 1] H & 4 M

16 When the wizard presents a summary of results, click "Complete" to finish installing
Spark.

2.2. Verify Spark Configuration for Hive Access

When you install Spark using Ambari, the hi ve- si t e. xm file is automatically populated
with the Hive metastore location.

If you move Hive to a different server, edit the SPARK_HOME/ conf / hi ve-si te. xm file
so that it contains only the hive.metastore.uris property. Make sure that the host name
points to the URI where the Hive metastore is running, and that the Spark copy of hi ve-
site. xm contains only the hive.metastore.uris property.

hdp-spark-component-guide August 29, 2016

<confi guration>
<property>
<name>hi ve. met ast or e. uri s</ nane>
<!-- hostname nust point to the H ve netastore URl in your cluster -->
<val ue>t hrift://host nane: 9083</ val ue>
<description>URl for client to contact nmetastore server</description>
</ property>
</ confi guration>

2.3. Installing the Spark Thrift Server After
Deploying Spark

To install the Spark Thrift server after deploying Spark over Ambari, add the Thrift service
to the specified host or hosts. Deploying the Thrift server on multiple hosts increases
scalability of the Thrift server; the number of hosts should take into consideration the
cluster capacity allocated to Spark.

1. On the Summary tab, click "+ Add" and choose the Spark Thrift server:

® c¢6401.ambari.apache.org
Back

Summary Configs Alerts G Versions

Components + Add

@ App Timeline Server / YARN . NFSGateway

@ History Server / MapReduce?2 Started o
@ Hive Metastore / Hive Started -
@ HiveServer2 / Hive Started -
& MySQL Server / Hive Started -
@ NameNode / HDFS Started -
@ ResourceManager / YARN Started -
® SNameMode / HDFS Started -
@ Spark History Server / Spark Started -

2. When Ambari prompts you to confirm the selection, click Confirm All:

hdp-spark-component-guide August 29, 2016

Confirmation

A you e you w5 acd Sears Theilt S

The installation process runs in the background until it is complete:

0 Background Operations Running

Opargtions Saart T Durilicn Shaw: AT
v st Sk Thei Sarver B s
v S0 Spark Thoh Servr S o
o all componants wih 5 B o
1 S % »
e BRI
Lo mof shoew Bhis dakog again when starbing o baciground operation E

2.4. Validating the Spark Installation

To validate the Spark installation, run the Spark Pi and WordCount jobs, supplied with the
Spark package. For more information, see Running Spark Applications.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/run-sample-apps.html

hdp-spark-component-guide August 29, 2016

3. Configuring Spark

This chapter describes how to configure server ports, the Apache Spark history server,
the Livy server, and dynamic resource allocation, as well as how to configure Spark for a
Kerberos-enabled cluster.

3.1. Customizing the Spark Thrift Server Port

The default Spark Thrift server port is 10015. To specify a different port, you can navigate
tothe hi ve. server2.thrift. port setting in the "Advanced spark-hive-site-override"

category of the Spark configuration section and update the setting with your preferred
port number.

3.2. Configuring the Livy Server

To configure the optional Livy server (for features such as user identity propagation from
Zeppelin to Spark), on an Ambari-managed cluster navigate to Spark > Configs, Custom livy-

conf category. Add | i vy. super user s as a property, and set it to the Zeppelin service
account.

S Note

HDP 2.5 does not support direct use of Livy REST APIs. Livy can be accessed
through the % i vy interpreter in Zeppelin notebooks.

3.3. Configuring the Spark History Server

The Spark history server is a monitoring tool that displays information about completed
Spark applications. This information is pulled from the data that applications by default
write to a directory on Hadoop Distributed File System (HDFS). The information is then
presented in a web Ul at <host >: <port >. (The default port is 18080.)

For information about configuring optional history server properties, see the Apache
Monitoring and Instrumentation document.

3.4. Configuring Dynamic Resource Allocation

When the dynamic resource allocation feature is enabled, an application's use of executors
is dynamically adjusted based on workload. This means that an application can relinquish
resources when the resources are no longer needed, and request them later when there is
more demand. This feature is particularly useful if multiple applications share resources in
your Spark cluster.

Dynamic resource allocation is available for use by the Spark Thrift server and general Spark
jobs.

3 Note

Dynamic Resource Allocation does not work with Spark Streaming.

10

http://spark.apache.org/docs/1.6.2/monitoring.html#viewing-after-the-fact
http://spark.apache.org/docs/1.6.2/monitoring.html#viewing-after-the-fact

hdp-spark-component-guide August 29, 2016

You can configure dynamic resource allocation at either the cluster or the job level:

e Cluster level:

¢ On an Ambari-managed cluster, the Spark Thrift server uses dynamic resource
allocation by default. The Thrift Server increases or decreases the number of running
executors based on a specified range, depending on load. (In addition, the Thrift
Server runs in YARN mode by default, so the Thrift Server uses resources from the
YARN cluster.) The associated shuffle service starts automatically, for use by the Thrift
Server and general Spark jobs.

¢ On a manually installed cluster, dynamic resource allocation is not enabled by default
for the Thrift Server or for other Spark applications. You can enable and configure
dynamic resource allocation and start the shuffle service during the Spark manual
installation or upgrade process.

* Job level: You can customize dynamic resource allocation settings on a per-job basis. Job
settings override cluster configuration settings.

Cluster configuration is the default, unless overridden by job configuration.

The following subsections describe each configuration approach, followed by a list of
dynamic resource allocation properties and a set of instructions for customizing the Spark
Thrift server port.

3.4.1. Customizing Dynamic Resource Allocation Settings on
an Ambari-Managed Cluster

On an Ambari-managed cluster, dynamic resource allocation is enabled and configured for
the Spark Thrift server as part of the Spark installation process. Dynamic resource allocation
is not enabled by default for general Spark jobs.

You can review dynamic resource allocation for the Spark Thrift server, and enable and
configure settings for general Spark jobs, by choosing Services > Spark and then navigating
to the "Advanced spark-thrift-sparkconf" group:

11

hdp-spark-component-guide August 29, 2016

NPT Tairsc ey lar, K &]]

The "Advanced spark-thrift-sparkconf" group lists required settings. You can specify
optional properties in the custom section. For a complete list of DRA properties, see
Dynamic Resource Allocation Properties.

Dynamic resource allocation requires an external shuffle service that runs on each worker
node as an auxiliary service of NodeManager. If you installed your cluster using Ambari,
the service is started automatically for use by the Thrift Server and general Spark jobs; no
further steps are needed.

3.4.2. Configuring Cluster Dynamic Resource Allocation
Manually

To configure a cluster to run Spark jobs with dynamic resource allocation, complete the
following steps:

1. Add the following properties to the spar k- def aul t s. conf file associated with your
Spark installation (typically in the $SPARK_HOWE/ conf directory):

e Set spar k. dynani cAl | ocati on. enabl ed totrue.

e Setspar k. shuffl e. servi ce. enabl edtotrue.

12

hdp-spark-component-guide August 29, 2016

2. (Optional) To specify a starting point and range for the number of executors, use the
following properties:

e spar k. dynam cAl | ocation.initial Executors
* spar k. dynam cAl | ocati on. mi nExecut ors
e spark. dynam cAl | ocati on. maxExecut ors

Note thati ni t i al Execut or s must be greater than or equal to m nExecut or s, and
less than or equal to maxExecut or s.

For a description of each property, see Dynamic Resource Allocation Properties.
3. Start the shuffle service on each worker node in the cluster:
a. Intheyarn-site. xnm file on each node, add spar k_shuffl e
to yar n. nodermanager . aux- servi ces, and then set
yar n. nodemanager . aux- servi ces. spark_shuffl e. cl ass to
or g. apache. spar k. net wor k. yar n. Yar nShuf f | eSer vi ce.
b. Review and, if necessary, edit spar k. shuf f| e. servi ce. * configuration settings.

For more information, see the Apache Spark Shuffle Behavior documentation.

c. Restart all NodeManagers in your cluster.

3.4.3. Configuring a Job for Dynamic Resource Allocation

There are two ways to customize dynamic resource allocation properties for a specific job:
* Include property values in the spar k- subm t command, using the - conf option.

This approach loads the default spar k- def aul t s. conf file first, and then applies
property values specified in your spar k- subm t command. Here is an example:

spark-submt —onf “property_nane=property_val ue”

* Create a job-specific spar k- def aul t s. conf file and pass it to the spar k- submi t
command.

This approach uses the specified properties file, without reading the default property file.
Here is an example:

spark-submt —properties-file <property_file>
3.4.4. Dynamic Resource Allocation Properties

See the following tables for more information about basic and optional dynamic resource
allocation properties. For more information, see the Apache Dynamic Resource Allocation
documentation.

13

https://spark.apache.org/docs/1.6.2/configuration.html#shuffle-behavior
http://spark.apache.org/docs/1.6.2/job-scheduling.html#dynamic-resource-allocation

hdp-spark-component-guide August 29, 2016

Table 3.1. Dynamic Resource Allocation Properties

Property Name Value Meaning
spar k. dynam cAl | ocati on. Default is t r ue for the Spark Thrift Specifies whether to use dynamic
enabl ed server, and f al se for Spark jobs. resource allocation, which scales the

number of executors registered for

an application up and down based

on workload. Note that this feature is
currently only available in YARN mode.

spar k. shuffl e. servi ce. true Enables the external shuffle service,
enabl ed which preserves shuffle files written by
executors so that the executors can be
safely removed.

This property must be settotr ue
if spar k. dynam cAl | ocati on.
enabl edistrue.

spar k. dynam cAl | ocati on. Default is The initial number of executors to
initial Executors spar k. dynani cAl | ocati on. run if dynamic resource allocation is
m nExecut ors enabled.

This value must be greater than

or equal to the mi nExecut or s
value, and less than or equal to the
maxExecut or s value.

spar k. dynam cAl | ocati on. Default is infinity Specifies the upper bound for the
maxExecut or s number of executors if dynamic
resource allocation is enabled.
spar k. dynami cAl | ocati on. Default is 0 Specifies the lower bound for the
m nExecut or s number of executors if dynamic

resource allocation is enabled.

Table 3.2. Optional Dynamic Resource Allocation Properties

Property Name Value Meaning

spar k. dynami cAl | ocati on. Default is 60 seconds (60s) If dynamic resource allocation is

execut or | dl eTi meout enabled and an executor has been idle
for more than this time, the executor is
removed.

spar k. dynam cAl | ocati on. Default is infinity If dynamic resource allocation is

cachedExecut or | dl eTi meout enabled and an executor with

cached data blocks has been idle for
more than this time, the executor is

removed.
spar k. dynam cAl | ocati on. 1 second (1s) If dynamic resource allocation is
schedul er Backl ogTi neout enabled and there have been pending

tasks backlogged for more than this
time, new executors are requested.

spar k. dynam cAl | ocati on. Default is Same as

sust ai nedSchedul er Backl ogTi mesahedul er Backl ogTi neout spar k. dynam cAl | ocati on.
schedul er Backl ogTi nmeout , but
used only for subsequent executor
requests.

3.5. Configuring Spark for Wire Encryption

You can configure Spark to protect sensitive data in transit, by enabling wire encryption.

In general, encryption protects data by making it unreadable without a phrase or digital
key to access the data. Data can be encrypted while it is in transit and when it is at rest:

14

hdp-spark-component-guide August 29, 2016

* "In transit" encryption refers to data that is encrypted when it traverses a network. The
data is encrypted between the sender and receiver process across the network. Wire
encryption is a form of "in transit" encryption.

» "At rest" or "transparent” encryption refers to data stored in a database, on disk, or on
other types of persistent media.

Apache Spark supports "in transit" wire encryption of data for Apache Spark jobs. When
encryption is enabled, Spark encrypts all data that is moved across nodes in a cluster on
behalf of a job, including the following scenarios:

 Data that is moving between executors and drivers, such as during a col | ect ()
operation.

» Data that is moving between executors, such as during a shuffle operation.

Spark does not support encryption for connectors accessing external sources; instead,
the connectors must handle any encryption requirements. For example, the Spark HDFS
connector supports transparent encrypted data access from HDFS: when transparent
encryption is enabled in HDFS, Spark jobs can use the HDFS connector to read encrypted
data from HDFS.

Spark does not support encrypted data on local disk, such as intermediate data written to a
local disk by an executor process when the data does not fit in memory. Additionally, wire
encryption is not supported for shuffle files, cached data, and other application files. For
these scenarios you should enable local disk encryption through your operating system.

3 Note
The following instructions enable SSL for Spark. Starting with Spark 2.0
(currently in technical preview), you can also enable HTTPS on the History
Server Ul, for browsing job history data.

Configuration Instructions,
Use the following commands to configure Spark for wire encryption:
1. On each node, create keystore files, certificates, and truststore files.

a. Create a keystore file:

keyt ool -genkey -alias <host> -keyal g RSA -keysi ze 1024 —dnane CN=
<host >, QU=hw, O=hw, L=pal oal t 0, ST=ca, C=us —keypass <KeyPassword> - keystore
<keystore file> -storepass <storePassword>

b. Create a certificate:

keyt ool -export -alias <host> -keystore <keystore file> -rfc —file
<cert _file> -storepass <StorePassword>

c. Create a truststore file:

keyt ool -inport -nopronpt -alias <host> -file <cert_file> -keystore
<truststore_file> -storepass <truststorePassword>

2. Create one truststore file that contains the public keys from all certificates.

15

hdp-spark-component-guide August 29, 2016

a. Log on to one host and import the truststore file for that host:

keyt ool

-inmport -nopronpt -alias <hostnane> -file <cert_fil e>-keystore

<all _j ks> -storepass <all Trust st or ePasswor d>

b. Copy the <al | _j ks> file to the other nodes in your cluster, and repeat the keyt ool
command on each node.

3. Enable Spark authentication.

a. Setspark. aut henti cate totrueintheyarn-site.xm file:

<property>
<name>spar k. aut hent i cat e</ name>
<val ue>t r ue</ val ue>

</ property>

b. Set the following properties in the spar k- def aul t s. conf file:

spar k. authenticate true
spar k. aut henti cat e. enabl eSasl Encrypti on true

4. Enable Spark SSL.

Set the following properties in the spar k- def aul t s. conf file:

spar k. ssl . enabl ed true
spar k. ssl . enabl edAl gorithms TLS RSA W TH _AES 128_CBC_SHA,
TLS RSA W TH_AES_256_CBC_SHA

spar k.
spar k.
spar k.
spar k.
spar k.
spar k.

ssl

ssl .
ssl .
ssl .
.trustStore <all_j ks>

.trust St orePassword <al | Trust st or ePasswor d>

ssl
ssl

. keyPasswor d <KeyPasswor d>

keySt ore <keystore file>
keySt or ePasswor d <st or ePasswor d>
protocol TLS

3.6. Configuring Spark for a Kerberos-Enabled

Cluster

Before running Spark jobs on a Kerberos-enabled cluster, configure additional settings for
the following modules and scenarios:

* Spark history server

 Spark Thrift server

¢ Individuals who submit jobs

* Processes that submit jobs without human interaction

Each of these scenarios is described in the following subsections.

3.6.1. Configuring the Spark History Server

The Spark history server daemon must have a Kerberos account and keytab to run on a
Kerberos-enabled cluster.

16

hdp-spark-component-guide August 29, 2016

When you enable Kerberos for a Hadoop cluster with Ambari, Ambari configures Kerberos
for the history server and automatically creates a Kerberos account and keytab for it. For
more information, see Enabling Kerberos Authentication Using Ambari in the HDP Security
Guide.

If your cluster is not managed by Ambari, or if you plan to enable Kerberos manually for
the history server, see Creating Service Principals and Keytab Files for HDP in the HDP
Security Guide.

3.6.2. Configuring the Spark Thrift Server

If you are installing the Spark Thrift server on a Kerberos-enabled cluster, note the
following requirements:

* The Spark Thrift server must run in the same host as H veSer ver 2, so that it can access
the hi veser ver 2 keytab.

* Permissionsin/var/run/ spark and/var/| og/ spar k must specify read/write
permissions to the Hive service account.

* You must use the Hive service account to start thet hri ft server process.

If you access Hive warehouse files through HiveServer2 on a deployment with fine-grained
access control, run the Spark Thrift server as user hi ve. This ensures that the Spark Thrift
server can access Hive keytabs, the Hive metastore, and HDFS data stored under user hi ve.

2 Important

If you read files from HDFS directly through an interface such as Hive CLI

or Spark CLI (as opposed to HiveServer2 with fine-grained access control
implemented), you should use a different service account for the Spark Thrift
server. Configure the account so that it can access Hive keytabs and the Hive
metastore. Use of an alternate account provides a more secure configuration:
when the Spark Thrift server runs queries as user hi ve, all data accessible to
user hi ve is accessible to the user submitting the query.

For Spark jobs that are not submitted through the Thrift Server, the user submitting the job
must have access to the Hive metastore in secure mode, using the ki ni t command.

3.6.3. Setting Up Access for Submitting Jobs

Accounts that submit jobs on behalf of other processes must have a Kerberos account and
keytab. End users should use their own keytabs (instead of using a headless keytab) when
submitting a Spark job. The following two subsections describe both scenarios.

Setting Up Access for an Account

When access is authenticated without human interaction (as happens for processes that
submit job requests), the process uses a headless keytab. Security risk is mitigated by
ensuring that only the service that should be using the headless keytab has permission to
read it.

17

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/creating_service_principals_and_keytab_files_for_hdp.html

hdp-spark-component-guide August 29, 2016

The following example creates a headless keytab for a spar k service user account that will
submit Spark jobs on node bl uel@xanpl e. com

1. Create a Kerberos service principal for user spar k:
kadnmi n.l ocal -qg "addprinc -randkey spark/ bl uel@XAVMPLE. COM'
2. Create the keytab:

kadm n.local -qg "xst -k /etc/security/keytabs/spark. keytab
spar k/ bl uel @XAMPLE. COM'

3. For every node of your cluster, create a spar k user and add it to the hadoop group:
useradd spark -g hadoop

4. Make spar k the owner of the newly created keytab:
chown spark: hadoop /etc/security/keytabs/spark. keyt ab

5. Limit access by ensuring that user spar k is the only user with access to the keytab:
chnmod 400 /etc/security/ keytabs/spark. keyt ab

In the following example, user spar k runs the Spark Pi example in a Kerberos-enabled
environment:

su spark
kinit -kt /etc/security/keytabs/spark. keytab spark/ bl uel@XAVPLE. COM
cd /usr/hdp/current/spark-client/
./ bin/spark-subnmit --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 1 \
--driver-nenory 512m\
--executor-nmenory 512m\
--executor-cores 1\
I'i b/ spark-exanpl es*.jar 10

Setting Up Access for an End User

Each person who submits jobs must have a Kerberos account and their own keytab; end

users should use their own keytabs (instead of using a headless keytab) when submitting
a Spark job. This is a best practice: submitting a job under the end user keytab delivers a

higher degree of audit capability.

In the following example, end user SUSERNANME has their own keytab and runs the Spark Pi
job in a Kerberos-enabled environment:

su $USERNAVE
ki nit USERNAVE@/OUR- LOCAL- REALM COM
cd /usr/ hdp/current/spark-client/
.I'bi n/spark-submt --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 3 \
--driver-nenmory 512m\
--executor-nenory 512m\
--executor-cores 1\
| i b/ spar k-exanpl es*.jar 10

18

hdp-spark-component-guide August 29, 2016

4. Developing and Submitting Spark
Applications

Apache Spark enables you to quickly develop applications and process jobs. It is designed
for fast application development and fast processing. Spark Core is the underlying
execution engine; other services, such as Spark SQL, MLIlib, and Spark Streaming, are built
on top of the Spark Core.

To launch Spark applications on a cluster, you typically use the spar k- submi t script in the
Spark bi n directory. You can also use the APl interactively by launching an interactive shell
for Scala (spar k- shel |), Python (pyspar k), or SparkR. Note that each interactive shell
automatically creates Spar kCont ext in a variable called sc.

For more information about getting started with Spark, see the Apache Spark Quick Start.
For more extensive information about application development, see the Apache Spark
Programming Guide and Submitting Applications.

This chapter describes how to run two sample programs, followed by guidelines for

applications that use the Spark DataFrame API, external libraries, Spark SQL, and Hive user-
defined functions.

4.1. Running Spark Applications

You can use the following sample programs, Spark Pi and Spark WordCount, to validate
your Spark installation and explore running Spark jobs from the command line and Spark
shell.

4.1.1. Spark Pi

You can test your Spark installation by running the following compute-intensive example,
which calculates pi by “throwing darts” at a circle. The program generates points in the
unit square ((0,0) to (1,1)) and counts how many points fall within the unit circle within the
square. The result approximates pi.

Follow these steps to run the Spark Pi example:

1. Log on as a user with Hadoop Distributed File System (HDFS) access: for example, your
spar k user, if you defined one, or hdf s.

When the job runs, the library is uploaded into HDFS, so the user running the job needs
permission to write to HDFS.

2. Navigate to a node with a Spark client and access the spar k- cl i ent directory:
cd /usr/hdp/current/spark-client
su spark

3. Run the Apache Spark Pi job in yarn-client mode, using code from or g. apache. spar k:

19

http://spark.apache.org/docs/1.6.2/quick-start.html
http://spark.apache.org/docs/1.6.2/programming-guide.html
http://spark.apache.org/docs/1.6.2/programming-guide.html
http://spark.apache.org/docs/1.6.2/submitting-applications.html

hdp-spark-component-guide August 29, 2016

./ bin/spark-submt --class org.apache. spark. exanpl es. SparkPi --master yarn-
client --numexecutors 1 --driver-nmenory 512m --executor-nenory 512m - -
executor-cores 1 |ib/spark-exanpl es*.jar 10

Commonly used options include the following:

--cl ass The entry point for your application: for example,
or g. apache. spar k. exanpl es. Spar kPi .

--master The master URL for the cluster: for example,
spark://23.195.26.187: 7077.

- - depl oy- node Whether to deploy your driver on the worker nodes
(cl ust er) or locally as an external client (default is
client).

- - conf Arbitrary Spark configuration property in key=val ue

format. For values that contain spaces, enclose
“key=val ue” in double quotation marks.

<application-jar> Path to a bundled jar file that contains your
application and all dependencies. The URL must be
globally visible inside of your cluster: for instance, an
hdfs:// pathorafile:// paththatis present on
all nodes.

<appl i cati on-argument s> Arguments passed to the main method of your main
class, if any.

Your job should produce output similar to the following. Note the value of pi in the
output.

16/ 08/ 22 14:28: 35 | NFO schedul er. DAGSchedul er: Job 0 finished: reduce at
Spar kPi . scal a: 36, took 1.721177 s

Pi is roughly 3.141296

16/ 08/ 22 14: 28: 35 | NFO spar k. Cont ext Cl eaner: C eaned accunul ator 1

You can also view job status in a browser by navigating to the YARN ResourceManager
Web Ul and viewing job history server information. (For more information about
checking job status and history, see Tuning and Troubleshooting Spark.)

4.1.2. WordCount

WordCount is a simple program that counts how often a word occurs in a text file. The
code builds a dataset of (String, Int) pairs called count s, and saves the dataset to a file.

The following example submits WordCount code to the Scala shell:
1. Select an input file for the Spark WordCount example.

You can use any text file as input.

20

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/ch_tuning-spark.html

hdp-spark-component-guide August 29, 2016

2. Log on as a user with HDFS access: for example, your spar k user (if you defined one) or
hdf s.

The following example uses | 0g4j . properti es as the input file:
cd /usr/hdp/current/spark-client/
su spark

3. Upload the input file to HDFS:

hadoop fs -copyFromiocal /etc/hadoop/conf/log4j.properties /tnp/
dat a

4. Run the Spark shell:

.I'bin/spark-shell --master yarn-client --driver-nmenory 512m - -
executor-menory 512m

You should see output similar to the following:

16/ 08/ 22 19: 33: 26 | NFO SecurityManager: Changing view acls to: spark

NN
I . I\ _, I [[_/_\ version 1.6.2

Using Scal a version 2.10.5 (Java Hot Spot (TM 64-Bit Server VM Java 1.8.
0_60)

Type in expressions to have them eval uat ed.

Type :help for nore information.

16/ 08/ 22 19: 33: 30 | NFO Spar kCont ext: Runni ng Spark version 1.6.2

16/ 08/ 22 19: 33: 38 | NFO Event Loggi ngLi stener: Loggi ng events to hdfs:///
spar k- hi st ory/ appl i cati on_1459984611485 0009

Spar k context avail able as sc.

16/ 08/ 22 19:33:42 I NFO HiveContext: Initializing execution hive, version 1
2.1

16/ 08/ 22 19: 34: 00 I NFO Hi veContext: Initializing H veMetast oreConnecti on
version 1.2.1 using Spark cl asses.

16/ 08/ 22 19:34:00 | NFO C i ent Wapper: |nspected Hadoop version: 2.7.1.2.5.0
0-130

16/ 08/ 22 19:34:00 I NFO C i ent Wapper: Loaded org. apache. hadoop. hi ve. shi ns.
Hadoop23Shi ms for Hadoop version 2.7.1.2.5.0.0-130

16/ 08/ 22 19:34:01 I NFO netastore: Trying to connect to netastore with UR
thrift://green2: 9083

16/ 08/ 22 19: 34: 01 | NFO net astore: Connected to netastore.

SQL context avail abl e as sql Cont ext.

scal a>

5. At the scal a> prompt, submit the job by typing the following commands, replacing
node names, file name, and file location with your own values:

21

hdp-spark-component-guide August 29, 2016

val file = sc.textFile("/tnp/data")

val counts = file.flatMap(line => line.split(" ")).mp(word => (word, 1))
reduceByKey(_ +)

counts. saveAsText Fil e("/t np/ wor dcount ")

6. Use one of the following approaches to view job output:
* View output in the Scala shell:
scal a> counts. count ()
* View the full output from within the Scala shell:
scal a> counts.toArray().foreach(println)
* View the output using HDFS:
a. Exit the Scala shell.
b. View WordCount job status:
hadoop fs -1s /tnp/wordcount

You should see output similar to the following:
/ t mp/ wor dcount / _SUCCESS

/ t np/ wor dcount / part - 00000
/ t mp/ wor dcount / part - 00001

¢. Use the HDFS cat command to list WordCount output:

hadoop fs -cat /tnp/wordcount/part-00000

4.2. Specifying Which Version of Spark to Use

You can install more than one version of Spark on a node. Here are the guidelines for
determining which version runs your job:

» By default, if only one version of Spark is installed on a node, your job runs with the
installed version.

* By default, if more than one version of Spark is installed on a node, your job runs with
the default version for your HDP package.

The default version for HDP 2.5.0 is Spark 1.6.2.

* If more than one version of Spark is installed on a node, you can select which version of
Spark runs your job.

To do this, set the SPARK_MAJOR _VERSI ON environment variable to the desired version
before you launch the job.

For example, if Spark 1.6.2 and the Spark 2.0 technical preview are both installed on a
node, and you want to run your job with Spark 2.0, set SPARK _MAJOR_VERSI ONto
2.0.

22

hdp-spark-component-guide August 29, 2016

The SPARK_MAJOR_VERSI ON environment variable can be set by any user who logs on
to a client machine to run Spark. The scope of the environment variable is local to the user
session.

Here is an example for a user who submits jobs using spar k- subm t under/ usr/ bi n:
1. Navigate to a host where Spark 2.0 is installed.
2. Change to the Spark2 client directory:
cd /usr/ hdp/current/spark2-client/
3. Set the SPARK _MAJOR_VERSI ON environment variable to 2:
export SPARK_MAJOR _VERSI ON=2
4. Run the Spark Pi example:

./ bin/spark-submt --class org.apache. spark. exanpl es. SparkPi - -
master yarn-cluster --numexecutors 1 --driver-menory 512m - -
execut or-nmenory 512m --executor-cores 1 exanpl es/jars/sparKk-
exanpl es*.jar 10

Note that the path to spar k- exanpl es-*. j ar is different than the path used for
Spark 1.x.

To change the environment variable setting later, either remove the environment variable
or change the setting to the newly desired version.

4.3. Using the Spark DataFrame API

A DataFrame is a distributed collection of data organized into named columns. It is
conceptually equivalent to a table in a relational database or a data frame in R or in the
Python pandas library. You can construct DataFrames from a wide array of sources,
including structured data files, Apache Hive tables, and existing Spark resilient distributed
datasets (RDD). The Spark DataFrame API is available in Scala, Java, Python, and R.

This subsection contains several examples of DataFrame API use.
To list JSON file contents as a DataFrame:

1. As user spar k, upload the peopl e. t xt and peopl e. j son files to the Hadoop
Distributed File System (HDFS):

cd /usr/ hdp/current/spark-client

su spark

hdf s dfs -copyFronlocal exanpl es/src/ main/resources/ peopl e.txt people.txt
hdf s df s -copyFronlocal exanpl es/src/ main/resources/ peopl e.json people.json

2. Launch the Spark shell:

cd /usr/ hdp/current/spark-client

su spark

./ bin/spark-shell --numexecutors 1 --executor-nenory 512m --naster yarn-
client

23

hdp-spark-component-guide August 29, 2016

3. At the Spark shell, type the following:

scal a> val df = sqgl Context.read.format("json").|oad("people.json")

4. Using df . show, display the contents of the DataFrame:
scal a> df . show

16/ 08/ 22 11:24:10 | NFO YarnSchedul er: Renpved TaskSet 2.0, whose tasks have
all conpl eted, from pool

nul I'	M chael
30	Andy
19	Justin]

The following examples use Scala to access DataFrame df defined in the previous
subsection:

/1 lnport the DataFranme functions API
scal a> i nport org. apache. spark. sql . functions. _

/1 Select all rows, but increment age by 1
scal a> df. sel ect (df ("nane"), df("age") + 1).show)

/1 Sel ect people older than 21
scal a> df .filter(df ("age") > 21).show()

/1 Count people by age
scal a> df . groupBy("age").count().show)

The following example uses the DataFrame API to specify a schema for peopl e. t xt, and
then retrieves names from a temporary table associated with the schema:

i nport org. apache. spark. sqgl._

val sql Context = new org. apache. spar k. sql . SQ_Cont ext (sc)

val people = sc.textFile("people.txt")

val schemaString = "nane age"

i mport org. apache. spark. sql .types. {Struct Type, StructFi el d, Stri ngType}

val schema = Struct Type(schemaString.split(" ").map(fiel dName =>
StructFiel d(fiel dName, StringType, true)))

val rowRDD = people.map(_.split(",")).mp(p => Rowm(p(0), p(1l).trim)

val peopl eDat aFrane = sql Cont ext . cr eat eDat aFr ame(r owRDD, schenm)

peopl eDat aFr ane. r egi st er TenpTabl e(" peopl e")

val results = sgl Context.sql ("SELECT nanme FROM peopl e")

results. map(t => "Nane: " + t(0)).collect().foreach(println)

This produces output similar to the following:

24

hdp-spark-component-guide August 29, 2016

16/ 08/ 22 14:36:49 I NFO cl uster. YarnSchedul er: Renoved TaskSet 13.0, whose
tasks have all conpleted, from pool

16/ 08/ 22 14:36:49 | NFO schedul er. DAGSchedul er: Resul t Stage 13 (col l ect at :33)
finished in 0.129 s

16/ 08/ 22 14:36:49 | NFO schedul er. DAGSchedul er: Job 10 fini shed: coll ect
at :33, took 0.162827 s

Nanme: M chael

Nane: Andy

Name: Justin

4.4. Adding Libraries to Spark

Spark comes equipped with a selection of libraries, including Spark SQL, Spark Streaming,
and MLlib. However, if you want to use a custom library with a Spark application (such as
a compression library or Magellan), you can use one of the following two spar k- subm t
script options:

* The - - j ar s option transfers associated .jar files to the cluster.
Specify a list of comma-separated .jar files.

* The - - packages option pulls files directly from Spark packages.
This approach requires an internet connection.

For example, you can use the - - j ar s option to add codec files. The following example
adds the LZO compression library:

spark-submit --driver-menory 1G --executor-nmenory 1G --master yarn-client
--jars /usr/hdp/2.3.0.0-2557/ hadoop/ | i b/ hadoop-| zo-0. 6. 0. 2. 3. 0. 0- 2557. j ar
test_read_wite. py

For more information about the two options, see Advanced Dependency Management on
the Apache Spark "Submitting Applications" web page.

3 Note
If you launch a Spark job that references a codec library without specifying
where the codec resides, Spark returns an error similar to the following:

Caused by: java.lang. ||| egal Argument Excepti on: Conpressi on codec
com hadoop. conpressi on. | zo. LzoCodec not found.

To address this issue, specify the codec file with the - - j ar s option in your job
submit command, as in the following example:

spar k-submt --driver-nenory 1G --executor-nenory 1G --
master yarn-client --jars /usr/hdp/2.3.0.0-$BU LD hadoop/
i b/ hadoop-1z0-0.6.0.2.3.0.0-$BUI LD.jar test _read wite.py

4.5. Using Spark SQL

Using SQLContext, Apache Spark SQL can read data directly from the file system. This
is useful when the data you are trying to analyze does not reside in Apache Hive (for
example, JSON files stored in HDFS).

25

https://hortonworks.com/blog/magellan-geospatial-analytics-in-spark/
http://spark.apache.org/docs/1.6.2/submitting-applications.html#advanced-dependency-management

hdp-spark-component-guide August 29, 2016

Using HiveContext, Spark SQL can also read data by interacting with the Hive MetaStore.
If you already use Hive, you should use HiveContext; it supports all Hive data formats and
user-defined functions (UDFs), and it enables you to have full access to the HiveQL parser.
HiveContext extends SQLContext, so HiveContext supports all SQLContext functionality.

There are two ways to interact with Spark SQL:
* Interactive access using the Spark shell (see Accessing Spark SQL through the Spark Shell).

* From an application, operating through one of the following two APIs and the Spark
Thrift server:

¢ JDBC, using your own Java code or the Beeline JDBC client
¢ ODBC, through the Simba ODBC driver
For more information, see Accessing Spark SQL through JDBC and ODBC.

The following diagram illustrates the access process, depending on whether you are using
the Spark shell or business intelligence (BI) application:

Bl Application

To -
| ipBc/ODBC |
Spark shell i
SQLContext | HiveContext ’ Spark Thrift Server |
@ ®
@ @ Hive Metastore @
HDFS

This subsection describes how to access Spark SQL through the Spark shell, and through
JDBC and ODBC. The third section describes how to form JDBC connection strings for Spark

SQL, and the final section shows how to call Hive user-defined functions from Spark shell
applications.

4.5.1. Accessing Spark SQL Through the Spark Shell

The following sample command launches the Spark shell on a YARN cluster:

./ bin/spark-shell --numexecutors 1 --executor-nenory 512m - -
master yarn-client

To read data directly from the file system, construct a SQLContext. For an example that

uses SQLContext and the Spark DataFrame API to access a JSON file, see Using the Spark
DataFrame API.

To read data by interacting with the Hive Metastore, construct a HiveContext instance
(HiveContext extends SQLContext). For an example of the use of HiveContext (instantiated
asval sql Cont ext), see Accessing ORC Files from Spark.

26

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/spark-dataframe-api.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/spark-dataframe-api.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/orc-spark.html

hdp-spark-component-guide August 29, 2016

4.5.2. Accessing Spark SQL through JDBC or ODBC

Using Spark Thrift server, you can remotely access Spark SQL over JDBC (using the JDBC
Beeline client) or ODBC (using the Simba driver).

The following prerequisites must be met before accessing Spark SQL through JDBC or
ODBC:

* The Spark Thrift server must be deployed on the cluster.

¢ For an Ambari-managed cluster, deploy and launch the Spark Thrift server using the
Ambari web Ul (see Installing and Configuring Spark Over Ambari).

¢ For a cluster that is not managed by Ambari, see Starting the Spark Thrift Server in the
Non-Ambari Cluster Installation Guide.

* Ensure that SPARK_HOME is defined as your Spark directory:

export SPARK HOVE=/usr/ hdp/ current/spark-client
Before accessing Spark SQL through JDBC or ODBC, note the following caveats:
* The Spark Thrift server works in YARN client mode only.

» ODBC and JDBC client configurations must match Spark Thrift server configuration
parameters.

For example, if the Thrift Server is configured to listen in binary mode, the client should
send binary requests and use HTTP mode when the Thrift Server is configured over HTTP.

* When using JDBC or ODBC to access Spark SQL in a production environment, note that
the Spark Thrift server does not currently support the doAs authorization property,
which propagates user identity.

Workaround: use programmatic APIs or spar k- shel | , submitting the job under your
identity.

¢ All client requests coming to Spark Thrift server share a SparkContext.

To list available Thrift Server options, run. / sbin/start-thriftserver.sh --help.
To manually stop the Spark Thrift server, run the following commands:
su spark

./sbin/stop-thriftserver.sh
4.5.2.1. Accessing Spark SQL through JDBC
1. Connect to the Thrift Server over the Beeline JDBC client.
a. From the SPARK_HOME directory, launch Beeline:

su spark

27

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93CommandLineShell
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/install-sts-after-spark-install.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/starting_sts.html

hdp-spark-component-guide August 29, 2016

./ bi n/ beeline
b. At the Beeline prompt, connect to the Spark SQL Thrift Server:
beel i ne> ! connect jdbc: hive2://1ocal host: 10015
The host port must match the host port on which the Spark Thrift server is running.

You should see output similar to the following:

beel i ne> ! connect jdbc: hive2://1ocal host: 10015
Connecting to jdbc: hive2://1ocal host: 10015

Enter usernane for jdbc: hive2://1ocal host: 10015:
Enter password for jdbc: hive2://| ocal host: 10015:

Connected to: Spark SQ. (version 1.6.2)
Driver: Spark Project Core (version 1.6.2.2.4.0.0-169)

Transaction isol ati on: TRANSACTI ON_REPEATABLE_READ
0: jdbc: hive2://1ocal host: 10015>

2. When connected, issue a Spark SQL statement.

The following example executes a SHOW TABLES query:

0: jdbc: hive2://I1ocal host: 10015> show t abl es;

fle—cc=ccoo=oo dccccoococoooo= +- - +
| tableName | isTenporary |
oo T +--+
sanple_ 07	false
sanple_08	false
testtable	false
Fololoioioioioioio = o s Fololoioioioioiolo o +--+

3 rows sel ected (2.399 seconds)
0: jdbc: hive2://I1ocal host: 10015>

4.5.2.2. Accessing Spark SQL through ODBC

If you want to access Spark SQL through ODBC, first download the ODBC Spark driver for
the operating system you want to use for the ODBC client. After downloading the driver,
refer to the Hortonworks ODBC Driver with SQL Connector for Apache Spark User Guide for
installatiion and configuration instructions.

Drivers and associated documentation are available in the "Hortonworks Data Platform
Add-Ons" section of the Hortonworks downloads page (http://hortonworks.com/
downloads/) under "Hortonworks ODBC Driver for SparkSQL." If the latest version of HDP
is newer than your version, check the Hortonworks Data Platform Archive area of the add-
ons section for the version of the driver that corresponds to your version of HDP.

4.5.3. Forming JDBC Connection Strings for Spark SQL

A JDBC URL connection string supplies connection information to the JDBC data source.
Connection strings for the Spark SQL JDBC driver have the following format:

j dbc: hive2://<host >: <port >/ <dbNane>; <sessi onConf s>?
<hi veConf s>#<hi veVar s>

28

https://hortonworks.com/downloads/
https://hortonworks.com/downloads/

hdp-spark-component-guide August 29, 2016

JDBC Parameter Description

host The node hosting the Thrift Server

port The port number on which the Thrift Server listens
dbName The name of the Hive database to run the query against
sessi onConf s Optional configuration parameters for the

JDBC or ODBC driver in the following format:
<keyl>=<val uel>; <key2>=<key?2>. ..

hi veConf s Optional configuration parameters for
Hive on the server in the following format:
<keyl>=<val uel>; <key2>=<key2>; ...

These settings last for the duration of the user session.

hi veVar s Optional configuration parameters for
Hive variables in the following format:
<keyl>=<val uel>; <key2>=<key2>; ...

These settings persist for the duration of the user session.

3 Note
The Spark Thrift server is a variant of HiveServer2, so you can use many of the
same settings. For more information about JDBC connection strings, including
transport and security settings, see Hive JDBC and ODBC Drivers in the HDP
Data Access Guide.

The following connection string example accesses Spark SQL through JDBC on a Kerberos-
enabled cluster:

beel i ne> ! connect jdbc: hive2://1ocal host: 10002/
defaul t; htt pPat h=/; pri nci pal =hi ve/ hdp-t eam exanpl e. com@&XAMPLE. COM

The following connection string example accesses Spark SQL through JDBC over HTTP
transport on a Kerberos-enabled cluster:

beel i ne> ! connect jdbc: hive2://1ocal host: 10002/
def aul t ; transport Mode=htt p; htt pPat h=/; pri nci pal =hi ve/ hdp-
t eam exanpl e. com@XAMPLE. COM

4.5.4. Calling Hive User-Defined Functions

4.5.4.1.

You can call built-in Hive UDFs, UDAFs, and UDTFs and custom UDFs from Spark SQL
applications if the functions are available in the standard Hive .jar file. When using Hive
UDFs, use HiveContext (not SQLContext).

Using Built-in UDFs

The following interactive example reads and writes to HDFS under Hive directories, using
hi veCont ext and the built-incol | ect _|i st (col) UDF.Thecoll ect_list(col)
UDF returns a list of objects with duplicates. In a production environment, this type of
operation runs under an account with appropriate HDFS permissions; the following
example uses hdf s user.

1. Launch the Spark Shell on a YARN cluster:

su hdfs

29

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_data-access/content/hive-jdbc-odbc-drivers.html

hdp-spark-component-guide August 29, 2016

4.5.4.2.

cd $SPARK_HOVE

./ bin/spark-shell --numexecutors 2 --executor-nmenory 512m - -
mast er yarn-client

2. At the Scala REPL prompt, construct a HiveContext instance:
val hiveContext = new org. apache. spark. sql . hi ve. H veCont ext (sc)
3. Invoke the Hive col | ect _| i st UDF:

scal a> hi veContext.sqgl ("from Test Tabl e SELECT
key, collect list(value) group by key order by
key").col l ect.foreach(println)

Using Custom UDFs

You can register custom functions in Python, Java, or Scala, and use them within SQL
statements.

When using a custom UDF, ensure that the .jar file for your UDF is included with your
application, or use the - - j ar s command-line option to specify the file.

The following example uses a custom Hive UDF. This example uses the more limited
SQLContext, instead of HiveContext.

1. Launch spar k- shel | with hi ve- udf . j ar asits parameter:
./ bin/spark-shell --jars <path-to-your-hive-udf>.jar

2. From spar k- shel |, define a function:

scal a> sql Cont ext. sql (create tenporary function bal ance as
' or g. package. hi veudf . Bal anceFr onRechar gesAndOrders' """);

3. From spar k- shel |, invoke your UDF:

scal a> sql Context.sql ("""
create tabl e recharges_with_bal ance_array as
sel ect
reseller_id,
phone_nunber,
phone_credit_id,
dat e_r echar ge,
phone_credit_val ue,
bal ance(orders, 'date_order', 'order_value', reseller_id, date_recharge,
phone_credit _val ue) as bal ance
from orders

)

4.6. Using Spark Streaming

Spark Streaming is an extension of the core spar k package. Using Spark Streaming, your
applications can ingest data from sources such as Apache Kafka and Apache Flume; process

30

hdp-spark-component-guide August 29, 2016

the data using complex algorithms expressed with high-level functions like map, r educe,
j oi n, and wi ndow; and send results to file systems, databases, and live dashboards.

Spark Streaming receives live input data streams and divides the data into batches, which
are then processed by the Spark engine to generate the final stream of results in batches:

input data batches of batches of
stream Spark input data Spa rk processed data
Streaming Engine [JL]

See the Apache Spark Streaming Programming Guide for conceptual information;
programming examples in Scala, Java, and Python; and performance tuning
recommendations.

Apache Spark 1.6 has built-in support for the Apache Kafka 08 API. If you want to access
a Kafka 0.10 cluster using new Kafka 0.10 APIs (such as wire encryption support) from
Spark 1.6 streaming jobs, the spark-kafka-0-10-connector package supports a Kafka

0.10 connector for Spark 1.x streaming. See the package readme file for additional
documentation.

The remainder of this subsection describes general steps for developers using Spark
Streaming with Kafka on a Kerberos-enabled cluster; it includes a sample pom xm file for

Spark Streaming applications with Kafka. For additional examples, see the Apache GitHub
example repositories for Scala, Java, and Python.

c Important

Dynamic Resource Allocation does not work with Spark Streaming.

4.6.1. Prerequisites

Before running a Spark Streaming application, Spark and Kafka must be deployed on the
cluster.

Unless you are running a job that is part of the Spark examples package installed by

Hortonworks Data Platform (HDP), you must add or retrieve the HDP spark-streaming-
kafka .jar file and associated .jar files before running your Spark job.

4.6.2. Building and Running a Secure Spark Streaming Job

Depending on your compilation and build processes, one or more of the following tasks
might be required before running a Spark Streaming job:

* If you are using maven as a compile tool:

1. Add the Hortonworks repository to your pom xni file:

31

https://spark.apache.org/docs/1.6.2/streaming-programming-guide.html
https://github.com/hortonworks-spark/skc
https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/java/org/apache/spark/examples/streaming
https://github.com/apache/spark/tree/master/examples/src/main/python/streaming

hdp-spark-component-guide August 29, 2016

<repository>

<i d>hort onwor ks</i d>

<nane>hor t onwor ks r epo</ nane>

<url >http://repo. hort onwor ks. com content/repositories/rel eases/ </url >
</repository>

2. Specify the Hortonworks version number for Spark streaming Kafka and streaming
dependencies to your pom xmi file:

<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-stream ng- kaf ka_2. 10</artifactl d>
<version>1.6. 2. 2.4.2.0-90</versi on>

</ dependency>

<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-stream ng_2.10</artifactld>
<version>1.6.2.2.4.2.0-90</versi on>
<scope>pr ovi ded</ scope>

</ dependency>

Note that the correct version number includes the Spark version and the HDP version.

3. (Optional) If you prefer to pack an uber .jar rather than use the default ("provided"),
add the maven- shade- pl ugi n to your pom xm file:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifact!|d>maven-shade- pl ugi n</artifactld>
<versi on>2. 3</ ver si on>
<execut i ons>
<execut i on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
</ executi on>
</ executions>
<confi gurati on>
<filters>
<filter>
<artifact>*:*</artifact>
<excl udes>
<excl ude>META- | NF/ *. SF</ excl ude>
<excl ude>META- | NF/ *. DSA</ excl ude>
<excl ude>META- | NF/ *. RSA</ excl ude>
</ excl udes>
</filter>
</filters>
<fi nal Name>uber-${project.artifactld}-${project.version}</
fi nal Name>
</ configuration>
</ pl ugi n>

* Instructions for submitting your job depend on whether you used an uber .jar file or not:

32

hdp-spark-component-guide August 29, 2016

¢ If you kept the default .jar scope and you can access an external network, use - -
packages to download dependencies in the runtime library:

spark-submit --nmaster yarn-client --numexecutors 1 \

- - packages org. apache. spar k: spar k- st ream ng- kaf ka_2.10: 1. 6. 2. 2. 4. 2. 0-90 \

--repositories http://repo. hortonworks. conl content/repositories/rel eases/
\

--cl ass <user-nmain-class> \

<user-application.jar> \

<user arg lists>

The artifact and repository locations should be the same as specified in your pom xni
file.

* If you packed the .jar file into an uber .jar, submit the .jar file in the same way as you
would a regular Spark application:

spark-subnmit --master yarn-client --numexecutors 1 \
--cl ass <user-mai n-cl ass> \

<user - uber-application.jar> \

<user arg lists>

For a sample pom xni file, see Sample pom.xml file for Spark Streaming with Kafka.

4.6.3. Running Spark Streaming Jobs on a Kerberos-Enabled
Cluster

To run a Spark Streaming job on a Kerberos-enabled cluster, complete the following steps:
1. Select or create a user account to be used as principal.

This should not be the kaf ka or spar k service account.
2. Generate a keytab for the user.

3. Create a Java Authentication and Authorization Service (JAAS) login configuration file:
for example, key. conf.

4. Add configuration settings that specify the user keytab.

The keytab and configuration files are distributed using YARN local resources. Because
they reside in the current directory of the Spark YARN container, you should specify the
location as . / v. keyt ab.

The following example specifies keytab location . / v. keyt ab for principal
vagr ant @xanpl e. com

Kaf kaCl i ent {
com sun. security. aut h. nrodul e. Kr bS5Logi nMbdul e required
useKeyTab=t r ue
keyTab="./v. keyt ab"
st or eKey=t r ue
useTi cket Cache=f al se
servi ceNanme="kaf ka"
pri nci pal ="vagr ant @G2XAMPLE. COM';

33

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/using-spark-streaming.html#spark-streaming-pom-file

hdp-spark-component-guide August 29, 2016

5. In your spar k- subm t command, pass the JAAS configuration file and keytab as local
resource files, using the - - f i | es option, and specify the JAAS configuration file options
to the JVM options specified for the driver and executor:

spar k-submi t \

--files key. conf#key. conf, v. keyt ab#v. keytab \

--driver-java-options "-Djava.security.auth.login.config=./key.conf" \
--conf "spark. executor. extraJavaOpti ons=-Dj ava. security. auth. | ogin. config=./
key. conf" \

6. Pass any relevant Kafka security options to your streaming application.

For example, the KafkaWordCount example accepts PLAINTEXTSASL as the last option
in the command line:

Kaf kaWwor dCount /vagrant/spar k- exanpl es.jar ¢c6402: 2181 abc ts 1
PLAI NTEXTSASL

4.6.4. Sample pom xnl File for Spark Streaming with Kafka

<?xm version="1.0" encodi ng="UTF- 8" ?>
<project xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocat i on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven
apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>t est </ gr oupl d>
<artifactl d>spark-kaf ka</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>

<repositories>
<r eposi tory>
<i d>hort onwor ks</i d>
<name>hor t onwor ks r epo</ nanme>
<url >http://repo. hortonworks. coml content/repositories/rel eases/ </
url >
</repository>
</repositories>

<dependenci es>
<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactl| d>spark-stream ng- kaf ka_2. 10</artifact!| d>
<version>1.6.2.2.4.2.0-90</versi on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. spar k</ gr oupl d>
<artifactld>spark-stream ng_2.10</artifactld>
<version>1.6.2.2.4.2.0-90</versi on>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>
<bui | d>
<def aul t Goal >package</ def aul t Coal >
<r esour ces>

34

hdp-spark-component-guide

August 29, 2016

<r esour ce>
<di rect ory>src/ mai n/ resour ces</ di rect ory>
<filtering>true</filtering>
</resource>
<r esour ce>
<di rectory>src/test/resources</directory>
<filtering>true</filtering>
</ resour ce>
</resources>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-resources-plugi n</artifactld>
<confi guration>
<encodi ng>UTF- 8</ encodi ng>
</ confi guration>
<execut i ons>
<executi on>
<goal s>
<goal >copy-r esour ces</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>
<pl ugi n>
<gr oupl d>net . al chi n81. maven</ gr oupl d>
<artifactld>scal a- maven- pl ugi n</artifactl| d>
<ver si on>3. 2. 0</ ver si on>
<confi gurati on>
<r econpi | eMbde>i ncrenent al </ r econpi | eMode>
<ar gs>
<arg>-target:jvm1. 7</arg>
</ ar gs>
<j avacAr gs>
<j avacAr g>- sour ce</ j avacAr g>
<j avacArg>1. 7</ j avacAr g>
<j avacArg>-t ar get </ j avacAr g>
<j avacArg>1. 7</j avacAr g>
</ j avacAr gs>
</ confi gurati on>
<execut i ons>
<executi on>
<i d>scal a- conpi | e</i d>
<phase>pr ocess-r esour ces</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ execut i on>
<execut i on>
<i d>scal a-test-conpi | e</i d>
<phase>process-t est-resour ces</ phase>
<goal s>
<goal >t est Conpi | e</ goal >
</ goal s>
</ executi on>
</ execut i ons>
</ pl ugi n>
<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven- conpil er-pl ugi n</artifactld>

35

hdp-spark-component-guide August 29, 2016

<confi guration>
<sour ce>1. 7</ sour ce>
<t arget>1. 7</t ar get >
</ confi guration>

<execut i ons>
<execut i on>
<phase>conpi | e</ phase>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ executi on>
</ execut i ons>
</ pl ugi n>

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactl d>nmaven-shade- pl ugi n</artifactl| d>
<versi on>2. 3</ ver si on>
<execut i ons>
<executi on>
<phase>package</ phase>
<goal s>
<goal >shade</ goal >
</ goal s>
</ executi on>
</ execut i ons>
<confi gurati on>
<filters>
<filter>
<artifact>*:*</artifact>
<excl udes>
<excl ude>META- | NF/ *. SF</ excl ude>
<excl ude>META- | NF/ *. DSA</ excl ude>
<excl ude>META- | NF/ *. RSA</ excl ude>
</ excl udes>
</filter>
</filters>
<fi nal Nanme>uber - ${proj ect. artifact!d}-${project.version}</
fi nal Narme>
</ confi guration>
</ pl ugi n>

</ pl ugi ns>
</ bui | d>

</ proj ect >

4.7. Spark on HBase: Using the HBase Connector

The Spark-HBase connector (shc) is a Spark library that supports access to HBase tables
as external sources or sinks. Application access is through Spark SQL at the data frame
level, with support for optimizations such as partition pruning, predicate pushdown, and
scanning.

The connector bridges the gap between the HBase key-value store and complex relational
SQL queries. It is useful for Spark applications and interactive tools, as it allows operations

36

hdp-spark-component-guide August 29, 2016

such as complex SQL queries on top of an HBase table inside Spark, and table joins against
data frames. The connector leverages the standard Spark DataSource API for query
optimization.

3 Note
The Spark HBase connector uses HBase jar files by default. If you want to
submit jobs on an HBase cluster with Phoenix enabled, you must include
--jars phoeni x-server.jar inyour spar k- subm t command; for
example:

./ bin/spark-subnmit --class your.application.class --nmaster yarn-
client --numexecutors 2 --driver-nmenory 512m --executor-nmenory 512m
--executor-cores 1 --packages com hortonworks: shc: 1.0.0-1. 6-s_2. 10
--repositories http://repo. hortonworks. com cont ent/ groups/ public/
--jars [usr/hdp/current/phoeni x-client/phoeni x-server.jar --files /

et c/ hbase/ conf/ hbase-site. xml /To/your/application/jar

The HBase connector library is available as a Spark package; you can download it
from https://github.com/hortonworks-spark/shc. The repository r eadmne file contains
information about how to use the package with Spark applications.

4.8. Accessing ORC Data in Hive Tables

Apache Spark on HDP supports the Optimized Row Columnar (ORC) file format, a self-
describing, type-aware, column-based file format that is one of the primary file formats
supported in Apache Hive. ORC reduces I/O overhead by accessing only the columns that
are required for the current query. It requires significantly fewer seek operations because
all columns within a single group of row data (known as a stripe) are stored together on
disk.

Spark ORC data source supports ACID transactions, snapshot isolation, built-in indexes, and
complex data types (such as array, map, and struct), and provides read and write access

to ORC files. It leverages the Spark SQL Catalyst engine for common optimizations such as
column pruning, predicate push-down, and partition pruning.

This subsection has several examples of Spark ORC integration, showing how ORC
optimizations are applied to user programs.

4.8.1. Accessing ORC Files from Spark

To start using ORC, you can define a HiveContext instance:

i mport org. apache. spark. sql . _
val sqgl Context = new org. apache. spark. sql . hi ve. Hi veCont ext (sc)

The following example uses data structures to demonstrate working with complex types.
The Person struct data type has a name, an age, and a sequence of contacts, which are
themselves defined by names and phone numbers.

1. Define Cont act and Per son data structures:

case cl ass Contact(name: String, phone: String)
case class Person(nane: String, age: Int, contacts: Seq[Contact])

37

https://github.com/hortonworks-spark/shc
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC#LanguageManualORC-FileStructure
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions

hdp-spark-component-guide August 29, 2016

2. Create 100 Per son records:

val records = (1 to 100).map { i =>;

Person(s"nane_%$i", i, (0 to 1).map { m => Contact (s"contact_$ni', s"phone_
$nt') 1)
}

In the physical file, these records are saved in columnar format. When accessing ORC files
through the DataFrame API, you see rows.

3. To write person records as ORC files to a directory named “people”, you can use the
following command:

sc.parallelize(records).toDF().wite.format("orc").save("people")

4. Read the objects back:

val people = sql Context.read.format("orc").|oad("people.json")

5. For reuse in future operations, register the new "people" directory as temporary table
"people”:

peopl e. regi st er TenpTabl e(" peopl e")

6. After you register the temporary table “people”, you can query columns from the
underlying table:

sgl Cont ext . sql (" SELECT nane FROM peopl e WHERE age < 15").count ()

In this example the physical table scan loads only columns name and age at runtime,
without reading the contacts column from the file system. This improves read performance.

You can also use Spark Dat aFr aneReader and Dat aFr ameW i t er methods to access
ORC files.

4.8.2. Enabling Predicate Push-Down Optimization

The columnar nature of the ORC format helps avoid reading unnecessary columns, but

it is still possible to read unnecessary rows. The example in this subsection reads all rows

in which the age value is between 0 and 100, even though the query requested rows in
which the age value is less than 15 (". . . WHERE age < 15"). Such full table scanning is an
expensive operation.

ORC avoids this type of overhead by using predicate push-down, with three levels of built-in
indexes within each file: file level, stripe level, and row level:

* File-level and stripe-level statistics are in the file footer, making it easy to determine if the
rest of the file must be read.

» Row-level indexes include column statistics for each row group and position, for finding
the start of the row group.

ORC uses these indexes to move the filter operation to the data loading phase by reading
only data that potentially includes required rows.

38

https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/sql/DataFrameReader.html
https://spark.apache.org/docs/1.6.2/api/java/org/apache/spark/sql/DataFrameWriter.html

hdp-spark-component-guide August 29, 2016

This combination of predicate push-down with columnar storage reduces disk 1/0
significantly, especially for larger datasets in which I/O bandwidth becomes the main
bottleneck to performance.

By default, ORC predicate push-down is disabled in Spark SQL. To obtain performance
benefits from predicate push-down, you must enable it explicitly, as follows:

sql Cont ext . set Conf ("spark.sql .orc.filterPushdown", "true")

4.8.3. Loading ORC Data into DataFrames by Using
Predicate Push-Down

DataFrames look similar to Spark RDDs but have higher-level semantics built into their
operators. This allows optimization to be pushed down to the underlying query engine.

Here is the Scala API version of the SELECT query used in the previous section, using the
DataFrame API:

val sqgl Context = new org. apache. spark. sql . hi ve. Hi veCont ext (sc)

sql Cont ext . set Conf ("spark.sql .orc.filterPushdown", "true")

val people = sqgl Context.read.format("orc").| oad("peopl ePartitioned")
peopl e.filter(peopl e("age") < 15).sel ect ("name").show)

DataFrames are not limited to Scala. There is a Java API and, for data scientists, a Python
API binding:

sql Cont ext = Hi veCont ext (sc)

sql Cont ext . set Conf ("spark.sql .orc.filterPushdown", "true")

peopl e = sqgl Context.read. format ("orc") .| oad("peopl ePartitioned")
peopl e. filter(peopl e. age < 15). sel ect ("nanme") . show)

4.8.4. Optimizing Queries Through Partition Pruning

When predicate push-down optimization is not applicable—for example, if all stripes
contain records that match the predicate condition—a query with a WHERE clause might
need to read the entire data set. This becomes a bottleneck over a large table. Partition
pruning is another optimization method; it exploits query semantics to avoid reading large
amounts of data unnecessarily.

Partition pruning is possible when data within a table is split across multiple logical
partitions. Each partition corresponds to a particular value of a partition column and
is stored as a subdirectory within the table root directory on HDFS. Where applicable,
only the required partitions (subdirectories) of a table are queried, thereby avoiding
unnecessary 1/0.

Spark supports saving data in a partitioned layout seamlessly, through the partitionBy
method available during data source write operations. To partition the "people" table by
the “"age” column, you can use the following command:

people.wite.format ("orc").partitionBy("age").save("peoplePartitioned")

As a result, records are automatically partitioned by the age field and then
saved into different directories: for example, peopl eParti ti oned/ age=1/,
peopl ePartiti oned/ age=2/, and so on.

39

hdp-spark-component-guide August 29, 2016

After partitioning the data, subsequent queries can omit large amounts of I/0 when

the partition column is referenced in predicates. For example, the following query
automatically locates and loads the file under peopl eParti ti oned/ age=20/ and omits
all others:

val peopl ePartitioned = sqgl Context.read.format("orc").
| oad(" peopl ePartitioned")

peopl ePartitioned. regi ster TenpTabl e(" peopl ePartiti oned")
sql Cont ext . sql (" SELECT * FROM peopl ePartitioned WHERE age = 20")

4.8.5. Additional Resources

» Apache ORC website: https://orc.apache.org/

* ORC performance: http://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-
better-performance/

» Get Started with Spark: http://hortonworks.com/hadoop/spark/get-started/

4.9. Accessing HDFS Files from Spark

This subsection contains information for running Spark jobs over HDFS data.

4.9.1. Specifying Compression

To add a compression library to Spark, you can use the - - j ar s option. For an example, see
Adding Libraries to Spark.

To save a Spark RDD to HDFS in compressed format, use code similar to the following (the
example uses the GZip algorithm):

rdd. saveAsHadoopFi | e("/t np/ spar k_conpr essed",
"org. apache. hadoop. mapr ed. Text Qut put For mat ",

conpr essi onCodecC ass="or g. apache. hadoop. i 0. conpr ess.
&zi pCodec")

For more information about supported compression algorithms, see Configuring HDFS
Compression in the HDFS Administration Guide.

4.9.2. Accessing HDFS from PySpark

When accessing an HDFS file from PySpark, you must set HADOOP_CONF_DI Rin an
environment variable, as in the following example:

export HADOOP_CONF_DI R=/ et ¢/ hadoop/ conf

[hrt _qa@ p-172-31-42-188 spark] $ pyspark
[hrt_qa@p-172-31-42-188 spark]$ >>>lines = sc.textFile("hdfs://
i p-172-31-42-188. ec2. i nternal : 8020/t np/ PySpar kTest/fil e-01")

If HADOOP_CONF_DI Ris not set properly, you might see the following error:

40

https://orc.apache.org/
https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
https://hortonworks.com/blog/orcfile-in-hdp-2-better-compression-better-performance/
https://hortonworks.com/hadoop/spark/get-started/
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_spark-component-guide/content/spark-add-libraries.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_hdfs-administration/content/ch04.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_hdfs-administration/content/ch04.html

hdp-spark-component-guide August 29, 2016

Error from secure cl uster

2016- 08-22 00: 27: 06, 046| t 1. nachi ne| | NFQ 1580| 140672245782272| Mai nThr ead|

Py4JJavaError: An error occurred while calling z:org.apache. spark. api . pyt hon.

Pyt honRDD. col | ect AndSer ve.

2016- 08-22 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThread| : org.

apache. hadoop. security. AccessControl Exception: SIMPLE aut hentication is not
enabl ed. Avail abl e: [TOKEN, KERBEROS]

2016- 08-22 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at
sun. refl ect. Nati veConst ruct or Accessor | npl . new nst anceO(Nati ve Mt hod)

2016- 08-22 00: 27: 06, 047|t 1. machi ne| | NFQ 1580| 140672245782272|

Mai nThr ead| at sun.refl ect. Nati veConst ruct or Accessor | npl .

new nst ance(Nati veConstruct or Accessorl npl . java: 57)

2016- 08-22 00: 27: 06, 048| t 1. machi ne| | NFQ 1580| 140672245782272| Mai nThr ead| at

{code}

41

hdp-spark-component-guide August 29, 2016

5. Using Spark from R: SparkR

SparkR is an R package that provides a lightweight front end for using Apache Spark from
R, thus supporting large-scale analytics on Hortonworks Data Platform (HDP) from the R
language and environment. As of Spark 1.6.2, SparkR provides a distributed data frame
implementation that supports operations like selection, filtering, and aggregation on large
datasets. In addition, SparkR supports distributed machine learning through MLlib.

5.1. Prerequisites

Before you run SparkR, ensure that your cluster meets the following prerequisites:
* R must be installed on all nodes.
e JAVA HOVE must be set on all nodes.

Note: SparkR is not currently supported on SLES.

5.2. SparkR Example

The following example launches SparkR and then uses R to create a peopl e DataFrame,
list part of the DataFrame, and read the DataFrame. (For more information about Spark
DataFrames, see "Using the Spark DataFrame API").

1. Launch SparkR:
su spark

cd /usr/hdp/2.5.0.0-3485/spark/ bin
. spar kR

Output similar to the following displays:
Vel cone to
/ /1
JI\N,_I_I I_J_\ version 1.6.2

Spark context is available as sc, SQ context is avail abl e as sql Cont ext
>

2. From your R prompt (not the Spark shell), initialize SQLContext, create a DataFrame,
and list the first few rows:

sql Cont ext <- sparkRSQL.init(sc)

df <- createDataFrane(sql Context, faithful)
head(df)

Output similar to the following displays:

42

hdp-spark-component-guide

August 29, 2016

eruptions waiting

1 3. 600 79
2 1. 800 54
3 3. 333 74
4 2.283 62
5 4.533 85
6 2.883 55

3. Read the peopl e DataFrame:

peopl e <- read. df (sqgl Context, "people.json", "json")
head(peopl e)

Output similar to the following displays:

age nanme
1 NA M chael
2 30 Andy
3 19 Justin

5.3. Additional Resources

For additional SparkR examples, see the Apache SparkR documentation.

43

https://spark.apache.org/docs/1.6.2/sparkr.html

hdp-spark-component-guide August 29, 2016

6. Tuning Spark

When tuning Apache Spark applications, it is important to understand how Spark works
and what types of resources your application requires. For example, machine learning
tasks are usually CPU intensive, whereas extract, transform, load (ETL) operations are I/O
intensive.

This chapter provides an overview of approaches for assessing and tuning Spark
performance.

6.1. Provisioning Hardware

For general information about Spark memory use, including node distribution, local disk,
memory, network, and CPU core recommendations, see the Apache Spark Hardware
Provisioning document.

6.2. Checking Job Status

If a job takes longer than expected or does not finish successfully, check the following to
understand more about where the job stalled or failed:

* To list running applications by ID from the command line, use yarn applicati on —
list.

* To see a description of a resilient distributed dataset (RDD) and its recursive
dependencies (useful for understanding how jobs are executed) use t oDebugSt ri ng()
on the RDD.

* To check the query plan when using the DataFrame API, use Dat aFr ame#expl ai n() .

6.3. Checking Job History

You can use the following resources to view job history:
* Spark history server Ul: view information about Spark jobs that have completed.
1. On an Ambari-managed cluster, in the Ambari Services tab, select Spark.
2. Click Quick Links.
3. Choose the Spark history server Ul.
Ambari displays a list of jobs.
4. Click "App ID" for job details.
* Spark history server web Ul: view information about Spark jobs that have completed.

In a browser window, navigate to the history server web Ul. The default host port is
<host >: 18080.

44

https://spark.apache.org/docs/1.6.2/hardware-provisioning.html
https://spark.apache.org/docs/1.6.2/hardware-provisioning.html

hdp-spark-component-guide August 29, 2016

* YARN web Ul: view job history and time spent in various stages of the job:
htt p://<host >: 8088/ proxy/ <j ob_i d>/ envi r onment /
htt p:// <host >: 8088/ pr oxy/ <app_i d>/ st ages/

* yarn | ogs command: list the contents of all log files from all containers associated with
the specified application.

yarn |l ogs -applicationld <app_id>.
» Hadoop Distributed File System (HDFS) shell or API: view container log files.

For more information, see "Debugging your Application" in the Apache document
Running Spark on YARN.

6.4. Improving Software Performance

6.4.1.

To improve Spark performance, assess and tune the following operations:

* Minimize shuffle operations where possible.

* Match join strategy (ShuffledHashJoin vs. BroadcastHashJoin) to the table.
This requires manual configuration.

» Consider switching from the default serializer to the Kryo serializer to improve
performance.

This requires manual configuration and class registration.
* Adjust YARN memory allocation

The following subsection describes YARN memory allocation in more detail.

Configuring YARN Memory Allocation for Spark

This section describes how to manually configure YARN memory allocation settings based
on node hardware specifications.

YARN evaluates all available compute resources on each machine in a cluster and
negotiates resource requests from applications running in the cluster. YARN then provides
processing capacity to each application by allocating containers. A container is the basic
unit of processing capacity in YARN; it is an encapsulation of resource elements such as
memory (RAM) and CPU.

In a Hadoop cluster, it is important to balance the use of RAM, CPU cores, and disks so that
processing is not constrained by any one of these cluster resources.

When determining the appropriate YARN memory configurations for Spark, note the
following values on each node:

* RAM (amount of memory)

45

http://spark.apache.org/docs/1.6.2/running-on-yarn.html

hdp-spark-component-guide August 29, 2016

* CORES (number of CPU cores)
When configuring YARN memory allocation for Spark, consider the following information:

*» Driver memory does not need to be large if the job does not aggregate much data (as
with a col | ect () action).

* There are tradeoffs between num execut or s and execut or - menory.

Large executor memory does not imply better performance, due to JVM garbage
collection. Sometimes it is better to configure a larger number of small JVMs than a small
number of large JVMs.

» Executor processes are not released if the job has not finished, even if they are no longer
in use.

Therefore, do not overallocate executors above your estimated requirements.

Inyar n- cl ust er mode, the Spark driver runs inside an application master process that
is managed by YARN on the cluster. The client can stop after initiating the application.
The following example shows starting a YARN client in yar n- cl ust er mode, specifying
the number of executors and associated memory and core, and driver memory. The client
starts the default Application Master, and SparkPi runs as a child thread of the Application
Master. The client periodically polls the Application Master for status updates and displays
them on the console.

.I'bi n/spark-submt --class org.apache. spark. exanpl es. Spar kPi \
--master yarn-cluster \
--num executors 3 \
--driver-nmenory 4g \
--executor-nenory 2g \
--executor-cores 1\
|'i b/ spark-exanpl es*.jar 10

Inyar n-cl i ent mode, the driver runs in the client process. The application master is
used only to request resources for YARN. To launch a Spark application in yar n- cl i ent
mode, replace yar n- cl ust er with yar n- cl i ent . The following example launches the
Spark shellin yar n- cl i ent mode and specifies the number of executors and associated
memory:

./ bi n/ spark-shel | --numexecutors 32 \
--executor-nenory 24g \
--master yarn-client

46

	Hortonworks Data Platform
	Table of Contents
	1. Analyzing Data with Apache Spark
	2. Installing Spark
	2.1. Installing Spark Using Ambari
	2.2. Verify Spark Configuration for Hive Access
	2.3. Installing the Spark Thrift Server After Deploying Spark
	2.4. Validating the Spark Installation

	3. Configuring Spark
	3.1. Customizing the Spark Thrift Server Port
	3.2. Configuring the Livy Server
	3.3. Configuring the Spark History Server
	3.4. Configuring Dynamic Resource Allocation
	3.4.1. Customizing Dynamic Resource Allocation Settings on an Ambari-Managed Cluster
	3.4.2. Configuring Cluster Dynamic Resource Allocation Manually
	3.4.3. Configuring a Job for Dynamic Resource Allocation
	3.4.4. Dynamic Resource Allocation Properties

	3.5. Configuring Spark for Wire Encryption
	3.6. Configuring Spark for a Kerberos-Enabled Cluster
	3.6.1. Configuring the Spark History Server
	3.6.2. Configuring the Spark Thrift Server
	3.6.3. Setting Up Access for Submitting Jobs

	4. Developing and Submitting Spark Applications
	4.1. Running Spark Applications
	4.1.1. Spark Pi
	4.1.2. WordCount

	4.2. Specifying Which Version of Spark to Use
	4.3. Using the Spark DataFrame API
	4.4. Adding Libraries to Spark
	4.5. Using Spark SQL
	4.5.1. Accessing Spark SQL Through the Spark Shell
	4.5.2. Accessing Spark SQL through JDBC or ODBC
	4.5.2.1. Accessing Spark SQL through JDBC
	4.5.2.2. Accessing Spark SQL through ODBC

	4.5.3. Forming JDBC Connection Strings for Spark SQL
	4.5.4. Calling Hive User-Defined Functions
	4.5.4.1. Using Built-in UDFs
	4.5.4.2. Using Custom UDFs

	4.6. Using Spark Streaming
	4.6.1. Prerequisites
	4.6.2. Building and Running a Secure Spark Streaming Job
	4.6.3. Running Spark Streaming Jobs on a Kerberos-Enabled Cluster
	4.6.4. Sample pom.xml File for Spark Streaming with Kafka

	4.7. Spark on HBase: Using the HBase Connector
	4.8. Accessing ORC Data in Hive Tables
	4.8.1. Accessing ORC Files from Spark
	4.8.2. Enabling Predicate Push-Down Optimization
	4.8.3. Loading ORC Data into DataFrames by Using Predicate Push-Down
	4.8.4. Optimizing Queries Through Partition Pruning
	4.8.5. Additional Resources

	4.9. Accessing HDFS Files from Spark
	4.9.1. Specifying Compression
	4.9.2. Accessing HDFS from PySpark

	5. Using Spark from R: SparkR
	5.1. Prerequisites
	5.2. SparkR Example
	5.3. Additional Resources

	6. Tuning Spark
	6.1. Provisioning Hardware
	6.2. Checking Job Status
	6.3. Checking Job History
	6.4. Improving Software Performance
	6.4.1. Configuring YARN Memory Allocation for Spark

