Hortonworks Data Platform

Apache Kafka Component Guide

(August 29, 2016)

http://docs.cloudera.com

hdp-kafka-component-guide August 29, 2016

Hortonworks Data Platform: Apache Kafka Component Guide
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 4.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

hdp-kafka-component-guide August 29, 2016

Table of Contents

1. Building a High-Throughput Messaging System with Apache Kafkacccoeeeeee. 1
2. What's NEW ..o 2
2.1, APAChe Kafka .ooueeeiieiee e e 2

2.2, CoNtENt UPALES ...coeiiiiiiiiiiiiiiiiiiiiieie ettt e e e e e e e e e e 3

3. Apache Kafka CONCEPES ..oceiiiiiiiiii et e e e e e e e e e eeeneaas 4
I [T = 11T g Ve I = - 6
O I =T Yo U] £ =3RRI 6

4.2. Installing Kafka Using Ambari ..o 6

5. Configuring Kafka for a Production Environmentcccccvuimimiiiiiiiiiniiiiiiis 13
5.1. Preparing the Environment ... 13
5.1.1. Operating System SEttiNgscccocoiriiiii 13

5.1.2. File System Selectionccooviiiiiiiiiiiiiiiiiiiie e 13

5.1.3. Disk Drive Considerationsccooueiiiimiieiiniiieeeeeeiicee e 14

5.1.4. JAVa VEISION ..oiiiiiiiiiie ettt e e e e e e e e 14

5.1.5. Ethernet Bandwidthcooiiiiiiiiii e 15

5.2. Customizing Kafka Settings on an Ambari-Managed Clusterccceeee. 15

5.3. Kafka Broker SEttINGScuerriimmimiiiiiiiiiiiieieeeteeeeeee et e e e e e e e e eee e eeeees 17
5.3.1. CONNECLION SETLINGS ...oiiiiiieiiiiie e e et e e e e e e e e e e een e e e e e eeeenes 17

5.3.2. TOPIC SETEINGS ...ueuiniiiiii e 18

5.3.3. LOQG SETHINGS ..eeeriuuuiiiieieiiieiias e e e e et e e e e e e e e e e e e e e s e e e e e e e e anenee 19

5.3.4. ComMPAaction SETLINGSccovviiiiiiiiiiiii i 21

5.3.5. General Broker SEttNGSuuuuuuueuiuiiiiiiiiiieiiieiieeiieeseeeeeeeeeeeeeneaeneeeeeeeee 21

5.4. Kafka Producer SETEINGScooieiiieieeeie e 23
5.4.1. Important Producer Settingscoooeieiiiiiiiii e, 23

5.5. Kafka Consumer SETtINGSccoooi 25

5.6. Configuring ZooKeeper for Use with Kafka ... 25

5.7. Enabling Audit to HDFS for a Secure Clustercooiiiiiiiiiiiiiiiee e 26

6. Mirroring Data Between Clusters: Using the MirrorMaker Toolcccooiiiiiiiiiiiiiinenne. 27
6.1. RUNNING MirrorMakercoooiiiii e 27

6.2. Checking MiIrrOring PrOgressuuueueuuueueeerereueraneuenensneuenssenssessssssesssssesssnnnes 29

6.3. AVOIAING DAtA LOSS ...evveverereeeninneierteieneeteeeeeaeeeeeeeeeeeeeeaesseseesseenessesnrnssseennnnnnnnnne 30

6.4. Running MirrorMaker on Kerberos-Enabled Clusterscccccoeiiiin. 30

7. Creating @ Kafka TOPIC ...cuiiiiiiiiiiiiiiiiii ittt eeeeeeenenennnes 32
8. Developing Kafka Producers and CONSUMENSuuuuuumimimimiiiiiiiiiiii e 33

hdp-kafka-component-guide

August 29, 2016

List of Tables

6.1. MirrorMaker Options

6.2. Consumer Offset Checker Options

hdp-kafka-component-guide August 29, 2016

1. Building a High-Throughput Messaging
System with Apache Kafka

Apache Kafka is a fast, scalable, durable, fault-tolerant publish-subscribe messaging system.
Common use cases include:

¢ Stream processing

¢ Messaging

* Website activity tracking

¢ Metrics collection and monitoring
¢ Log aggregation

* Event sourcing

¢ Distributed commit logging

Kafka works with Apache Storm and Apache Spark for real-time analysis and rendering of
streaming data. The combination of messaging and processing technologies enables stream
processing at linear scale.

For example, Apache Storm ships with support for Kafka as a data source using Storm's
core API or the higher-level, micro-batching Trident API. Storm’s Kafka integration also
includes support for writing data to Kafka, which enables complex data flows between
components in a Hadoop-based architecture. For more information about Apache Storm,
see the Storm User Guide.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_storm-component-guide/content/ch_storm-overview.html

hdp-kafka-component-guide

August 29, 2016

2. What's New

New features and changes for Apache Kafka have been introduced in Hortonworks
Data Platform, version 2.5, along with documentation updates. New features and
documentation updates are described in the following sections.

2.1. Apache Kafka

HDP 2.5 supports Apache Kafka version 0.10.0. Important new features include the

following:
Fault tolerance

Balancing replicas across racks

Security

Security/SASL improvements

Application Development

New client-side event
interceptors

New Kafka Streams client library

This rack awareness feature limits the risk of data loss if
all brokers on a rack fail at once. The feature distributes
replicas of a partition across different racks, extending
guarantees that Kafka provides for broker failures so
that they now cover rack failure. For more information,
see Balancing Replicas Across Racks at apache.org.

Kafka supports authentication using SASL/PLAIN. For
more information, see Apache JIRA KAFKA-2658.

Two new plugin interfaces, Pr oducer | nt er cept or
on producer and Consuner | nt er cept or on
consumer, allow developers to implement and
configure custom interceptors.

¢ The Producerinterceptor interface allows processes
to intercept events happening to a producer record,
such as sending the producer record or receiving
an acknowledgment when a record is published.
For more information, see the Producerinterceptor
javadoc.

¢ The Consumerinterceptor interface allows processes
to intercept consumer events, such as record being
received or a record being consumed by a client.
For more information, see the Consumerinterceptor
javadoc.

For more information, see Add Producer and Consumer
Interceptors at apache.org.

The Kafka Streams API allows developers to implement
distributed stream processing applications that consume
from and produce data to Kafka topics.

http://kafka.apache.org/documentation.html#basic_ops_racks
https://issues.apache.org/jira/browse/KAFKA-2658
https://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/producer/ProducerInterceptor.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/clients/consumer/ConsumerInterceptor.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-42%3A+Add+Producer+and+Consumer+Interceptors
https://cwiki.apache.org/confluence/display/KAFKA/KIP-42%3A+Add+Producer+and+Consumer+Interceptors

hdp-kafka-component-guide August 29, 2016

Note that the Kafka Streams APl is a technical preview;
the code is considered to be at alpha quality level. Public
APIs are likely to change in future releases.

For more information, see Streams API at apache.org.

New timestamp field for Messages are now tagged with timestamps when they

messages are produced. For more information, see Apache JIRA
KAFKA-3025.

New configuration parameter max. pol | . recor ds is a Kafka Consumer parameter

max. pol | . records that allows developers to limit the number of

messages returned in a single call to pol | () . For more
information, see Apache JIRA KAFKA-3007

For detailed information about new features in Kafka version 0.10.0, see the Apache
Release Notes for Kafka 0.10.0.

2.2. Content Updates

* Added detailed instructions for installing Kafka on an Ambari-managed cluster; see
Installing Kafka using Ambari.

» Added Configuring Kafka for a Production Environment.

http://kafka.apache.org/documentation.html#streamsapi
https://issues.apache.org/jira/browse/KAFKA-3025
https://issues.apache.org/jira/browse/KAFKA-3007
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12311720&version=12333882
https://issues.apache.org/jira/secure/ReleaseNote.jspa?projectId=12311720&version=12333882
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_kafka-component-guide/content/ch_installing_kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_kafka-component-guide/content/ch_configuring_kafka.html

hdp-kafka-component-guide August 29, 2016

3. Apache Kafka Concepts

This chapter describes several basic concepts that support fault-tolerant, scalable messaging
provided by Apache Kafka:

» Topics
* Producers
e Consumers
 Brokers

For additional introductory information about Kafka, see the Apache introduction to
Kafka. For an example that simulates the use of streaming geo-location information (based
on a previous version of Kafka), see Simulating and Transporting the Real-Time Event
Stream with Apache Kafka.

Topics

Kafka maintains feeds of messages in categories called topics. Each topic has a user-defined
category (or feed name), to which messages are published.

For each topic, the Kafka cluster maintains a structured commit log with one or more

partitions:
FPartition 111 1_i
0 0[1|2(3(4]5(6(7(8]9g]y,!
__I
e i
Fa”;“”“ ol1lzlslals|al7|ale! = Writes
L
Partition 101011
5 0[1(2]|3]4|5(6(7]8(9 5]y,
__I
Old = [New

Kafka appends new messages to a partition in an ordered, immutable sequence. Each
message in a topic is assigned a sequential number that uniquely identifies the message
within a partition. This number is called an offset, and is represented in the diagram by
numbers within each cell (such as 0 through 12 in partition 0).

Partition support for topics provides parallelism. In addition, because writes to a partition
are sequential, the number of hard disk seeks is minimized. This reduces latency and
increases performance.

http://kafka.apache.org/documentation.html#introduction
http://kafka.apache.org/documentation.html#introduction
https://hortonworks.com/hadoop-tutorial/simulating-transporting-realtime-events-stream-apache-kafka/
https://hortonworks.com/hadoop-tutorial/simulating-transporting-realtime-events-stream-apache-kafka/

hdp-kafka-component-guide August 29, 2016

Producers

Producers are processes that publish messages to one or more Kafka topics. The producer
is responsible for choosing which message to assign to which partition within a topic.
Assignment can be done in a round-robin fashion to balance load, or it can be based on a
semantic partition function.

Consumers

Consumers are processes that subscribe to one or more topics and process the feeds of
published messages from those topics. Kafka consumers keep track of which messages have
already been consumed by storing the current offset. Because Kafka retains all messages on
disk for a configurable amount of time, consumers can use the offset to rewind or skip to
any point in a partition.

Brokers

A Kafka cluster consists of one or more servers, each of which is called a broker. Producers
send messages to the Kafka cluster, which in turn serves them to consumers. Each broker
manages the persistence and replication of message data.

producer producer producer
kafka
cluster
consumer consumer consumer

Kafka Brokers scale and perform well in part because Brokers are not responsible for
keeping track of which messages have been consumed. Instead, the message consumer is
responsible for this. This design feature eliminates the potential for back-pressure when
consumers process messages at different rates.

hdp-kafka-component-guide August 29, 2016

4. Installing Kafka

Although you can install Kafka on a cluster not managed by Ambari (see Installing and
Configuring Apache Kafka in the Non-Ambari Cluster Installation Guide), this chapter
describes how to install Kafka on an Ambari-managed cluster.

4.1. Prerequisites

Before installing Kafka, ZooKeeper must be installed and running on your cluster.
Note that the following underlying file systems are supported for use with Kafka:
* EXT4: supported and recommended

* EXT3: supported

Caution

Encrypted file systems such as SafenetFS are not supported for Kafka. Index file
corruption can occur.

4.2. Installing Kafka Using Ambari

Before you install Kafka using Ambari, refer to Adding a Service for background
information about how to install Hortonworks Data Platform (HDP) components using
Ambari.

To install Kafka using Ambari, complete the following steps.

1. Click the Ambari "Services" tab.

2. In the Ambari "Actions" menu, select "Add Service." This starts the Add Service wizard,
displaying the Choose Services page. Some of the services are enabled by default.

3. Scroll through the alphabetic list of components on the Choose Services page, and select
"Kafka".

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/ch_installing_kafka_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/ch_installing_kafka_chapter.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/adding_a_service.html

hdp-kafka-component-guide August 29, 2016

Chard Siiertuse!
Spdact Varion Chastpa which sanvicem you want 1o mtall on your Cloor,
el OraScnia
Contirm Hopts [B Vermdien Dsoription
o L 173 oo o
Admigr Mty 0 FARAN « MapPRedisoed 273 Apacta Hasoop MNectGen MapSeduos [YARMN)
Ao Siegn arel Chorsy
) Tas aro Tas i S et ganeraton Hadao Dusry g framewon
Cuntoming Sanvicm
& Hiva 127000 Dats warshouss Fysiem for gd-hoo guenes & anelysis of g o
Frerviw b T e
brepimll T
R L Hila 1.1.2 A, Mon-relgtioral detribuied database. pius Phosnia, & high poris
Srmmary hoow MEDBNCY RODSCETONS.
0Py D180 Seripting plitioem for analyring leege ditessts
Ol S 146 Tood for iranafering Dol dais bartaasen Apsohas Hadoon: e 8
i rplaters cAetabanean
0 Coie 420 Sywbom for workfiow coordinaton ard exscution of Apachs Had
i T rcrlalation of th optonal Dorss Vieh Cordols whic
the ExLES Libsrary,
o Zoosamer aAdB Cantrabized servics which provides highly relabie distributed oo
() Fadeen QA0 Dats mansgirmect and procmdng pates
o Shomm 101 Apacia M0 SN DRoCissang ramirsr
[} Fiama 152 A dipiriuted sardics Sor collsting,. agoregating, ard manving larg
data imfo HODES
0 Adeurmwis 170 Ficea?, scaluble, hugh Serlermanion St sed ki v 3t0
0 Armbar Matrics 010 A wysiem for matricy coliacion That provides Homage and refrose
polarted from the clsater
) Asign 0.0 Atgs Metadats and (ovrnancs platiors
W Koy 000 A high-Troughput datritubed messagng Syssem
[Hrex La0 Provvickes 8 pingls poirt of authertication and acoeds for Apache
Clipstne
| Lesy Sanarsh 050 Litsy inpmnratitan’, Brt i, Bl viSLmbEEten ber At g
Toch Praview.
7 EranSensa 1300 SmartSenss - Hofomeots SmarSenss Tool (H5T) heips gueciy
i miptries, kg Inom Sormrnan HDP servicen that aich 19 quicicly b

B oD Cher -3 recomimardatons.
182 Apsncras Spark B 81597 and gener s orgife i g Stk 4808 f

200 Apacts Spark 2.0 & a tawt and goraval engine for lange-scals da
sl 1 Tochibeal Pranvidw.

Sk
Soark?
[Zappeln Matebsok DED A wiph-Badad ndtebook Rl el neract-p dila analySicl B
it] data-drrver, intersctwg and oodabar bl OO W
Plakit LT Progect ol thi Agacis Softwing Foundaton 10 peodots e imiph
et fed o oierane poalkabs maching learm g akgosShen Lo
wreais. of Codabonatien Miberg, Chasnng and clissrboation

) Slicler LE0 Afamewerh for deplnying maraging snd montonng axisting o
TARFAM.

hdp-kafka-component-guide August 29, 2016

4. Click "Next" to continue.

5. On the Assign Masters page, review the node assignments for Kafka nodes.

The following screen shows node assignment for a single-node Kafka cluster:

CALUSTER BETALL WIZARD =
ST Assign Masters
e]
et e} Aty MEShST COMPOT et W Fdls D el I fuf O oA
Oipticsiedl
i Hosls Sonklpnopr wpnven | O smban apacheoor B GE 5 i amban apacha omg 20
rnn Seor Ffin Arokon; | 5401 el apecthsor 28 GE §

=+ [Hachk

6. If you want Kafka to run with high availability, you must assign more than one node for
Kafka brokers, resulting in Kafka brokers running on multiple nodes.

Click the "+" symbol to add more broker nodes to the cluster:

Assign Masters

Gl
N Ay ISt e SOl B Feteils yeou sl b fu) = N
tall L
Confirm Hosts Zookoeper Server. o401 ambar apache.og 28 GE 3 I S0, armbar apache ong (2
Zckiomnr Sarver I ke
S A o, SRR T anatte Oy S LE 5 n

TN c8402 amert apache o 2
ook peper Sevver. | ORS00 bl apacte.org (2.8 GE L IR

| cEal membai npacie ooy (2

B Zeckisspe Sarve

|
Hafley Drpicnr el 1 ambar doache o 8 L T ﬂ

v P

The following screen shows node assignment for a multi-node Kafka cluster:

hdp-kafka-component-guide

August 29, 2016

CLUSTER INEEALL WIEARD
et Giamwrinsd
Siabea! Viaraion
Ereginll Ok
Corifirrn Hodta

e Sy

7. Click "Next" to continue.

Assign Masters

A MAAtEr COmporesnts 10 Rty you went o run them o

Deesbdipnnienn’ Sanfvend

e s e

Lensipnieir’ Sanivid

Kafi Hroier

Fafn Broke

Haficy [rokar

R0 1 arbarl it ooy (P8 GE S u
cE 02 armbarl apacta.ong 2.0 GE 2| IS
CER0T ekl ahacweoong (2.8 GE § u
ol401.ambari apacraog 0 GE 2 I
oEa 0 arebari anacks .oy 8 GE 2 IS

ol ambarl apacraorg 0 GL S I

8. On the Assign Slaves and Clients page, choose the nodes that you want to run

ZooKeeper clients:

CLLETER INETALL WITALRD
it Smried
Seplens! Viarador:
reimll Chobare
Caonifinm Hodta
RIS SanAnes
A Maiios

Asaagn Elarsps and Chents

9. Click "Next" to continue.

Assign Slaves and Clients

Agmagn shywn and chent comporesnds. 10 hosts oo sark borum e o
Hditi that e iseSyid] Mikhy SoTerid M dOaT wilh @
"B il nainll SooKoapss Llpni

Heomt
QAT amiban Apachs o
ol 02 amban apachs g

SEH sl AEacha Gy &

10 Ambari displays the Customize Services page, which lists a series of services:

B0 bl Brucie oo (78

all | rona
B Clvi
B Sl

[=

hdp-kafka-component-guide August 29, 2016

Customize Services

Ve have coma up with ros i morfegrmteny Ioe the i o mekscind L o o B

For your initial configuration you should use the default values set by Ambari. If Ambari
prompts you with the message "Some configurations need your attention before you
can proceed," review the list of properties and provide the required information.

For information about optional settings that are useful in production environments, see
Configuring Apache Kafka for a Production Environment.

11Click "Next" to continue.

12When the wizard displays the Review page, ensure that all HDP components correspond
to HDP 2.5 or later:

10

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_kafka-component-guide/content/ch_configuring_kafka.html

hdp-kafka-component-guide

August 29, 2016

CLLUSTER INSTALL WIZAFID

—_— Review

Spla] WO Plaviis reviirw [Sorfiguenton Esrlorn Fritalatan
[FETET Y. ST

Conifirm Mot Admin Hama - admin

{adeieiots Syt Chunter Mame ; Kafaolurier

Bsior Mates Total Hosts - 1 (1 rers

P i anis.

et T (HOP-Z.5)

Mgy Blreed et Chednia

Cumtomin Servces

Pt BT S ST ey P et et MDY e T o BAUILIDEST 5 000-1 D81

it T (HOP-UTILE-1,1.0.31]

il (L= -2 5

ps Rl amaronares. comy dey horiomen oy corm MDE-UTILES-1 1. 0.2 repoe‘debian T

Pl Al B PO A ST P T e Ol D e P W BLNLDSST & 00 1081

sl (HOP-UTILE-1.9.0.21}

ettpe il armanondr. comy ey horomeorkn com HDP-UTILS-1, 1,003 LUinsdon Sartcnl

il T (FILE -2 S0

et e cnarwes. Coimy oy raoriorreereion. ooy HDE cendoa T2 U BILNLIDEST & 000- 10654

el T (HOP-UTILE-1.9.0.21]

Pt S rewaira Sy ot rarer i o= HIDH UTILS- 1. 1. 0 1 rete i |

a1 1 [HDP-2.5)

Fet BN ST O TR e reor oo ey DN s | 2 BN eSS 500 0- 106 Y

== [Baick

13Click "Deploy" to begin installation.

14 Ambari displays the Install, Start and Test page. Monitor the status bar and messages for

progress updates:

CLUSTER INSTALL WITARD

Install, Start and Test

st Sharbed

Sabin=! Vigriion
restnll Ot
Lo Homls

L-Pfscniih Delviaiel

Ay Wi Hoss
o il el .
A e e LT ALY ek h gl
Cumborring Srvices

1ot emin akowing - S &
Flitrsaire

Sarcieaadfy ortiibed and stafied T services.

install, Start and Test

Fliniday vl vatubl (e BBl BanaOed B @inied i snaried.

11

hdp-kafka-component-guide August 29, 2016

15When the wizard presents a summary of results, click "Complete" to finish installing
Kafka:

summary

After Kafka is deployed and running, validate the installation. You can use the command-
line interface to create a Kafka topic, send test messages, and consume the messages. For
more information, see Validate Kafka in the Non-Ambari Cluster Installation Guide.

12

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_command-line-installation/content/validate_kafka.html

hdp-kafka-component-guide August 29, 2016

5. Configuring Kafka for a Production
Environment

This chapter covers topics related to Kafka configuration, including:
¢ Preparing the environment

¢ Customizing settings for brokers, producers, and consumers

¢ Configuring ZooKeeper for use with Kafka

¢ Enabling audit to HDFS when running Kafka on a secure cluster

To configure Kafka for Kerberos security on an Ambari-managed cluster, see Configuring
Kafka for Kerberos Using Ambari in the Security Guide.

5.1. Preparing the Environment

The following factors can affect Kafka performance:
¢ Operating system settings

« File system selection

* Disk drive configuration

* Java version

e Ethernet bandwidth

5.1.1. Operating System Settings

Consider the following when configuring Kafka:

» Kafka uses page cache memory as a buffer for active writers and readers, so after you
specify JVM size (using - Xnx and - Xns Java options), leave the remaining RAM available
to the operating system for page caching.

» Kafka needs open file descriptors for files and network connections. You should set the
file descriptor limit to at least 128000.

¢ You can increase the maximum socket buffer size to enable high-performance data
transfer.

5.1.2. File System Selection

Kafka uses regular Linux disk files for storage. We recommend using the EXT4 or XFS file
system. Improvements to the XFS file system show improved performance characteristics
for Kafka workloads without compromising stability.

13

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_kafka_for_kerberos_using_ambari.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/configuring_kafka_for_kerberos_using_ambari.html

hdp-kafka-component-guide August 29, 2016

c Caution

* Do not use mounted shared drives or any network file systems with Kafka,
due to the risk of index failures and (in the case of network file systems)
issues related to the use of MemoryMapped files to store the offset index.

* Encrypted file systems such as SafenetFS are not supported for Kafka. Index
file corruption can occur.

5.1.3. Disk Drive Considerations

For throughput, we recommend dedicating multiple drives to Kafka data. More drives
typically perform better with Kafka than fewer. Do not share these Kafka drives with any
other application or use them for Kafka application logs.

You can configure multiple drives by specifying a comma-separated list of directories for
the |l og. di r s property in the server . properti es file. Kafka uses a round-robin
approach to assign partitions to directories specified in | 0g. di r s; the default value is /
t np/ kaf ka- | ogs.

The num i o. t hr eads property should be set to a value equal to or greater than the
number of disks dedicated for Kafka. Recommendation: start by setting this property equal
to the number of disks.

Depending on how you configure flush behavior (see "Log Flush Management"), a faster
disk drive is beneficial if the | og. fl ush. i nt erval . mnessages property is set to flush
the log file after every 100,000 messages (approximately).

Kafka performs best when data access loads are balanced among partitions, leading to
balanced loads across disk drives. In addition, data distribution across disks is important.
If one disk becomes full and other disks have available space, this can cause performance
issues. To avoid slowdowns or interruptions to Kafka services, you should create usage
alerts that notify you when available disk space is low.

RAID can potentially improve load balancing among the disks, but RAID can cause
performance bottleneck due to slower writes. In addition, it reduces available disk space.
Although RAID can tolerate disk failures, rebuilding RAID array is I/O-intensive and
effectively disables the server. Therefore, RAID does not provide substantial improvements
in availability.

5.1.4. Java Version

With Apache Kafka on HDP 2.5, you should use the latest update for Java version 1.8 and
make sure that G1 garbage collection support is enabled. (G1 support is enabled by default
in recent versions of Java.) If you prefer to use Java 1.7, make sure that you use update u51
or later.

Here are several recommended settings for the JVM:

14

hdp-kafka-component-guide August 29, 2016

- Xnx69g

- Xnms 69

- XX: Met aspaceSi ze=96m

- XX: +UseGLGC

- XX: MaxGCPauseM | |'i s=20

-XX: I nitiatingHeapCccupancyPer cent =35
- XX: GLHeapRegi onSi ze=16M

- XX: M nMet aspaceFr eeRat i 0=50

- XX: MaxMet aspaceFr eeRat i 0=80

To set JVM heap size for the Kafka broker, export KAFKA_HEAP_OPTS; for example:

export KAFKA HEAP_OPTS="- Xnx2g - Xns2g"
.l kaf ka-server-start.sh

5.1.5. Ethernet Bandwidth

Ethernet bandwidth can have an impact on Kafka performance; make sure it is sufficient
for your throughput requirements.

5.2. Customizing Kafka Settings on an Ambari-
Managed Cluster

To customize configuration settings during the Ambari installation process, click the "Kafka"
tab on the Customize Services page:

Customize Services

¥ Fupa DO LD w7 MeDomumendesd ConfQuretord Tor 17 Sanvioes o Sebbrind Cuessiomizs Them B i S
T "
. w o
ol ey
A
Group Default [1 = a G
Axnieyry larspem ar Ol
= T E: L
iy 5 .
Kl Biwdise Pasad e amitea apacha o
Eroh e S SEAT STl il e W I H 1 = |
L S 1Bs = |
g rivtertice howrs 168 I
S dirs. i

ST | AIMTERT MiasalFast 88 &

If you want to access configuration settings after installing Kafka using Ambari:

15

hdp-kafka-component-guide

August 29, 2016

1. Click Kafka on the Ambari dashboard.

2. Choose Configs.

To view and modify settings, either scroll through categories and expand a category (such
as "Kafka Broker", as shown in the graphic), or use the "Filter" box to search for a property.

Settings in the Advanced kafka-env category are configured by Ambari; you should not

modify these settings:

* Advanced kafka-env

i=_supported_kafka
FangEr

kafka_keylab
kafka_log dir

Kafka PID dir
kafka_principal_name
kafka_user_nofla_lemit
kafka user mproc_limit

Eafka-eny iemplate

e]

4]
fvariogkalka L]
Ararmonvkafka o

£
128000 o
BLL36 L+]
#l'bin'bash

S0t KAFKA specihic environment vanables hing

1 The java implementation 10 wse
export JAVA_HOME={{javatd_homae})
export PATH=8PATH:SJAVA_HOME in
export PID_DIR=({kafa_péd_dir})
export LOG_DIR={{kafka_log_dir]]
export KAFHA_KERBERDS _PARAMS={|kafka_kerberos_params})
Acd kafka sink to classpath and related depenencies
f | =& "Susclibamban-meincs-katka-sink amban-metncs-Kaflca-sink. jJar" |; than

axport CLASSPATH SOLASSDATH: /umrishlambani-rmetncs-kafka-sink ambar-

medncs-Ralka-sink. jar
export CLASSPATH=2CLASSPATH varth/ambart-metrics-kafka-sinkdib”
h
f [-f fete/hafka'confiafla-ranger-env.ah |; then
. fetc/iafka’contkafia-ranger-eny.sh
1I

To add configuration properties that are not listed by default in Ambari, navigate to the
Custom kafka-broker category:

16

c

hdp-kafka-component-guide August 29, 2016

Add Property

5.3. Kafka Broker Settings

The following subsections describe configuration settings that influence the performance of
Kafka brokers.

5.3.1. Connection Settings

Review the following connection setting in the Advanced kafka-broker category, and
modify as needed:

zookeeper . sessi on. t i neout . Specifies ZooKeeper session timeout, in milliseconds.
The default value is 30000 ms.

If the server fails to signal heartbeat to ZooKeeper
within this period of time, the server is considered to be
dead. If you set this value too low, the server might be
falsely considered dead; if you set it too high it may take
too long to recognize a truly dead server.

If you see frequent disconnection from the ZooKeeper
server, review this setting. If long garbage collection

17

hdp-kafka-component-guide August 29, 2016

pauses cause Kafka to lose its ZooKeeper session, you
might need to configure longer timeout values.

2 Important

Do not change the following connection settings:

listeners A comma-separated list of URIs that Kafka will listen
on, and their protocols. Ambari sets this value to the
names of nodes where Kafka is being installed.. Do
not change this setting.

zookeeper. connect A comma-separated list of ZooKeeper
host nane: port pairs. Ambari sets this value. Do
not change this setting.

5.3.2. Topic Settings

F

or each topic, Kafka maintains a structured commit log with one or more partitions. These

topic partitions form the basic unit of parallelism in Kafka. In general, the more partitions
there are in a Kafka cluster, the more parallel consumers can be added, resulting in higher
throughput.

You can calculate the number of partitions based on your throughput requirements.

If throughput from a producer to a single partition is P and throughput from a single
partition to a consumer is C, and if your target throughput is T, the minimum number of
required partitions is

max (T/P, T/C).

Note also that more partitions can increase latency:

End-to-end latency in Kafka is defined as the difference in time from when a message is
published by the producer to when the message is read by the consumer.

Kafka only exposes a message to a consumer after it has been committed, after the
message is replicated to all in-sync replicas.

Replication of one thousand partitions from one broker to another can take up 20ms.
This is too long for some real-time applications.

In the new Kafka producer, messages are accumulated on the producer side; producers
buffer the message per partition. This approach allows users to set an upper bound

on the amount of memory used for buffering incoming messages. After enough data

is accumulated or enough time has passed, accumulated messages are removed and
sent to the broker. If you define more partitions, messages are accumulated for more
partitions on the producer side.

Similarly, the consumer fetches batches of messages per partition. Consumer memory
requirements are proportional to the number of partitions that the consumer subscribes
to.

Important Topic Properties

18

hdp-kafka-component-guide

August 29, 2016

Review the following settings in the Advanced kafka-broker category, and modify as

needed:

aut 0. creat e. t opi cs. enabl e Enable automatic creation of topics on the server. If

this property is set to true, then attempts to produce,
consume, or fetch metadata for a nonexistent topic
automatically create the topic with the default
replication factor and number of partitions. The default
is enabl ed.

defaul t.replication. fact orSpecifies default replication factors for automatically

num partitions

del ete. topic. enabl e

5.3.3. Log Settings

created topics. For high availability production systems,
you should set this value to at least 3.

Specifies the default number of log partitions per topic,
for automatically created topics. The default value is 1.

Change this setting based on the requirements related

to your topic and partition design.

Allows users to delete a topic from Kafka using the
admin tool, for Kafka versions 0.9 and later. Deleting a
topic through the admin tool will have no effect if this
setting is turned off.

By default this feature is turned off (set to f al se).

Review the following settings in the Kafka Broker category, and modify as needed:

log.roll.hours

| og. retention. hours

log.dirs

The maximum time, in hours, before a new log segment is
rolled out. The default value is 168 hours (seven days).

This setting controls the period of time after which Kafka will
force the log to roll, even if the segment file is not full. This
ensures that the retention process is able to delete or compact
old data.

The number of hours to keep a log file before deleting it. The
default value is 168 hours (seven days).

When setting this value, take into account your disk space

and how long you would like messages to be available. An
active consumer can read quickly and deliver messages to their
destination.

The higher the retention setting, the longer the data will
be preserved. Higher settings generate larger log files, so
increasing this setting might reduce your overall storage

capacity.

A comma-separated list of directories in which log data is kept.
If you have multiple disks, list all directories under each disk.

19

hdp-kafka-component-guide August 29, 2016

Review the following setting in the Advanced kafka-broker category, and modify as
needed:

| og.retention. bytes The amount of data to retain in the log for each topic
partition. By default, log size is unlimited.

Note that this is the limit for each partition, so multiply this
value by the number of partitions to calculate the total data
retained for the topic.

Ifl og. retention. hours andl og. retention. bytes
are both set, Kafka deletes a segment when either limit is
exceeded.

| og. segnent . byt es The log for a topic partition is stored as a directory of segment
files. This setting controls the maximum size of a segment file
before a new segment is rolled over in the log. The default is 1
GB.

Log Flush Management

Kafka writes topic messages to a log file immediately upon receipt, but the data is initially
buffered in page cache. A log flush forces Kafka to flush topic messages from page cache,
writing the messages to disk.

We recommend using the default flush settings, which rely on background flushes done
by Linux and Kafka. Default settings provide high throughput and low latency, and they
guarantee recovery through the use of replication.

If you decide to specify your own flush settings, you can force a flush after a period of time,
or after a specified number of messages, or both (whichever limit is reached first). You can
set property values globally and override them on a per-topic basis.

There are several important considerations related to log file flushing:

* Durability: unflushed data is at greater risk of loss in the event of a crash. A failed
broker can recover topic partitions from its replicas, but if a follower does not issue a
fetch request or consume from the leader's log-end offset within the time specified by
replica.lag.tine. max. ns (which defaults to 10 seconds), the leader removes the
follower from the in-sync replica ("ISR"). When this happens there is a slight chance of
message loss if you do not explicitly set | og. f | ush. i nt erval . messages. If the
leader broker fails and the follower is not caught up with the leader, the follower can still
be under ISR for those 10 seconds and messages during leader transition to follower can
be lost.

* Increased latency: data is not available to consumers until it is flushed (the f sync
implementation in most Linux filesystems blocks writes to the file system).

* Throughput: a flush operation is typically an expensive operation.
* Disk usage patterns are less efficient.

» Page-level locking in background flushing is much more granular.

20

hdp-kafka-component-guide August 29, 2016

| og. flush.interval . messages specifies the number of messages to accumulate on a
log partition before Kafka forces a flush of data to disk.

| og. fl ush. schedul er. i nterval . ns specifies the amount of time (in milliseconds)
after which Kafka checks to see if a log needs to be flushed to disk.

| 0og. segnent . byt es specifies the size of the log file. Kafka flushes the log file to disk
whenever a log file reaches its maximum size.

| og. rol I . hour s specifies the maximum length of time before a new log segment is
rolled out (in hours); this value is secondary to | og. r ol | . nms. Kafka flushes the log file to
disk whenever a log file reaches this time limit.

5.3.4. Compaction Settings

Review the following settings in the Advanced kafka-broker category, and modify as
needed:

| 0og. cl eaner. dedupe. buf f er . Sdezifies total memory used for log deduplication across
all cleaner threads.

By default, 128 MB of buffer is allocated. You may want
to review this and other | 0g. cl eaner configuration
values, and adjust settings based on your use of
compacted topics (__consuner _of f set s and other
compacted topics).

| 0g. cl eaner.i 0. buff er. si zeSpecifies the total memory used for log cleaner 1I/0
buffers across all cleaner threads. By default, 512 KB of
buffer is allocated. You may want to review this and
other | 0g. cl eaner configuration values, and adjust
settings based on your usage of compacted topics
(__consuner _of f set s and other compacted topics).

5.3.5. General Broker Settings

Review the following settings in the Advanced kafka-broker category, and modify as
needed:

aut 0. | eader . rebal ance. enabtreables automatic leader balancing. A background
thread checks and triggers leader balancing (if needed)
at regular intervals. The default is enabl ed.

uncl ean. | eader. el ecti on. erieb$ property allows you to specify a preference of
availability or durability. This is an important setting: If
availability is more important than avoiding data loss,
ensure that this property is set to t r ue. If preventing
data loss is more important than availability, set this
property to f al se.

This setting operates as follows:

e Ifuncl ean. | eader. el ecti on. enabl e is set to
t r ue (enabled), an out-of-sync replica will be elected

21

hdp-kafka-component-guide

August 29, 2016

as leader when there is no live in-sync replica (ISR).
This preserves the availability of the partition, but
there is a chance of data loss.

e Ifuncl ean. | eader. el ecti on. enabl e isset to
f al se and there are no live in-sync replicas, Kafka
returns an error and the partition will be unavailable.

This property is set to t r ue by default, which favors
availability.

If durability is preferable to availability, set
uncl ean. | eader. el ecti ontofal se.

control | ed. shut down. enabl eEnables controlled shutdown of the server. The default

m n.insync.replicas

nmessage. max. byt es

replica.fetch. max. bytes

br oker . rack

is enabl ed.

When a producer sets acks to "all",

m n.insync. replicas specifies the minimum
number of replicas that must acknowledge a write

for the write to be considered successful. If this
minimum cannot be met, then the producer will raise an
exception.

When used together, m n. i nsync. repl i cas and
producer acks allow you to enforce stronger durability
guarantees.

You should set mi n. i nsync. replicas to 2 for
replication factor equal to 3.

Specifies the maximum size of message that the server
can receive. It is important that this property be set with
consideration for the maximum fetch size used by your
consumers, or a producer could publish messages too
large for consumers to consume.

Note that there are currently two versions of
consumer and producer APIs. The value of

nmessage. max. byt es must be smaller than

the max. partition. fetch. byt es setting

in the new consumer, or smaller than the

f et ch. message. max. byt es setting in the old
consumer. In addition, the value must be smaller than
replica. fetch. max. bytes.

Specifies the number of bytes of messages to
attempt to fetch. This value must be larger than
nmessage. max. byt es.

The rack awareness feature distributes replicas
of a partition across different racks. You can
specify that a broker belongs to a particular

22

hdp-kafka-component-guide August 29, 2016

rack through the "Custom kafka-broker" menu
option. For more information about the rack
awareness feature, see http://kafka.apache.org/
documentation.html#basic_ops_racks.

5.4. Kafka Producer Settings

5.4.1.

If performance is important and you have not yet upgraded to the new Kafka producer
(client version 0.9.0.1 or later), consider doing so. The new producer is generally faster and
more fully featured than the previous client.

To use the new producer client, add the associated maven dependency on the client jar; for
example:

<dependency>
<gr oupl d>or g. apache. kaf ka</ gr oupl d>
<artifactl|d>kaf ka-clients</artifactld>
<ver si on>0. 9. 0. 0</ ver si on>

</ dependency>

For more information, see the KafkaProducer javadoc.

The following subsections describe several types of configuration settings that influence the
performance of Kafka producers.

Important Producer Settings

The lifecycle of a request from producer to broker involves several configuration settings:

1. The producer polls for a batch of messages from the batch queue, one batch per
partition. A batch is ready when one of the following is true:

e bat ch. si ze is reached. Note: Larger batches typically have better compression ratios
and higher throughput, but they have higher latency.

e |l i nger. s (time-based batching threshold) is reached. Note: There is no simple
guideilne for setting | i nger . s values; you should test settings on specific use cases.
For small events (100 bytes or less), this setting does not appear to have much impact.

¢ Another batch to the same broker is ready.
* The producer calls f | ush() orcl ose().
2. The producer groups the batch based on the leader broker.
3. The producer sends the grouped batch to the broker.
The following paragraphs list additional settings related to the request lifecycle:

max. i n. flight.requests. perTreomagiburamumber of unacknowledged requests the

(pipelining) client will send on a single connection before blocking.
If this setting is greater than 1, pipelining is used when
the producer sends the grouped batch to the broker.
This improves throughput, but if there are failed sends

23

http://kafka.apache.org/documentation.html#basic_ops_racks
http://kafka.apache.org/documentation.html#basic_ops_racks
https://kafka.apache.org/090/javadoc/index.html?org/apache/kafka/clients/producer/KafkaProducer.html

hdp-kafka-component-guide

August 29, 2016

conpr ession. type

acks

flush()

there is a risk of out-of-order delivery due to retries (if
retries are enabled). Note also that excessive pipelining
reduces throughput.

Compression is an important part of a producer’s work,
and the speed of different compression types differs a
lot.

To specify compression type, use the

conpr essi on. t ype property. It accepts standard
compression codecs ('gzip', 'snappy', 'lz4"), as well
as 'uncompressed' (the default, equivalent to no
compression), and 'producer' (uses the compression
codec set by the producer).

Compression is handled by the user thread. If
compression is slow it can help to add more threads. In
addition, batching efficiency impacts the compression
ratio: more batching leads to more efficient
compression.

The acks setting specifies acknowledgments that

the producer requires the leader to receive before
considering a request complete. This setting defines the
durability level for the producer.

Acks Throughput Latency Durability

0 High Low No Guarantee.
The producer
does not
wait for

acknowledgment
from the server.

1 Medium Medium Leader writes
the record to

its local log,

and responds
without

awaiting full
acknowledgment
from all
followers.

-1 Low High Leader waits
for the full

set of in-sync
replicas (ISRs)
to acknowledge
the record. This
guarantees that
the record is not
lost as long as at
least one IRS is
active.

The new Producer API supports an optional f | ush()
call, which makes all buffered records immediately
available to send (even if | i nger . s is greater than 0).

24

hdp-kafka-component-guide August 29, 2016

When using f | ush(), the number of bytes between
two f | ush() callsis an important factor for
performance.

* In microbenchmarking tests, a setting of
approximately 4MB performed well for events 1KB in
size.

¢ A general guideline is to set bat ch. si ze equal to
the total bytes between f | ush() calls divided by
number of partitions:

(total bytes between f | ush() calls) / (partition
count)

Additional Considerations

A producer thread going to the same partition is faster than a producer thread that sends
messages to multiple partitions.

If a producer reaches maximum throughput but there is spare CPU and network capacity
on the server, additional producer processes can increase overall throughput.

Performance is sensitive to event size: larger events are more likely to have better
throughput. In microbenchmarking tests, 1KB events streamed faster than 100-byte events.

5.5. Kafka Consumer Settings

You can usually obtain good performance from consumers without tuning configuration
settings. In microbenchmarking tests, consumer performance was not as sensitive to event
size or batch size as was producer performance. Both 1KG and 100B events showed similar
throughput.

One basic guideline for consumer performance is to keep the number of consumer threads
equal to the partition count.

5.6. Configuring ZooKeeper for Use with Kafka

Here are several recommendations for ZooKeeper configuration with Kafka:
* Do not run ZooKeeper on a server where Kafka is running.

* When using ZooKeeper with Kafka you should dedicate ZooKeeper to Kafka, and not
use ZooKeeper for any other components.

* Make sure you allocate sufficient JYM memory. A good starting point is 4GB.
* To monitor the ZooKeeper instance, use JMX metrics.

Configuring ZooKeeper for Multiple Applications

25

hdp-kafka-component-guide August 29, 2016

If you plan to use the same ZooKeeper cluster for different applications (such as Kafka
cluster1, Kafka cluster2, and HBase), you should add a chr oot path so that all Kafka data
for a cluster appears under a specific path.

The following example shows a sample chr oot path:

c6401. anbari . apache. org: 2181: / kaf ka-r oot
c6402. anbari . apache. org: 2181: / kaf ka- r oot

You must create this chr oot path yourself before starting the broker, and consumers must
use the same connection string.

5.7. Enabling Audit to HDFS for a Secure Cluster

To enable audit to HDFS when running Kafka on a secure cluster, perform the steps listed
at the bottom of Manually Updating Ambari HDFS Audit Settings in the HDP Security
Guide.

26

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/manually_updating_ambari_hdfs_audit_settings.html

hdp-kafka-component-guide August 29, 2016

6. Mirroring Data Between Clusters:
Using the MirrorMaker Tool

The process of replicating data between Kafka clusters is called "mirroring", to differentiate
cross-cluster replication from replication among nodes within a single cluster. A common
use for mirroring is to maintain a separate copy of a Kafka cluster in another data center.

Kafka's MirrorMaker tool reads data from topics in one or more source Kafka clusters, and
writes corresponding topics to a destination Kafka cluster (using the same topic names):

Source
Cluster
1 \
Mirror H Destination
e
/ maker Cluster
Source
Cluster
N

To mirror more than one source cluster, start at least one MirrorMaker instance for each
source cluster.

You can also use multiple MirrorMaker processes to mirror topics within the same
consumer group. This can increase throughput and enhance fault-tolerance: if one process
dies, the others will take over the additional load.

The source and destination clusters are completely independent, so they can have different
numbers of partitions and different offsets. The destination (mirror) cluster is not intended
to be a mechanism for fault-tolerance, because the consumer position will be different.
(The MirrorMaker process will, however, retain and use the message key for partitioning,
preserving order on a per-key basis.) For fault tolerance we recommend using standard
within-cluster replication.

6.1. Running MirrorMaker

Prerequisite: The source and destination clusters must be deployed and running.

To set up a mirror, run kaf ka. t ool s. M rr or Maker . The following table lists
configuration options.

At a minimum, MirrorMaker requires one or more consumer configuration files, a producer
configuration file, and either a whitelist or a blacklist of topics. In the consumer and
producer configuration files, point the consumer to the ZooKeeper process on the source

27

hdp-kafka-component-guide

August 29, 2016

cluster, and point the producer to the ZooKeeper process on the destination (mirror)

cluster, respectively.

Table 6.1. MirrorMaker Options

separated list of topics to include (-
whitelist) or exclude (—blacklist).

In general, these options accept Java
regex patterns. For caveats, see the
note after this table.

Parameter Description Examples

--consuner. config Specifies a file that contains --consuner. config hdpl-
configuration settings for the source |consumner. properties
cluster. For more information
about this file, see the "Consumer
Configuration File" subsection.

--producer.config Specifies the file that contains --producer. config hdpl-
configuration settings for the target | pr oducer. properties
cluster. For more information
about this file, see the "Producer
Configuration File" subsection.

--whitelist (Optional) For a partial mirror, you --whitelist my-topic
can specify exactly one comma-

--bl ackl i st

--num streans

Specifies the number of consumer
stream threads to create.

--num streans 4

- -num producer s

Specifies the number of producer
instances. Setting this to a value
greater than one establishes a
producer pool that can increase
throughput.

--num producers 2

--queue. si ze

Queue size: number of messages that
are buffered, in terms of number of
messages between the consumer and
producer. Default = 10000.

--queue. si ze 2000

--help

List MirrorMaker command-line
options.

N

Note

* A comma (") is interpreted as the regex-choice symbol ('|') for convenience.

* If you specify - whi te- i st =".*", MirrorMaker tries to fetch data from
the system-level topic __consuner - of f set s and produce that data to the
target cluster. This can result in the following error:

Producer cannot send requests to

__consuner-offsets

Workaround: Specify topic names, or to replicate all topics, specify - -
bl ackl i st="__consuner-offsets".

The following example replicates t opi ¢1 and t opi c2 from sour ceC ust er Consurner
tot arget C ust er Producer:

[usr/ hdp/ current/kaf ka- br oker/ bi n/ kaf ka-run-cl ass. sh kaf ka.tool s. M rror Maker
--consuner. config sourced uster Consuner. properties
t arget C ust er Producer. properties --whitelist="topicl, topic"

Consumer Configuration File

- - producer.config

28

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

hdp-kafka-component-guide August 29, 2016

The consumer configuration file must specify the ZooKeeper process in the source cluster.

Here is a sample consumer configuration file:

zk. connect =hdpl1: 2181/ kaf ka

zk. connecti onti meout . ms=1000000
consuner.timeout. ns=-1

gr oupi d=dp- M rror Maker - t est - dat apl
shal | ow. i t erat or. enabl e=true
mrror.topics.whitelist=app_| og

Producer Configuration File

The producer configuration should point to the target cluster's ZooKeeper process (or use
the broker.list parameter to specify a list of brokers on the destination cluster).

Here is a sample producer configuration file:

zk. connect =hdp1: 2181/ kaf ka- t est
producer .t ype=async

conpr essi on. codec=0

serializer. cl ass=kaf ka. seri al i zer. Def aul t Encoder
max. message. si ze=10000000

queue. ti me=1000

queue. enqueueTi neout . ne=-1

6.2. Checking Mirroring Progress

You can use Kafka's Consumer Offset Checker command-line tool to assess how well your
mirror is keeping up with the source cluster. The Consumer Offset Checker checks the
number of messages read and written, and reports the lag for each consumer in a specified
consumer group.

The following command runs the Consumer Offset Checker for group Kaf kaM rr or, topic
t est-topi c. The - - zkconnect argument points to the ZooKeeper host and port on the
source cluster.

[usr/ hdp/ current/kaf ka/ bi n/ kaf ka-run-cl ass. sh kaf ka. t ool s.
Consuner O f set Checker --group KafkaM rror --zkconnect source-cluster-
zookeeper: 2181 --topic test-topic

G oup Topi ¢ Pid Ofset | ogSi ze Lag Onner
Kaf kaM rror test-topic 0 5 5 0 none
KafkaM rror test-topic 1 3 4 1 none
Kaf kaM rror test-topic 2 6 9 3 none

Table 6.2. Consumer Offset Checker Options

--group (Required) Specifies the consumer group.

- -zkconnect Specifies the ZooKeeper connect string. The default is
| ocal host : 2181.

--broker-info Lists broker information

--help Lists offset checker options.

--topic Specifies a comma-separated list of consumer topics. If

you do not specify a topic, the offset checker will display
information for all topics under the given consumer group.

29

hdp-kafka-component-guide August 29, 2016

6.3. Avoiding Data Loss

If for some reason the producer cannot deliver messages that have been consumed and
committed by the consumer, it is possible for a MirrorMaker process to lose data.

To prevent data loss, use the following settings. (Note: these are the default settings.)
* For consumers:
e auto. conmi t. enabl ed=f al se
* For producers:
e max.in.flight.requests. per.connection=1
e retries=lInt. MaxVal ue
e acks=-1
* bl ock. on. buffer.full=true
 Specify the - - abor t OnSendFai | option to MirrorMaker
The following actions will be taken by MirrorMaker:
* MirrorMaker will send only one request to a broker at any given point.

* If any exception is caught in the MirrorMaker thread, MirrorMaker will try to commit the
acked offsets and then exit immediately.

* OnaRetriabl eExcepti on in the producer, the producer will retry indefinitely. If the
retry does not work, MirrorMaker will eventually halt when the producer buffer is full.

* On a non-retriable exception, if - - abor t . on. send. f ai | is specified, MirrorMaker will
stop.

If --abort. on. send. fail isnot specified, the producer callback mechanism wiill
record the message that was not sent, and MirrorMaker will continue running. In this
case, the message will not be replicated in the target cluster.

6.4. Running MirrorMaker on Kerberos-Enabled
Clusters

To run MirrorMaker on a Kerberos/SASL-enabled cluster, configure producer and consumer
properties as follows:

1. Choose or add a new principal for MirrorMaker. Do not use kaf ka or any other service
accounts. The following example uses principal mi rr or maker .

2. Create client-side Kerberos keytabs for your MirrorMaker principal. For example:

sudo kadm n.local -q "ktadd -k /tnp/ mrrornaker. keytab m rror maker/
HOSTNAME@EXAMPLE. COM'

30

hdp-kafka-component-guide August 29, 2016

3. Add a new Jaas configuration file to the node where you plan to run MirrorMaker:

-Dj ava. security. aut h. | ogi n. confi g=/usr/ hdp/ current/kaf ka- br oker/ confi g/
kaf ka_m rror maker _j aas. conf

4. Add the following settings to the KafkaClient section of the new Jaas configuration
file. Make sure the principal has permissions on both the source cluster and the target
cluster.

Kaf kaCl i ent {
com sun. security. aut h. modul e. Kr b5Logi nMbdul e required
useKeyTab=t r ue
keyTab="/t nmp/ m rror maker. keyt ab"
st or eKey=t r ue
useTi cket Cache=f al se
servi ceNanme="kaf ka"
princi pal =" m rr or maker / HOSTNAMVE@EXAMPLE. COM';

}
5. Run the following ACL command on the source and destination Kafka clusters:

bi n/ kaf ka-acl s.sh --topic test-topic --add --all ow princi pal
user: mrrornmaker --operation ALL --config /usr/hdp/current/kaf ka- broker/
confi g/ server.properties

6. In your MirrorMaker consuner . confi g and pr oducer . confi g files, specify
security. protocol =SASL_PLAI NTEXT.

7. Start MirrorMaker. Specify the new. consumner option in addition to your other options.
For example:

[usr/ hdp/ current / kaf ka- br oker/ bi n/ kaf ka-run- cl ass. sh kaf ka.tool s. M rror Maker
--consuner. confi g consuner. properties --producer.config target-cluster-
producer. properties --whitelist ny-topic --new consumer

31

hdp-kafka-component-guide August 29, 2016

7. Creating a Kafka Topic

As described in Apache Kafka Concepts, Kafka maintains feeds of messages in categories
called topics. Producers write data to topics and consumers read from topics. Since Kafka
is a distributed system, topics are partitioned and replicated across multiple nodes. Kafka
treats each topic partition as a log (an ordered set of messages). Each message in a
partition is assigned a unique offset.

Each topic has a user-defined category (or feed name), to which messages are published.

To create a Kafka topic, run kaf ka- t opi ¢s. sh and specify topic name, replication factor,
and other attributes:

/ bi n/ kaf ka-t opi cs.sh --create \
- -zookeeper <hostnanme>: <port> \
--topi c <topic-name> \
--partitions <nunber-of-partitions> \
--replication-factor <nunber-of-replicating-servers>

The following example creates a topic named "test", with one partition and one replica:

bi n/ kaf ka-t opi cs. sh --create \
--zookeeper |ocal host: 2181 \
--replication-factor 1\
--partitions 1\
--topic test

To view the topic, runthel i st t opi ¢ command:

> bi n/ kaf ka-topi cs.sh --1ist --zookeeper | ocal host: 2181
t est

To create topics on a cluster with Kerberos enabled, see Creating Kafka Topics in the HDP
Security Guide.

The aut 0. cr eat e. t opi cs. enabl e property, when set to true, automatically
creates topics when applications attempt to produce, consume, or fetch metadata for a
nonexistent topic. For more information, see Kafka Broker Settings.

32

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_kafka-component-guide/content/ch_overview_kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-create-topics.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_kafka-component-guide/content/kafka-broker-settings.html

hdp-kafka-component-guide August 29, 2016

8. Developing Kafka Producers and
Consumers

The examples in this chapter contain code for a basic Kafka producer and consumer, and
similar examples for an SSL-enabled cluster. (To configure Kafka for SSL, see Enable SSL for
Kafka Clients in the HDP Security Guide.)

For examples of Kafka producers and consumers that run on a Kerberos-enabled cluster,
see Producing Events/Messages to Kafka on a Secured Cluster and Consuming Events/
Messages from Kafka on a Secured Cluster, in the Security Guide.

Basic Producer Example

package com hort onwor ks. exanpl e. kaf ka. pr oducer ;

i nport org. apache. kaf ka. cl i ents. producer. Cal | back;

i mport org. apache. kaf ka. cl i ents. producer . Kaf kaPr oducer ;
i mport org. apache. kaf ka. cl i ents. producer. Producer;

i mport org. apache. kaf ka. cl i ents. producer. Producer Confi g;
i mport org. apache. kaf ka. cl i ents. producer. Producer Recor d;
i mport org. apache. kaf ka. cl i ents. producer. Recor dMet adat a;

import java.util.Properties;
import java.util.Random

publ i c cl ass Basi cProducer Exanpl e {
public static void main(String[] args){

Properties props = new Properties();

props. put (Producer Conf i g. BOOTSTRAP_SERVERS CONFI G, "kaf ka. exanpl e.
com 6667");

props. put (Producer Confi g. ACKS CONFIG, "all");

props. put (Producer Confi g. RETRIES CONFI G 0);

props. put (Producer Confi g. VALUE_SERI ALI ZER_CLASS CONFI G "org. apache.
kaf ka. conmon. seri al i zation. StringSerializer");

props. put (Producer Confi g. KEY_SERI ALI ZER_CLASS_CONFI G "or g. apache.
kaf ka. conmon. seri al i zation. StringSerializer");

Producer<String, String> producer = new Kaf kaProducer<Stri ng,
String>(props);
Test Cal | back cal | back = new Test Cal | back() ;
Random rnd = new Randon();
for (long i =0; i < 100 ; i++) {
Pr oducer Record<String, String> data = new Producer Record<Stri ng,
String>(
"test-topic", "key-" + i, "nessage-"+i);
producer . send(dat a, call back);

}

producer. cl ose();

private static class TestCall back inplements Call back {
@verride

33

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/ch_wire-kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/ch_wire-kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-produce-events.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-consume-events.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/secure-kafka-consume-events.html

hdp-kafka-component-guide August 29, 2016

publ i c voi d onConpl eti on(Recor dMet adat a recor dMet adat a, Exception e) {
if (e!=null) {

Systemout. println("Error while produci ng nessage to topic :" +
recor dMvet adat a) ;

e.printStackTrace();

} else {

String nessage = String.format("sent nessage to topic: %
partition: % offset: %", recordMetadata.topic(), recordMetadata.partition(),
recor dMet adat a. of fset ());

System out . pri ntl n(message) ;

}

}

To run the producer example, use the following command:
$ java com hortonworks. exanpl e. kaf ka. producer. Basi cProducer Exanpl e
Producer Example for an SSL-Enabled Cluster

The following example adds three important configuration settings for SSL encryption
and three for SSL authentication. The two sets of configuration settings are prefaced by
comments.

package com hortonwor ks. exanpl e. kaf ka. pr oducer ;

i mport org. apache. kaf ka. cl i ents. CommondC i ent Confi gs;

i mport org. apache. kaf ka. cl i ents. producer. Cal | back;

i mport org. apache. kaf ka. cl i ents. producer. Kaf kaPr oducer ;
i mport org. apache. kaf ka. cl i ents. producer. Producer;
inport org.apache. kaf ka. cl i ents. producer. Producer Confi g;
i mport org. apache. kaf ka. cl i ents. producer. Producer Recor d;
i mport org. apache. kaf ka. cl i ents. producer. Recor dMet adat a;
i nport org. apache. kaf ka. common. confi g. Ssl Confi gs;

inmport java.util.Properties;
import java.util.Random

public class Basi cProducer Exanpl e {
public static void main(String[] args){

Properties props = new Properties();
props. put (Producer Conf i g. BOOTSTRAP_SERVERS _CONFI G, "kaf ka. exanpl e.
com 6667");

//configure the followi ng three settings for SSL Encryption

props. put (Commond i ent Confi gs. SECURI TY_PROTOCOL_CONFI G, "SSL");

props. put (Ssl Confi gs. SSL_TRUSTSTORE_LOCATI ON_CONFI G "/var/ pri vat e/ ssl/
kafka.client.truststore.jks");

props. put (Ssl Confi gs. SSL_TRUSTSTORE_PASSWORD_CONFI G, "test 1234");

/1 configure the followi ng three settings for SSL Aut hentication

props. put (Ssl Confi gs. SSL_KEYSTORE LOCATI ON_ CONFI G, "/var/private/ssl/
kaf ka. cli ent. keystore.jks");

props. put (Ssl Confi gs. SSL_KEYSTORE _PASSWORD CONFI G, "test 1234");

props. put (Ssl Confi gs. SSL_KEY_PASSWORD CONFI G "test1234");

34

hdp-kafka-component-guide August 29, 2016

props. put (Producer Confi g. ACKS CONFIG, "all");

props. put (Producer Confi g. RETRIES CONFI G 0);

props. put (Producer Confi g. VALUE_SERI ALI ZER_CLASS_CONFI G, "or g. apache.
kaf ka. conmon. seri alization. StringSerializer");

props. put (Producer Confi g. KEY_SERI ALI ZER_CLASS CONFI G "or g. apache.
kaf ka. conmon. seri al i zation. StringSerializer");

Producer<String, String> producer = new Kaf kaProducer<Stri ng,
String>(props);
Test Cal | back cal | back = new Test Cal | back();
Random rnd = new Randon{);
for (long i =0; i < 100 ; i++) {
Producer Record<String, String> data = new Producer Record<Stri ng,
String>(
"test-topic", "key-" + i, "nessage-"+i);
producer . send(dat a, call back);

}

producer. cl ose();

private static class TestCall back inmplenments Call back {
@verride
publ i c voi d onConpl eti on(Recor dMet adat a recor dMet adat a, Exception e) {
if (e!=null) {

Systemout. println("Error while produci ng nessage to topic :" +
recor dMvet adat a) ;

e.printStackTrace();

} else {

String nessage = String.format("sent nmessage to topic: %
partition: % offset: %", recordMetadata.topic(), recordMetadata.partition(),
recor dMet adat a. of fset ());

System out . pri ntl n(message) ;

}

}

To run the producer example, use the following command:
$ java com hortonworks. exanpl e. kaf ka. producer . Basi cPr oducer Exanpl e

Basic Consumer Example
package com hortonwor ks. exanpl e. kaf ka. consuner ;

inport org.apache. kaf ka. cl i ents. consumner. Consuner Confi g;

i mport org. apache. kaf ka. cl i ents. consuner. Consuner Rebal anceli st ener;
i mport org. apache. kaf ka. cl i ents. consumer . Consuner Recor d;

i nport org. apache. kaf ka. cl i ents. consuner. Consuner Recor ds;

i mport org. apache. kaf ka. cl i ent s. consuner. Kaf kaConsuner ;

inport org.apache. kaf ka. conmon. Topi cPartiti on;

inmport java.util.Collection;
inport java.util.Collections;
import java.util.Properties;

publ i ¢ cl ass Basi cConsuner Exanpl e {

35

hdp-kafka-component-guide August 29, 2016

public static void main(String[] args) {

Properti es consunerConfig = new Properties();
consumer Confi g. put (Consumner Conf i g. BOOTSTRAP_SERVERS CONFI G, " kaf ka.
exanpl e. com 6667") ;
consumer Conf i g. put (Consuner Confi g. GROUP_I D_ CONFI G " my- group");
consuner Conf i g. put (Consuner Confi g. AUTO OFFSET_RESET_CONFI G,
"earliest");
consumer Confi g. put (Consumer Conf i g. VALUE_DESERI ALI ZER_CLASS CONFI G
"or g. apache. kaf ka. conmon. seri al i zati on. Stri ngDeseri al i zer");
consumer Conf i g. put (Consuner Confi g. KEY_DESERI ALI ZER_CLASS CONFI G "org.
apache. kaf ka. conmon. seri al i zati on. Stri ngDeseri alizer");
Kaf kaConsuner <byt e[], byte[]> consuner = new
Kaf kaConsumner <>(consuner Confi g) ;
Test Consuner Rebal anceli st ener rebal anceLi stener = new
Test Consuner Rebal anceli st ener () ;
consuner . subscri be(Col | ecti ons. singl etonList("test-topic"),
rebal anceli st ener);

while (true) {
Consumner Recor ds<byte[], byte[]> records = consuner. pol | (1000);
for (Consuner Record<byte[], byte[]> record : records) ({
System out. printf("Recei ved Message topic =%, partition =%,
offset = %, key = %, value = %\n", record.topic(), record.partition(),
record. offset(), record. key(), record.value());

}

consumer . conmmi t Sync() ;

}

private static class TestConsuner Rebal ancelLi stener inplenents
Consuner Rebal ancelLi st ener {
@verride

public void onPartitionsRevoked(Col | ecti on<Topi cPartition> partitions)

{
Systemout.println("Called onPartiti onsRevoked with partitions:" +
partitions);
}
@verride
public void onPartitionsAssi gned(Col | ection<TopicPartition> partitions)
{

Systemout.println("Called onPartiti onsAssigned with partitions:" +
partitions);

}
}
}
To run the consumer example, use the following command:

java com hortonwor ks. exanpl e. kaf ka. consuner . Basi cConsuner Exanpl e

Consumer Example for an SSL-Enabled Cluster

36

hdp-kafka-component-guide August 29, 2016

The following example adds three important configuration settings for SSL encryption
and three for SSL authentication. The two sets of configuration settings are prefaced by
comments.

package com hort onwor ks. exanpl e. kaf ka. consuner ;

i mport org. apache. kaf ka. cl i ents. Commond i ent Confi gs;

i mport org. apache. kaf ka. cl i ents. consumer . Consuner Conf i g;

inport org.apache. kaf ka. cl i ents. consuner. Consuner Rebal anceli st ener;
i mport org. apache. kaf ka. cl i ents. consuner. Consumner Recor d;

i mport org. apache. kaf ka. cl i ents. consumer . Consumer Recor ds;

i mport org. apache. kaf ka. cl i ents. consuner. Kaf kaConsuner ;

i mport org. apache. kaf ka. conmon. Topi cPartiti on;

inport org.apache. kaf ka. conmon. confi g. Ssl Confi gs;

import java.util.Collection;
inport java.util.Collections;
inmport java.util.Properties;

publ i ¢ cl ass Basi cConsuner Exanpl e {
public static void main(String[] args) {

Properties props = new Properties();
props. put (Consuner Conf i g. BOOTSTRAP_SERVERS _CONFI G " kaf ka. exanpl e.
com 6667") ;

//configure the followi ng three settings for SSL Encryption

props. put (Commond i ent Confi gs. SECURI TY_PROTOCOL_CONFI G, "SSL");

props. put (Ssl Confi gs. SSL_TRUSTSTORE LOCATI ON CONFI G, "/var/ private/ssl/
kaf ka.client.truststore.jks");

props. put (Ssl Confi gs. SSL_ TRUSTSTORE_PASSWORD CONFI G "test1234");

//configure the followi ng three settings for SSL Authentication

props. put (Ssl Confi gs. SSL_KEYSTORE LOCATI ON_ CONFI G "/var/private/ssl/
kaf ka. cl i ent. keystore.jks");

props. put (Ssl Confi gs. SSL_KEYSTORE PASSWORD CONFI G, "test1234");

props. put (Ssl Confi gs. SSL_KEY_PASSWORD CONFI G "test1234");

props. put (Consumner Confi g. GROUP_I D CONFI G " nmy-group");
props. put (Consuner Confi g. AUTO OFFSET_RESET_CONFI G "earliest");
props. put (Consuner Conf i g. VALUE_DESERI AL|I ZER_CLASS _CONFI G "org. apache.
kaf ka. conmon. seri al i zati on. Stri ngDeseri alizer");
props. put (Consuner Conf i g. KEY_DESERI ALI ZER_CLASS CONFI G, "or g. apache.
kaf ka. conmon. seri al i zati on. Stri ngDeseri alizer");
Kaf kaConsuner <byte[], byte[]> consunmer = new Kaf kaConsuner <>(props);
Test Consuner Rebal anceli st ener rebal anceLi stener = new
Test Consuner Rebal anceli st ener () ;
consumer . subscri be(Col | ections. singl etonList("test-topic"),
rebal anceli st ener);

while (true) {
Consumer Recor ds<byte[], byte[]> records = consuner. pol | (1000);
for (ConsunerRecord<byte[], byte[]> record : records) {
System out . printf("Recei ved Message topic =%, partition =%,
of fset = %, key = %, value = %\n", record.topic(), record.partition(),
record. offset(), record. key(), record.value());

}

consuner . commi t Sync() ;

37

hdp-kafka-component-guide August 29, 2016

}

private static class TestConsunerRebal ancelLi stener inplenents
Consuner Rebal ancelLi st ener {
@verride
public void onPartiti onsRevoked(Col | ecti on<Topi cPartition> partitions)

{
Systemout.printin("Called onPartiti onsRevoked with partitions:" +
partitions);
}
@verride
public void onPartitionsAssi gned(Col | ecti on<TopicPartition> partitions)
{

Systemout.println("Called onPartitionsAssigned with partitions:" +
partitions);

}
}
}

To run the consumer example, use the following command:

$ java com hortonwor ks. exanpl e. kaf ka. producer . Basi cPr oducer Exanpl e

38

	Hortonworks Data Platform
	Table of Contents
	1. Building a High-Throughput Messaging System with Apache Kafka
	2. What's New
	2.1. Apache Kafka
	2.2. Content Updates

	3. Apache Kafka Concepts
	4. Installing Kafka
	4.1. Prerequisites
	4.2. Installing Kafka Using Ambari

	5. Configuring Kafka for a Production Environment
	5.1. Preparing the Environment
	5.1.1. Operating System Settings
	5.1.2. File System Selection
	5.1.3. Disk Drive Considerations
	5.1.4. Java Version
	5.1.5. Ethernet Bandwidth

	5.2. Customizing Kafka Settings on an Ambari-Managed Cluster
	5.3. Kafka Broker Settings
	5.3.1. Connection Settings
	5.3.2. Topic Settings
	5.3.3. Log Settings
	5.3.4. Compaction Settings
	5.3.5. General Broker Settings

	5.4. Kafka Producer Settings
	5.4.1. Important Producer Settings

	5.5. Kafka Consumer Settings
	5.6. Configuring ZooKeeper for Use with Kafka
	5.7. Enabling Audit to HDFS for a Secure Cluster

	6. Mirroring Data Between Clusters: Using the MirrorMaker Tool
	6.1. Running MirrorMaker
	6.2. Checking Mirroring Progress
	6.3. Avoiding Data Loss
	6.4. Running MirrorMaker on Kerberos-Enabled Clusters

	7. Creating a Kafka Topic
	8. Developing Kafka Producers and Consumers

