
Hortonworks Data Platform

 (August 29, 2016)

Data Governance

docs.cloudera.com

http://docs.cloudera.com

hdp-data-governance August 29, 2016

ii

Hortonworks Data Platform: Data Governance
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

hdp-data-governance August 29, 2016

iii

Table of Contents
1. HDP Data Governance ... 1

1.1. Apache Atlas Features .. 1
1.2. Atlas Architecture ... 3

1.2.1. Core ... 3
1.2.2. Integration ... 4
1.2.3. Metadata Sources .. 4

1.3. Atlas-Ranger Integration ... 4
2. Installing and Configuring Apache Atlas ... 7

2.1. Installing and Configuring Apache Atlas Using Ambari 7
2.1.1. Apache Atlas Prerequisites ... 7
2.1.2. Authentication Settings .. 7
2.1.3. Authorization Settings .. 12

2.2. Configuring Atlas Tagsync in Ranger ... 14
2.3. Configuring Atlas High Availability .. 14
2.4. Configuring Atlas Security ... 14

2.4.1. Additional Requirements for Atlas with Ranger and Kerberos 14
2.4.2. Enabling Atlas HTTPS .. 15
2.4.3. Hive CLI Security ... 15

2.5. Installing Sample Atlas Metadata .. 16
2.6. Updating the Atlas Ambari Configuration ... 16
2.7. Using Distributed HBase as the Atlas Metastore .. 16

3. Searching and Viewing Assets .. 19
3.1. Using Text and DSL Search .. 19
3.2. Viewing Asset Data Lineage .. 21
3.3. Viewing Asset Details .. 23

4. Working with Atlas Tags .. 29
4.1. Creating Atlas Tags ... 29
4.2. Associating Tags with Assets ... 30
4.3. Searching for Assets Associated with Tags ... 33

5. Managing the Atlas Business Taxonomy (Technical Preview) 35
5.1. Enabling the Atlas Taxonomy Technical Preview .. 35
5.2. Creating Taxonomy Terms ... 39
5.3. Associating Taxonomy Terms with Assets .. 47
5.4. Navigating the Atlas Taxonomy .. 50

5.4.1. Navigation Arrows ... 50
5.4.2. Breadcrumb Trail .. 51
5.4.3. Search Terms .. 52
5.4.4. Back Button ... 52

5.5. Searching for Assets Associated with Taxonomy Terms 53
6. Apache Atlas REST API Reference .. 55

6.1. Data Model ... 55
6.2. AdminResource ... 55
6.3. DataSetLineageResource ... 56
6.4. EntityService .. 57
6.5. LineageResource ... 61
6.6. MetadataDiscoveryResource .. 61
6.7. TaxonomyService ... 63
6.8. TypesResource ... 66

hdp-data-governance August 29, 2016

iv

List of Figures
1.1. Atlas Overview .. 2

hdp-data-governance August 29, 2016

v

List of Tables
2.1. Apache Atlas File-based Configuration Settings ... 9
2.2. Apache Atlas LDAP Configuration Settings .. 10
2.3. Apache Atlas AD Configuration Settings ... 11
2.4. Apache Atlas Simple Authorization ... 12

hdp-data-governance August 29, 2016

1

1. HDP Data Governance
Apache Atlas provides governance capabilities for Hadoop that use both prescriptive and
forensic models enriched by business taxonomical metadata. Atlas is designed to exchange
metadata with other tools and processes within and outside of the Hadoop stack, thereby
enabling platform-agnostic governance controls that effectively address compliance
requirements.

Apache Atlas enables enterprises to effectively and efficiently address their compliance
requirements through a scalable set of core governance services. These services include:

• Search and Proscriptive Lineage – facilitates pre-defined and ad hoc exploration of data
and metadata, while maintaining a history of data sources and how specific data was
generated.

• Metadata-driven data access control.

• Flexible modeling of both business and operational data.

• Data Classification – helps you to understand the nature of the data within Hadoop and
classify it based on external and internal sources.

• Metadata interchange with other metadata tools.

1.1. Apache Atlas Features
Apache Atlas is a low-level service in the Hadoop stack that provides core metadata
services. Atlas currently provides metadata services for the following components:

• Hive

• Ranger

• Sqoop

• Storm/Kafka (limited support)

• Falcon (limited support)

Apache Atlas provides the following features:

• Knowledge store that leverages existing Hadoop metastores: Categorized into
a business-oriented taxonomy of data sets, objects, tables, and columns. Supports
the exchange of metadata between HDP foundation components and third-party
applications or governance tools.

• Data lifecycle management: Leverages existing investment in Apache Falcon with a
focus on provenance, multi-cluster replication, data set retention and eviction, late data
handling, and automation.

• Audit store: Historical repository for all governance events, including security events
(access, grant, deny), operational events related to data provenance and metrics. The
Atlas audit store is indexed and searchable for access to governance events.

hdp-data-governance August 29, 2016

2

• Security: Integration with HDP security that enables you to establish global security
policies based on data classifications and that leverages Apache Ranger plug-in
architecture for security policy enforcement.

• Policy engine: Fully extensible policy engine that supports metadata-based, geo-based,
and time-based rules that rationalize at runtime.

• RESTful interface: Supports extensibility by way of REST APIs to third-party applications
so you can use your existing tools to view and manipulate metadata in the HDP
foundation components.

Figure 1.1. Atlas Overview

hdp-data-governance August 29, 2016

3

1.2. Atlas Architecture

1.2.1. Core

This category contains the components that implement the core of Atlas functionality,
including:

Type System: Atlas allows you to define a model for metadata objects. The model is
composed of "types" definitions. "Entities" are instances of Types that represent the actual
metadata objects. The Type system allows you to define and manage types and entities. All
metadata objects managed by Atlas out-of-the-box (such as Hive tables) are modelled using
types and represented as entities.

One key point to note is that the generic nature of the modelling in Atlas allows data
stewards and integrators to define both technical metadata and business metadata. It
is also possible to use Atlas to define rich relationships between technical and business
metadata.

Ingest / Export: The Ingest component allows metadata to be added to Atlas. Similarly,
the Export component exposes metadata changes detected by Atlas to be raised as events.
Consumers can use these change events to react to metadata changes in real time.

Graph Engine: Internally, Atlas represents metadata objects using a Graph model. This
facilitates flexibility and rich relationships between metadata objects. The Graph Engine
is a component that is responsible for translating between types and entities of the Type
System, as well as the underlying Graph model. In addition to managing the Graph objects,
The Graph Engine also creates the appropriate indices for the metadata objects to facilitate
efficient searches.

Titan: Currently, Atlas uses the Titan Graph Database to store the metadata objects. Titan
is used as a library within Atlas. Titan uses two stores. The Metadata store is configured
to use HBase by default, and the Index store is configured to use Solr. It is also possible to
use BerkeleyDB as the Metadata store, and ElasticSearch as the Index store, by building
with those corresponding profiles. The Metadata store is used for storing the metadata

hdp-data-governance August 29, 2016

4

objects, and the Index store is used for storing indices of the Metadata properties to enable
efficient search.

1.2.2. Integration

You can manage metadata in Atlas using the following methods:

API: All functionality of Atlas is exposed to end users via a REST API that allows types and
entities to be created, updated, and deleted. It is also the primary mechanism to query and
discover the types and entities managed by Atlas.

Atlas Admin UI: This component is a web-based application that allows data stewards
and scientists to discover and annotate metadata. Of primary importance here is a search
interface and SQL-like query language that can be used to query the metadata types and
objects managed by Atlas. The Admin UI is built using the Atlas REST API.

Messaging: In addition to the API, you can integrate with Atlas using a messaging interface
that is based on Kafka. This is useful both for communicating metadata objects to Atlas,
and also to transmit metadata change events from Atlas to applications. The messaging
interface is particularly useful if you would like to use a more loosely coupled integration
with Atlas that could allow for better scalability and reliability. Atlas uses Apache Kafka as
a notification server for communication between hooks and downstream consumers of
metadata notification events. Events are written by the hooks and Atlas to different Kafka
topics.

1.2.3. Metadata Sources

Currently, Atlas supports ingesting and managing metadata from the following sources:

• Hive

• Sqoop

• Storm/Kafka (limited support)

• Falcon (limited support)

As a result of his integration:

• There are metadata models that Atlas defines natively to represent objects of these
components.

• Atlas provides mechanisms to ingest metadata objects from these components (in real
time, or in batch mode in some cases).

1.3. Atlas-Ranger Integration
Atlas provides data governance capabilities and serves as a common metadata store that
is designed to exchange metadata both within and outside of the Hadoop stack. Ranger
provides a centralized user interface that can be used to define, administer and manage
security policies consistently across all the components of the Hadoop stack. The Atlas-

hdp-data-governance August 29, 2016

5

Ranger unites the data classification and metadata store capabilities of Atlas with security
enforcement in Ranger.

You can use Atlas and Ranger to implement dynamic classification-based security policies,
in addition to role-based security policies. Ranger’s centralized platform empowers data
administrators to define security policy based on Atlas metadata tags or attributes and
apply this policy in real-time to the entire hierarchy of assets including databases, tables,
and columns, thereby preventing security violations.

Ranger-Atlas Access Policies

• Classification-based access controls: A data asset such as a table or column can be
marked with the metadata tag related to compliance or business taxonomy (such as
“PCI”). This tag is then used to assign permissions to a user or group. This represents an
evolution from role-based entitlements, which require discrete and static one-to-one
mapping between user/group and resources such as tables or files. As an example, a data
steward can create a classification tag “PII” (Personally Identifiable Information) and
assign certain Hive table or columns to the tag “PII”. By doing this, the data steward is
denoting that any data stored in the column or the table has to be treated as “PII”. The
data steward now has the ability to build a security policy in Ranger for this classification
and allow certain groups or users to access the data associated with this classification,
while denying access to other groups or users. Users accessing any data classified as “PII”
by Atlas would be automatically enforced by the Ranger policy already defined.

• Data Expiry-based access policy: For certain business use cases, data can be toxic and
have an expiration date for business usage. This use case can be achieved with Atlas
and Ranger. Apache Atlas can assign expiration dates to a data tag. Ranger inherits the
expiration date and automatically denies access to the tagged data after the expiration
date.

• Location-specific access policies: Similar to time-based access policies, administrators
can now customize entitlements based on geography. For example, a US-based user
might be granted access to data while she is in a domestic office, but not while she is in
Europe. Although the same user may be trying to access the same data, the different
geographical context would apply, triggering a different set of privacy rules to be
evaluated.

• Prohibition against dataset combinations: With Atlas-Ranger integration, it is now
possible to define a security policy that restricts combining two data sets. For example,
consider a scenario in which one column consists of customer account numbers, and
another column contains customer names. These columns may be in compliance
individually, but pose a violation if combined as part of a query. Administrators can now
apply a metadata tag to both data sets to prevent them from being combined.

Cross Component Lineage

Apache Atlas now provides the ability to visualize cross-component lineage, delivering
a complete view of data movement across a number of analytic engines such as Apache
Storm, Kafka, Falcon, and Hive.

This functionality offers important benefits to data stewards and auditors. For example,
data that starts as event data through a Kafka bolt or Storm Topology is also analyzed
as an aggregated dataset through Hive, and then combined with reference data from a

hdp-data-governance August 29, 2016

6

RDBMS via Sqoop, can be governed by Atlas at every stage of its lifecycle. Data stewards,
Operations, and Compliance now have the ability to visualize a data set’s lineage, and then
drill down into operational, security, and provenance-related details. As this tracking is
done at the platform level, any application that uses these engines will be natively tracked.
This allows for extended visibility beyond a single application view.

hdp-data-governance August 29, 2016

7

2. Installing and Configuring Apache
Atlas

2.1. Installing and Configuring Apache Atlas Using
Ambari

To install Apache Atlas using Ambari, follow the procedure in Adding a Service to your
Hadoop cluster in the Ambari User's Guide. On the Choose Services page, select the Atlas
service. When you reach the Customize Services step in the Add Service wizard, set the
following Atlas properties, then complete the remaining steps in the Add Service wizard.
The Atlas user name and password are set to admin/admin by default.

2.1.1. Apache Atlas Prerequisites

Apache Atlas requires the following components:

• Ambari Infra (which includes an internal HDP Solr Cloud instance) or an externally
managed Solr Cloud instance.

• HBase (used as the Atlas Metastore).

• Kafka (provides a durable messaging bus).

Important

Ambari version 2.4.2, HDP-2.5.x and Atlas version 0.7x are the minimum
supported versions

• Using Ambari-2.4.x to add or update any version of Atlas prior to 0.7.x
(Atlas 0.7.x is included with HDP-2.5) is not supported.

• Installation and usage of any version of Atlas prior to 0.7.x on any version
of HDP prior to HDP-2.5 is not supported.

• Versions of Atlas prior to Atlas 0.7.x (which is included in HDP-2.5) are not
intended for production use. We strongly recommend those intending
to use Atlas in production use Atlas versions 0.7.x (which is included in
HDP-2.5.x) after upgrading their HDP stack to HDP-2.5.

2.1.2. Authentication Settings

You can set the Authentication Type to None, LDAP, or AD. If authentication is set to
None, file-based authentication is used.

https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/adding_a_service_to_your_hadoop_cluster.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/adding_a_service_to_your_hadoop_cluster.html

hdp-data-governance August 29, 2016

8

2.1.2.1. File-based Authentication

Select None to default to file-based authentication.

hdp-data-governance August 29, 2016

9

When file-based authentication is selected, the following properties are automatically set
under Advanced application-properties on the Advanced tab.

Table 2.1. Apache Atlas File-based Configuration Settings

Property Value

atlas.authentication.method.file true

atlas.authentication.method.file.filename {{conf_dir}}/users-credentials.properties

hdp-data-governance August 29, 2016

10

The users-credentials.properties file should have the following format:

username=group::sha256password
admin=ADMIN::e7cf3ef4f17c3999a94f2c6f612e8a888e5b1026878e4e19398b23bd38ec221a

The user group can be ADMIN, DATA_STEWARD, or DATA_SCIENTIST.

The password is encoded with the sha256 encoding method and can be generated using
the UNIX tool:

echo -n "Password" | sha256sum
e7cf3ef4f17c3999a94f2c6f612e8a888e5b1026878e4e19398b23bd38ec221a -

2.1.2.2. LDAP Authentication

To enable LDAP authentication, select LDAP, then set the following configuration
properties.

Table 2.2. Apache Atlas LDAP Configuration Settings

Property Sample Values

atlas.authentication.method.ldap.url ldap://127.0.0.1:389

atlas.authentication.method.ldap.userDNpattern uid={0],ou=users,dc=example,dc=com

hdp-data-governance August 29, 2016

11

Property Sample Values

atlas.authentication.method.ldap.groupSearchBase dc=example,dc=com

atlas.authentication.method.ldap.groupSearchFilter (member=cn={0},ou=users,dc=example,dc=com

atlas.authentication.method.ldap.groupRoleAttribute cn

atlas.authentication.method.ldap.base.dn dc=example,dc=com

atlas.authentication.method.ldap.bind.dn cn=Manager,dc=example,dc=com

atlas.authentication.method.ldap.bind.password PassW0rd

atlas.authentication.method.ldap.referral ignore

atlas.authentication.method.ldap.user.searchfilter (uid={0})

atlas.authentication.method.ldap.default.role ROLE_USER

2.1.2.3. AD Authentication

To enable AD authentication, select AD, then set the following configuration properties.

Table 2.3. Apache Atlas AD Configuration Settings

Property Sample Values

atlas.authentication.method.ldap.ad.url ldap://127.0.0.1:389

Domain Name (Only for AD) example.com

atlas.authentication.method.ldap.ad.base.dn DC=example,DC=com

hdp-data-governance August 29, 2016

12

Property Sample Values

atlas.authentication.method.ldap.ad.bind.dn CN=Administrator,CN=Users,DC=example,DC=com

atlas.authentication.method.ldap.ad.bind.password PassW0rd

atlas.authentication.method.ldap.ad.referral ignore

atlas.authentication.method.ldap.ad.user.searchfilter (sAMAccountName={0})

atlas.authentication.method.ldap.ad.default.role ROLE_USER

2.1.3. Authorization Settings

Two authorization methods are available for Atlas: Simple and Ranger.

2.1.3.1. Simple Authorization

The default setting is Simple, and the following properties are automatically set under
Advanced application-properties on the Advanced tab.

Table 2.4. Apache Atlas Simple Authorization

Property Value

atlas.authorizer.impl simple

atlas.auth.policy.file {{conf_dir}}/policy-store.txt

hdp-data-governance August 29, 2016

13

The policy-store.txt file has the following format:

Policy_Name;;User_Name:Operations_Allowed;;Group_Name:Operations_Allowed;;Resource_Type:Resource_Name

For example:

adminPolicy;;admin:rwud;;ROLE_ADMIN:rwud;;type:*,entity:*,operation:*,
taxonomy:*,term:*
userReadPolicy;;readUser1:r,readUser2:r;;DATA_SCIENTIST:r;;type:*,entity:*,
operation:*,taxonomy:*,term:*
userWritePolicy;;writeUser1:rwu,writeUser2:rwu;;BUSINESS_GROUP:rwu,
DATA_STEWARD:rwud;;type:*,entity:*,operation:*,taxonomy:*,term:*

In this example readUser1, readUser2, writeUser1 and writeUser2 are the
user IDs, each with its corresponding access rights. The User_Name, Group_Name and
Operations_Allowed are comma-separated lists.

Authorizer Resource Types:

• Operation

• Type

• Entity

• Taxonomy

hdp-data-governance August 29, 2016

14

• Term

• Unknown

Operations_Allowed are r = read, w = write, u = update, d = delete

2.1.3.2. Ranger Authorization

Ranger Authorization is activated by enabling the Ranger Atlas plug-in in Ambari.

2.2. Configuring Atlas Tagsync in Ranger
Note

Before configuring Atlas Tagsync in Ranger, you must enable Ranger
Authorization in Atlas by enabling the Ranger Atlas plug-in in Ambari.

For information about configuring Atlas Tagsync in Ranger, see Configure Ranger Tagsync.

2.3. Configuring Atlas High Availability
For information about configuring High Availability (HA) for Apache Atlas, see Apache
Atlas High Availability.

2.4. Configuring Atlas Security

2.4.1. Additional Requirements for Atlas with Ranger and
Kerberos

Currently additional configuration steps are required for Atlas with Ranger and in
Kerberized environments.

2.4.1.1. Additional Requirements for Atlas with Ranger

When Atlas is used with Ranger, perform the following additional configuration steps:

• Create the following HBase policy:

• table: atlas_titan, ATLAS_ENTITY_AUDIT_EVENTS

user: atlas

permission: Read, Write, Create, Admin

• Create following Kafka policies:

• topic=ATLAS_HOOK

permission=publish, create; group=public

permission=consume, create; user=atlas (for non-kerberized environments, set
group=public)

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/atlas_plugin.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/atlas_plugin.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/ranger_tag_sync_settings.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/apache_atlas_high_availability.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.4.2.0/bk_ambari-user-guide/content/apache_atlas_high_availability.html

hdp-data-governance August 29, 2016

15

• topic=ATLAS_ENTITIES

permission=publish, create; user=atlas (for non-kerberized environments, set
group=public)

permission=consume, create; group=public

2.4.1.2. Additional Requirements for Atlas with Kerberos without
Ranger

When Atlas is used in a Kerberized environment without Ranger, perform the following
additional configuration steps:

• Start the HBase shell with the user identity of the HBase admin user ('hbase')

• Execute the following command in HBase shell, to enable Atlas to create necessary HBase
tables:

• grant 'atlas', 'RWXCA'

• Start (or restart) Atlas, so that Atlas would create above HBase tables

• Execute the following command in HBase shell, to revoke global permissions granted to
'atlas' user:

• revoke 'atlas'

• Execute the following commands in HBase shell, to enable Atlas to access necessary
HBase tables:

• grant 'atlas', 'RWXCA', 'atlas_titan'

• grant 'atlas', 'RWXCA', 'ATLAS_ENTITY_AUDIT_EVENTS'

• Kafka – To grant permissions to a Kafka topic, run the following commands as the Kafka
user:

/usr/hdp/current/kafka-broker/bin/kafka-acls.sh --topic ATLAS_HOOK --allow-
principals * --operations All --authorizer-properties "zookeeper.connect=
hostname:2181"
/usr/hdp/current/kafka-broker/bin/kafka-acls.sh --topic ATLAS_ENTITIES --
allow-principals * --operations All --authorizer-properties "zookeeper.
connect=hostname:2181"

2.4.2. Enabling Atlas HTTPS

For information about enabling HTTPS for Apache Atlas, see Enable SSL for Apache Atlas.

2.4.3. Hive CLI Security

If you have Oozie, Storm, or Sqoop Atlas hooks enabled, the Hive CLI can be used with
these components. You should be aware that the Hive CLI may not be secure without
taking additional measures.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_security/content/enable_ssl_for_atlas.html

hdp-data-governance August 29, 2016

16

2.5. Installing Sample Atlas Metadata
You can use the quick_start.py Python script to install sample metadata to view in the
Atlas web UI. Use the following steps to install the sample metadata:

1. Log in to the Atlas host server using a command prompt.

2. Run the following command as the Atlas user:

su atlas -c '/usr/hdp/current/atlas-server/bin/quick_start.py'

When prompted, type in the Atlas user name and password. When the script finishes
running, the following confirmation message appears:

Example data added to Apache Atlas Server!!!

If Kerberos is enabled, kinit is required to execute the quick_start.py script.

After you have installed the sample metadata, you can explore the Atlas web UI.

Note

If you are using the HDP Sandbox, you do not need to run the Python script to
populate Atlas with sample metadata.

2.6. Updating the Atlas Ambari Configuration
When you update the Atlas configuration settings in Ambari, Ambari marks the services
that require restart, and you can select Actions > Restart All Required to restart all services
that require a restart.

Important

Apache Oozie requires a restart after an Atlas configuration update, but may
not be included in the services marked as requiring restart in Ambari. Select
Oozie > Service Actions > Restart All to restart Oozie along with the other
services.

2.7. Using Distributed HBase as the Atlas
Metastore

Apache HBase can be configured to run in stand-alone and distributed mode. The Atlas
Ambari installer uses the stand-alone Ambari HBase instance as the Atlas Metastore by
default. The default stand-alone HBase configuration should work well for POC (Proof
of Concept) deployments, but you should consider using distributed HBase as the Atlas
Metastore for production deployments. Distributed HBase also requires a ZooKeeper
quorum.

Use the following steps to configure Atlas for distributed HBase.

http://hbase.apache.org/0.94/book/standalone_dist.html
http://hbase.apache.org/0.94/book/zookeeper.html
http://hbase.apache.org/0.94/book/zookeeper.html

hdp-data-governance August 29, 2016

17

Note

This procedure does not represent a migration of the Graph Database, so any
existing lineage reports will be lost.

1. On the Ambari dashboard, select Atlas > Configs > Advanced, then select Advanced
application-properties.

2. Set the value of the atlas.graph.storage.hostname property to the value of the
distributed HBase ZooKeeper quorum. This value is a comma-separated list of the servers
in the distributed HBase ZooKeeper quorum:

host1.mydomain.com,host2.mydomain.com,host3.mydomain.com

http://hbase.apache.org/0.94/book/zookeeper.html

hdp-data-governance August 29, 2016

18

3. Click Save to save your changes, then restart Atlas and all other services that require a
restart. As noted previously, Oozie requires a restart after an Atlas configuration change
(even if it is not marked as requiring a restart).

4. If HBase is running in secure mode, select HBase > Configs > Advanced on
the Ambari dashboard, then select Advanced hbase-site. Set the value of the
zookeeper.znode.parent property to /hbase-secure (if HBase is not running in
secure mode, you can leave this property set to the default /hbase-unsecure value).

5. Click Save to save your changes, then restart HBase and all other services that require a
restart.

hdp-data-governance August 29, 2016

19

3. Searching and Viewing Assets

3.1. Using Text and DSL Search
You can search for assets using two search modes: Text or DSL. Text is a full-text search,
and DSL enables you to search using Apache Atlas DSL. Atlas DSL (Domain-Specific
Language) is a SQL-like query language that enables you to search metadata using complex
queries.

1. To search for assets, click SEARCH on the Atlas web UI, select Text, type in a search
string, then click Search to display a list of the assets associated with that tag. In the
example below, we searched for the text string "table".

You can also select the DSL search option and use the Search box to select a pre-
configured DSL query. You can use the Optional Conditions box to enter additional DSL
query parameters. In the example below, we selected the Table DSL query:

http://atlas.incubator.apache.org/Search.html

hdp-data-governance August 29, 2016

20

2. To view detailed information about an asset, click the asset in the search results list. In
the example below, we selected the "sales_fact" table from the list of search results.

hdp-data-governance August 29, 2016

21

3.2. Viewing Asset Data Lineage
1. Data lineage is displayed when you select an asset. In the following example, we ran a

DSL search for Table, and then selected the "sales_fact" asset. Data lineage is displayed
graphically, with each icon representing an action. You can use the + and - buttons to
zoom in and out, and you can also click and drag to move the image.

hdp-data-governance August 29, 2016

22

2. Moving the cursor over an icon displays a pop-up with more information about the
action that was performed. In the following example, we can see that a query was used
to create the "loadSalesDaily" table from the "sales_fact" table.

hdp-data-governance August 29, 2016

23

3.3. Viewing Asset Details
When you select an asset, detailed information about the asset is displayed under DETAILS.

• The Properties tab displays all of the asset properties.

hdp-data-governance August 29, 2016

24

• Click the Tags tab to display the tags associated with the asset. In this case, the "fact" tag
has been associated with the "sales_fact" table.

hdp-data-governance August 29, 2016

25

• If the Atlas Taxonomy has been enabled, the Terms tab lists the taxonomy terms that
have been associated with the asset. The Terms tab is not displayed if the Taxonomy has
not been enabled.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.5.0/bk_data-governance/content/atlas_enabling_taxonomy_technical_preview.html

hdp-data-governance August 29, 2016

26

• The Audits tab provides a complete audit trail of all events in the asset's history (assets
are also sometimes referred to as entities). You can use the Detail button next to each
action to view more details about the event.

hdp-data-governance August 29, 2016

27

• The Schema tab shows schema information, in this case the columns for the table. We
can also see that a PII tag has been associated with the "customer_id" column.

hdp-data-governance August 29, 2016

28

hdp-data-governance August 29, 2016

29

4. Working with Atlas Tags

4.1. Creating Atlas Tags
1. On the Atlas web UI, click TAGS, then click Create Tag.

2. On the Create a New Tag pop-up, type in a name and an optional description for the
tag. You can also use the Select tags to inherit attributes box to inherit attributes from
other tags. Click Create to create the new Tag.

hdp-data-governance August 29, 2016

30

3. The new tag appears in the Tags list.

4.2. Associating Tags with Assets
1. Select an asset. In the example below, we searched for all Table assets, and then

selected the "sales_fact" table from the list of search results. To associate a tag with an
asset, click the + icon next to the Tags: label.

hdp-data-governance August 29, 2016

31

2. On the Add Tag pop-up, click Select Tag, then select the tag you would like to associate
with the asset. You can filter the list of tags by typing text in the Select Tag box.

3. After you select a tag, the Add Tag pop-up is redisplayed with the selected tag. Click
Save to associate the tag with the asset.

hdp-data-governance August 29, 2016

32

4. The new tag is displayed next to the Tags: label on the asset page.

5. You can view details about a tag by clicking the tag name on the tag label.

hdp-data-governance August 29, 2016

33

To remove a tag from an asset, click the x symbol on the tag label, then click Remove on
the confirmation pop-up. This removes the tag association with the asset, but does not
delete the tag itself.

4.3. Searching for Assets Associated with Tags
1. To display a list of all of the assets associated with a tag, click the tag name in the Atlas

Tags list.

2. To filter the Tags list based on a text string, type the text in the Search Tags box. The list
is filtered dynamically as you type to display the tags that contain that text string. You
can then click a tag in the filtered list to display the assets associated with that tag.

hdp-data-governance August 29, 2016

34

3. You can also search for assets associated with a tag by clicking the ellipsis symbol for the
tag and selecting Search Tag. This launches a DSL search query that returns a list of all
assets associated with the tag.

hdp-data-governance August 29, 2016

35

5. Managing the Atlas Business
Taxonomy (Technical Preview)

The taxonomy feature in Apache Atlas enables you to define a hierarchical set of business
terms that represents your business domain. You can then associate these taxonomy terms
with the metadata entities that Atlas manages. This hierarchical business catalog makes it
easier to organize and discover data stored in Hadoop.

Note

The Apache Atlas Taxonomy feature is a Technical Preview and is considered
under development. Do not use this feature in your production systems. If you
have questions regarding this feature, contact Support by logging a case on our
Hortonworks Support Portal at https://support.hortonworks.com.

5.1. Enabling the Atlas Taxonomy Technical
Preview

Because the Atlas Taxonomy feature is a Technical Preview, it is not enabled by default
and does not appear on the Atlas web UI. Use the following steps to enable the Atlas
Taxonomy feature.

1. Select Atlas > Configs > Advanced > Custom application-properties, then click Add
Property.

https://support.hortonworks.com

hdp-data-governance August 29, 2016

36

2. On the Add Property pop-up, add the following properties:

• Key – atlas.feature.taxonomy.enable

• Value – true

Click Add to add the new property.

3. The Advanced tab is redisplayed with the new property. Click Save to save the new
configuration.

hdp-data-governance August 29, 2016

37

4. A Save Configuration pop-up appears. Type in a note describing the changes you just
made, then click Save.

5. If a Consistency Check Failed pop-up appears, click Proceed Anyway.

hdp-data-governance August 29, 2016

38

6. Click OK on the Save Configuration Changes pop-up.

7. Select Restart > Restart All Affected to restart the Atlas service and load the new
configuration.

8. Click Confirm Restart All on the confirmation pop-up to confirm the Atlas restart.

hdp-data-governance August 29, 2016

39

9. After Atlas restarts, the Taxonomy feature is enabled. Other components may
also require a restart. To access the Atlas web UI, select Atlas > Quick Links > Atlas
Dashboard.

5.2. Creating Taxonomy Terms
1. On the Atlas web UI, click Taxonomy. To create a new sub-term, click the ellipsis symbol

at the top level of the Taxonomy, then click Create Subterm.

hdp-data-governance August 29, 2016

40

2. On the Create Sub-term pop-up, type in a name and an optional description for the sub-
term, then click Create.

hdp-data-governance August 29, 2016

41

3. The new sub-term appears in the Taxonomy below the top level.

hdp-data-governance August 29, 2016

42

4. To create a new sub-term another level down in the taxonomy hierarchy, select the sub-
term, click the ellipsis symbol, then click Create Subterm.

hdp-data-governance August 29, 2016

43

5. On the Create Sub-term pop-up, type in a name and an optional description for the new
second-level sub-term, then click Create.

hdp-data-governance August 29, 2016

44

6. The new second-level sub-term appears in the Taxonomy.

hdp-data-governance August 29, 2016

45

7. You can repeat this process to create multiple taxonomy levels. Only two levels at a time
are displayed in the navigation bar, but you can use the breadcrumb trail at the top
of the page to navigate the taxonomy hierarchy, and you can use the Back button to
return to the previously selected level. You can also use the Search Term box to search
for taxonomy terms.

hdp-data-governance August 29, 2016

46

8. To delete a taxonomy term, click the ellipsis symbol for the term, then select Delete
Term. When you delete a term it is also removed from all assets that are currently
associated with the term.

hdp-data-governance August 29, 2016

47

5.3. Associating Taxonomy Terms with Assets
1. Select an asset. In the example below, we searched for all hive_table assets, and

then selected the "customer_details" table from the list of search results. To associate a
taxonomy term with an asset, click the + icon next to the Terms: label.

2. On the Assign Term pop-up, browse to select a taxonomy term. Here we have selected
the term "Customers".

hdp-data-governance August 29, 2016

48

You can also filter the list of tags by typing text in the Search Term box, and then click to
select a term.

Note

In the Search Term list (and elsewhere in the UI), a period symbol is
used as a separator to indicate taxonomy hierarchy levels. For example,

hdp-data-governance August 29, 2016

49

Catalog.Sales.Customers represents the Catalog > Sales > Customers
taxonomy level.

3. After you select a term, click Assign. The new term is displayed next to the Terms: label
on the asset page.

4. You can view details about a taxonomy term by clicking the term name on the term
label.

To remove a term from an asset, click the x symbol on the term label, then click Remove
on the confirmation pop-up. This removes the term association with the asset, but does
not delete the term itself.

hdp-data-governance August 29, 2016

50

5.4. Navigating the Atlas Taxonomy
Only two levels at a time are displayed in the Taxonomy list, but you can use the following
methods to navigate the Atlas Taxonomy.

5.4.1. Navigation Arrows
To display the child terms that belong to a taxonomy term, click the right-arrow symbol
next to the term. For example, if we click the arrow for the Sales term in the following
Taxonomy list:

hdp-data-governance August 29, 2016

51

The child terms for Sales (Customers and Data) are displayed:

To hide the child terms, click the down-arrow next to the Sales term.

5.4.2. Breadcrumb Trail
As you navigate through the taxonomy, a breadcrumb trail at the top of the page tracks
your position in the taxonomy hierarchy. You can use the links in the breadcrumb trail to
navigate back to a higher level.

hdp-data-governance August 29, 2016

52

5.4.3. Search Terms

To filter the Taxonomy terms list based on a text string, type the text in the Search Term
box. The list is filtered dynamically as you type to display the terms that contain that text
string. You can then select a term from the filtered list.

Note

In the Search Term list (and elsewhere in the UI), a period symbol is
used as a separator to indicate taxonomy hierarchy levels. For example,
Catalog.Sales.Customers represents the Catalog > Sales > Customers taxonomy
level.

5.4.4. Back Button

You can also use the Back button on the Atlas web UI (or your browser's Back button) to
return to the previous taxonomy page.

hdp-data-governance August 29, 2016

53

5.5. Searching for Assets Associated with
Taxonomy Terms

1. To search for assets associated with a taxonomy term, select the term, click the ellipsis
symbol, and then select Search Assets.

2. This launches a DSL search query that returns a list of all assets associated with the term.

hdp-data-governance August 29, 2016

54

hdp-data-governance August 29, 2016

55

6. Apache Atlas REST API Reference
This API supports a Representational State Transfer (REST) model for accessing a set of
resources through a fixed set of operations. The following resources are accessible through
the RESTful model:

• AdminResource [55]

• DataSetLineageResource [56]

• EntityService [57]

• LineageResource [61]

• MetadataDiscoveryResource [61]

• TaxonomyService [63]

• TypesResource [66]

6.1. Data Model
All endpoints act on a common set of data. The data can be represented with difference
media (i.e. "MIME") types, depending on the endpoint that consumes and/or produces the
data. The data can be described by an XML Schema, which definitively describes the XML
representation of the data, but is also useful for describing the other formats of the data,
such as JSON.

This document describes the data using terms based on an XML Schema. Data can be
grouped by namespace with a schema document describing the elements and types of the
namespace. Types define the structure of the data and elements are instances of a type.
For example, elements are usually produced by (or consumed by) a REST endpoint, and the
structure of each element is described by its type.

6.2. AdminResource
Jersey Resource for administrative operations. The following resources are available:

• ???TITLE??? [55]

• ???TITLE??? [56]

• ???TITLE??? [56]

• ???TITLE??? [56]

/admin/session

GET

Response Body element: (custom)

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.w3.org/XML/Schema
http://json.org/

hdp-data-governance August 29, 2016

56

media types: application/json

/admin/stack

GET Fetches the thread stack dump for this application.

Response Body element: (custom)

media types: text/plain

JSON represents the thread stack dump.

/admin/status

GET

Response Body element: (custom)

media types: application/json

/admin/version

GET Fetches the version for this application.

Response Body element: (custom)

media types: application/json

JSON represents the version.

6.3. DataSetLineageResource
Jersey Resource for the Hive table lineage. The following resources are available:

• ???TITLE??? [56]

• ???TITLE??? [56]

• ???TITLE??? [57]

/lineage/hive/table/{tableName}/inputs/graph

GET Fetches the inputs graph for an entity.

Parameters name description type default

tableName The name of
the table.

path

Response Body element: (custom)

media types: application/json

/lineage/hive/table/{tableName}/outputs/graph

GET Fetches the outputs graph for an entity.

Parameters name description type default

hdp-data-governance August 29, 2016

57

tableName The name of
the table.

path

Response Body element: (custom)

media types: application/json

/lineage/hive/table/{tableName}/schema

GET Fetches the schema for the table.

Parameters name description type default

tableName The name of
the table.

path

Response Body element: (custom)

media types: application/json

6.4. EntityService
Entity management operations. An entity is an instance of a type. Entities conform to the
definition of the type that they they correspond to. The following resources are available:

• ???TITLE??? [57]

• ???TITLE??? [58]

• ???TITLE??? [59]

• ???TITLE??? [59]

• ???TITLE??? [60]

/entities

POST Submits the entity definitions (instances). The body
contains the JSONArray of entity json. The service takes
care of de-duping the entities based on any unique
attribute for the give type.

Response Body element: (custom)

media types: application/json

PUT Completely updates a set of entities. Unspecified values
are replaced with null and removed. Adds or updates the
entities specified by GUID or a unique attribute.

Response Body element: (custom)

media types: application/json

DELETE Deletes entities from the repository identified by their
GUIDs (including their composite references), or deletes
a single entity identified by its type and unique attribute
(including composite references).

Parameters name description type default

guid A list of
deletion

query

hdp-data-governance August 29, 2016

58

candidate
GUIDs.

type The entity
type.

query

property The unique
attribute
used to
identify the
entity.

query

value The unique
attribute
value used to
identify the
entity.

query

Response Body element: (custom)

media types: application/json

Response payload as json -- includes guids of entities
(including composite references from that entity) that
were deleted.

GET Fetches the list of entities for an entity type.

Parameters name description type default

type The name
of a unique
type.

query

Response Body element: (custom)

media types: application/json

/entities/{guid}

GET Fetches the complete definition of the entity identified by
the GUID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

Response Body element: (custom)

media types: application/json

POST Updates an entity identified by its GUID. Supports partial
update of an entity -- adds/updates any new values
specified. Does not support removal of attribute values.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

property The property
that must be
added.

query

Response Body element: (custom)

media types: application/json

hdp-data-governance August 29, 2016

59

Response payload as JSON.

/entities/{guid}/audit

GET Returns the entity audit events for a given entity GUID.
The events are returned in decreasing order based on
timestamp.

Parameters name description type default

guid The globally
unique
identifier of
the entity.

path

startKey Used for
pagination.
Startkey is
inclusive;
the returned
results
contain the
event with
the given
startkey. The
first time
getAuditEvents()
is called for
an entity,
startKey
should be
null, with
count =
(number
of events
required
+ 1). The
next time
getAuditEvents()
is called
for the
same entity,
startKey
should be
equal to the
entityKey
of the
last event
returned in
the previous
call.

query

count The number
of events
required

query 100

Response Body element: (custom)

media types: application/json

A list of trait names for the entity that is identified by the
GUID.

/entities/{guid}/traits

GET Gets the list of trait names for the entity that is
represented by the GUID.

hdp-data-governance August 29, 2016

60

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

Response Body element: (custom)

media types: application/json

A list of trait names for the entity that is identified by the
GUID.

POST Submits a new trait to an existing entity that is
represented by the GUID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

Response Body element: (custom)

media types: application/json

/entities/{guid}/traits/{traitName}

DELETE Deletes a trait from the entity that is represented by the
GUID.

Parameters name description type default

GUID The globally
unique
identifier of
the entity.

path

traitName The name of
the trait.

path

Response Body element: (custom)

media types: application/json

/entities/qualifiedName

POST Adds or Updates a given entity identified by its unique
attribute (entityType, attributeName and value). Updates
support only partial update of an entity -- adds or updates
any new values specified. Updates do not support removal
of attribute values.

Parameters name description type default

type The entity
type.

query

property The unique
attribute
used to
identify the
entity

query

value The unique
attribute's
value.

query

hdp-data-governance August 29, 2016

61

Response Body element: (custom)

media types: application/json

Response payload as json – The body contains the
JSONArray of entity json. The service takes care of de-
duping the entities based on any unique attribute for the
give type.

6.5. LineageResource
The following resources are available:

• ???TITLE??? [61]

• ???TITLE??? [61]

• ???TITLE??? [61]

/lineage/{guid}/inputs/graph

GET Returns an inputs lineage graph for the specified entity ID.

Parameters name description type default

guid dataset
entity ID

path

Response Body element: (custom)

media types: application/json

/lineage/{guid}/outputs/graph

GET Returns an outputs lineage graph for the specified entity
ID.

Parameters name description type default

guid dataset
entity ID

path

Response Body element: (custom)

media types: application/json

/lineage/{guid}/schema

GET Returns the schema for the specified entity ID.

Parameters name description type default

guid dataset
entity ID

path

Response Body element: (custom)

media types: application/json

6.6. MetadataDiscoveryResource
Jersey Resource for metadata operations. The following resources are available:

hdp-data-governance August 29, 2016

62

• ???TITLE??? [62]

• ???TITLE??? [62]

• ???TITLE??? [62]

• ???TITLE??? [62]

Note

Only the Admin user is authorized to invoke the Gremlin search API.

/discovery/search

GET Search by using a query.

Parameters name description type default

query The search
query in raw
Gremlin or
DSL format
that falls
back to full
text.

query

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

/discovery/search/dsl

GET Search by using the query DSL format.

Parameters name description type default

query The search
query in DSL
format.

query

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

/discovery/search/fulltext

GET Search by using full text search.

Parameters name description type default

query The full text
search query.

query

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

/discovery/search/gremlin

GET Search by using the raw gremlin query format.

hdp-data-governance August 29, 2016

63

Parameters name description type default

query The search
query in
raw gremlin
format.

query

Response Body element: (custom)

media types: application/json

JSON represents the type and results.

6.7. TaxonomyService
This service handles API requests for taxonomy and term resources.The following resources
are available:

• ???TITLE??? [63]

• ???TITLE??? [63]

• ???TITLE??? [64]

• ???TITLE??? [64]

• ???TITLE??? [64]

• ???TITLE??? [65]

v1/taxonomies

GET

Response Body element: (custom)

media types: application/json

/v1/taxonomies/{taxonomyName}

GET

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

Response Body element: (custom)

media types: application/json

POST

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

Request Body element: body

media types: */*application/xml

hdp-data-governance August 29, 2016

64

Response Body element: (custom)

media types: application/json

PUT

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

Request Body element: body

media types: */*application/xml

Response Body element: (custom)

media types: application/json

DELETE

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

Response Body element: (custom)

media types: application/json

/v1/taxonomies/{taxonomyName}/terms

GET

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

Response Body element: (custom)

media types: application/json

/v1/taxonomies/{taxonomyName}/terms/{rootTerm}/{remainder}

GET

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

rootTerm path

remainder path

Response Body element: (custom)

media types: application/json

/v1/taxonomies/{taxonomyName}/terms/{termName}

GET

Parameters name description type default

hdp-data-governance August 29, 2016

65

taxonomyNameThe
taxonomy
name.

path

termName path

Response Body element: (custom)

media types: application/json

POST

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

termName path

Request Body element: body

media types: */*application/xml

Response Body element: (custom)

media types: application/json

PUT

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

termName path

Request Body element: body

media types: */*application/xml

Response Body element: (custom)

media types: application/json

DELETE

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

termName path

Response Body element: (custom)

media types: application/json

/v1/taxonomies/{taxonomyName}/terms/{termName}/{remainder}

POST

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

termName path

remainder path

hdp-data-governance August 29, 2016

66

Request Body element: body

media types: */*application/xml

Response Body element: (custom)

media types: application/json

PUT

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

termName path

remainder path

Request Body element: body

media types: */*application/xml

Response Body element: (custom)

media types: application/json

DELETE

Parameters name description type default

taxonomyNameThe
taxonomy
name.

path

termName path

remainder path

Response Body element: (custom)

media types: application/json

6.8. TypesResource
This class provides a RESTful API for types. A type is the description of any representable
item, for example, a Hive table. You can represent any meta model of any domain using
these types. The following resources are available:

• ???TITLE??? [66]

• ???TITLE??? [67]

/types

POST Submits a type definition that corresponds to a type
that represents a domain meta model. This method can
represent objects like a Hive database, Hive table, and so
on.

Response Body element: (custom)

media types: application/json

PUT Updates existing types. If the specified type doesn't exist, a
new type is created. Allowed updates are: 1. Add optional

hdp-data-governance August 29, 2016

67

attribute 2. Change required to optional attribute 3. Add
super types. Super types should not contain any required
attributes.

Response Body element: (custom)

media types: application/json

GET Fetches a list of trait type names that are registered in the
type system.

Parameters name description type default

type The name
of the
enumerator

org.apache.atlas.typesystem.
types.DataTypes.TypeCategory.

Typically, this
can be one
of:

all, TRAIT,
CLASS,
ENUM,
STRUCT.

query all

Response Body element: (custom)

media types: application/json

The entity names response payload represented as JSON.

/types/{typeName}

GET Fetches the complete definition of a unique type name.

Parameters name description type default

typename The unique
name of the
type.

path

Response Body element: (custom)

media types: application/json

	Hortonworks Data Platform
	Table of Contents
	1. HDP Data Governance
	1.1. Apache Atlas Features
	1.2. Atlas Architecture
	1.2.1. Core
	1.2.2. Integration
	1.2.3. Metadata Sources

	1.3. Atlas-Ranger Integration

	2. Installing and Configuring Apache Atlas
	2.1. Installing and Configuring Apache Atlas Using Ambari
	2.1.1. Apache Atlas Prerequisites
	2.1.2. Authentication Settings
	2.1.2.1. File-based Authentication
	2.1.2.2. LDAP Authentication
	2.1.2.3. AD Authentication

	2.1.3. Authorization Settings
	2.1.3.1. Simple Authorization
	2.1.3.2. Ranger Authorization

	2.2. Configuring Atlas Tagsync in Ranger
	2.3. Configuring Atlas High Availability
	2.4. Configuring Atlas Security
	2.4.1. Additional Requirements for Atlas with Ranger and Kerberos
	2.4.1.1. Additional Requirements for Atlas with Ranger
	2.4.1.2. Additional Requirements for Atlas with Kerberos without Ranger

	2.4.2. Enabling Atlas HTTPS
	2.4.3. Hive CLI Security

	2.5. Installing Sample Atlas Metadata
	2.6. Updating the Atlas Ambari Configuration
	2.7. Using Distributed HBase as the Atlas Metastore

	3. Searching and Viewing Assets
	3.1. Using Text and DSL Search
	3.2. Viewing Asset Data Lineage
	3.3. Viewing Asset Details

	4. Working with Atlas Tags
	4.1. Creating Atlas Tags
	4.2. Associating Tags with Assets
	4.3. Searching for Assets Associated with Tags

	5. Managing the Atlas Business Taxonomy (Technical Preview)
	5.1. Enabling the Atlas Taxonomy Technical Preview
	5.2. Creating Taxonomy Terms
	5.3. Associating Taxonomy Terms with Assets
	5.4. Navigating the Atlas Taxonomy
	5.4.1. Navigation Arrows
	5.4.2. Breadcrumb Trail
	5.4.3. Search Terms
	5.4.4. Back Button

	5.5. Searching for Assets Associated with Taxonomy Terms

	6. Apache Atlas REST API Reference
	6.1. Data Model
	6.2. AdminResource
	6.3. DataSetLineageResource
	6.4. EntityService
	6.5. LineageResource
	6.6. MetadataDiscoveryResource
	6.7. TaxonomyService
	6.8. TypesResource

