
Hortonworks Data Platform

 (March 1, 2016)

HDFS Administration Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform March 1, 2016

ii

Hortonworks Data Platform: HDFS Administration Guide
Copyright © 2012-2016 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform March 1, 2016

iii

Table of Contents
1. ACLs on HDFS .. 1

1.1. Configuring ACLs on HDFS .. 1
1.2. Using CLI Commands to Create and List ACLs .. 1
1.3. ACL Examples ... 2
1.4. ACLS on HDFS Features ... 6
1.5. Use Cases for ACLs on HDFS ... 7

2. Archival Storage ... 11
2.1. Introduction .. 11
2.2. HDFS Storage Types .. 11
2.3. Storage Policies: Hot, Warm, and Cold .. 11
2.4. Configuring Archival Storage ... 12

3. Centralized Cache Management in HDFS ... 15
3.1. Overview ... 15
3.2. Caching Use Cases ... 15
3.3. Caching Architecture ... 15
3.4. Caching Terminology ... 16
3.5. Configuring Centralized Caching ... 17
3.6. Using Cache Pools and Directives ... 19

4. Configuring HDFS Compression .. 23
5. Configuring Rack Awareness On HDP .. 25

5.1. Create a Rack Topology Script ... 25
5.2. Add the Topology Script Property to core-site.xml ... 26
5.3. Restart HDFS and MapReduce ... 26
5.4. Verify Rack Awareness .. 26

6. Customizing HDFS .. 28
6.1. Customize the HDFS Home Directory ... 28
6.2. Set the Size of the NameNode Edits Directory ... 28

7. Hadoop Archives .. 29
7.1. Introduction .. 29
7.2. Hadoop Archive Components .. 29
7.3. Creating a Hadoop Archive ... 30
7.4. Looking Up Files in Hadoop Archives ... 31
7.5. Hadoop Archives and MapReduce ... 32

8. JMX Metrics APIs for HDFS Daemons ... 33
9. Memory as Storage (Technical Preview) ... 34

9.1. Introduction .. 34
9.2. HDFS Storage Types .. 34
9.3. The LAZY_PERSIST Memory Storage Policy .. 35
9.4. Configuring Memory as Storage .. 35

10. Running DataNodes as Non-Root ... 38
10.1. Introduction .. 38
10.2. Configuring DataNode SASL .. 38

11. Short Circuit Local Reads On HDFS ... 41
11.1. Prerequisites .. 41
11.2. Configuring Short-Circuit Local Reads on HDFS .. 41
11.3. Short-Circuit Local Read Properties in hdfs-site.xml ... 41

12. Accidental Deletion Protection ... 44
12.1. Preventing Accidental Deletion of Files .. 44

Hortonworks Data Platform March 1, 2016

iv

13. WebHDFS Administrator Guide .. 47
14. Backing Up HDFS Metadata ... 49

14.1. Introduction to HDFS Metadata Files and Directories 49
14.1.1. Files and Directories .. 49
14.1.2. HDFS Commands .. 54

14.2. Backing Up HDFS Metadata .. 55
14.2.1. Get Ready to Backup the HDFS Metadata ... 55
14.2.2. Perform a Backup the HDFS Metadata .. 56

Hortonworks Data Platform March 1, 2016

v

List of Tables
1.1. ACL Options .. 1
1.2. getfacl Options ... 2
2.1. Setting Storage Policy ... 13
2.2. Getting Storage Policy ... 13
2.3. HDFS Mover Arguments .. 13
3.1. Cache Pool Add Options ... 19
3.2. Cache Pool Modify Options ... 20
3.3. Cache Pool Remove Options ... 20
3.4. Cache Pools List Options ... 20
3.5. Cache Pool Help Options ... 21
3.6. Cache Pool Add Directive Options ... 21
3.7. Cache Pools Remove Directive Options .. 21
3.8. Cache Pool Remove Directives Options .. 22
3.9. Cache Pools List Directives Options .. 22

Hortonworks Data Platform March 1, 2016

1

1. ACLs on HDFS
This guide describes how to use Access Control Lists (ACLs) on the Hadoop Distributed
File System (HDFS). ACLs extend the HDFS permission model to support more granular file
access based on arbitrary combinations of users and groups.

1.1. Configuring ACLs on HDFS
Only one property needs to be specified in the hdfs-site.xml file in order to enable ACLs on
HDFS:

• dfs.namenode.acls.enabled

Set this property to "true" to enable support for ACLs. ACLs are disabled by default.
When ACLs are disabled, the NameNode rejects all attempts to set an ACL.

Example:

<property>
 <name>dfs.namenode.acls.enabled</name>
 <value>true</value>
</property>

1.2. Using CLI Commands to Create and List ACLs
Two new sub-commands are added to FsShell: setfacl and getfacl. These commands
are modeled after the same Linux shell commands, but fewer flags are implemented.
Support for additional flags may be added later if required.

• setfacl

Sets ACLs for files and directories.

Example:

-setfacl [-bkR] {-m|-x} <acl_spec> <path>

-setfacl --set <acl_spec> <path>

Options:

Table 1.1. ACL Options

Option Description

-b Remove all entries, but retain the base ACL entries. The
entries for User, Group, and Others are retained for
compatbility with Permission Bits.

-k Remove the default ACL.

-R Apply operations to all files and directories recursively.

-m Modify the ACL. New entires are added to the ACL, and
existing entries are retained.

-x Remove the specified ACL entires. All other ACL entries
are retained.

Hortonworks Data Platform March 1, 2016

2

Option Description

--set Fully replace the ACL and discard all existing entries. The
acl_spec must include entries for User, Group, and Others
for compatibility with Permission Bits.

<acl_spec> A comma-separated list of ACL entries.

lt;path> The path to the file or directory to modify.

Examples:

hdfs dfs -setfacl -m user:hadoop:rw- /file
hdfs dfs -setfacl -x user:hadoop /file
hdfs dfs -setfacl -b /file
hdfs dfs -setfacl -k /dir
hdfs dfs -setfacl --set user::rw-,user:hadoop:rw-,group::r--,other::r-- /
file
hdfs dfs -setfacl -R -m user:hadoop:r-x /dir
hdfs dfs -setfacl -m default:user:hadoop:r-x /dir

Exit Code:

Returns 0 on success and non-zero on error.

• getfacl

Displays the ACLs of files and directories. If a directory has a default ACL, getfacl also
displays the default ACL.

Usage:

 -getfacl [-R] <path>

Options:

Table 1.2. getfacl Options

Option Description

-R List the ACLs of all files and directories recursively.

<path> The path to the file or directory to list.

Examples:

hdfs dfs -getfacl /file
hdfs dfs -getfacl -R /dir

Exit Code:

Returns 0 on success and non-zero on error.

1.3. ACL Examples
Before the implementation of Access Control Lists (ACLs), the HDFS permission model was
equivalent to traditional UNIX Permission Bits. In this model, permissions for each file or
directory are managed by a set of three distinct user classes: Owner, Group, and Others.
There are three permissions for each user class: Read, Write, and Execute. Thus, for any file
system object, its permissions can be encoded in 3*3=9 bits. When a user attempts to access

Hortonworks Data Platform March 1, 2016

3

a file system object, HDFS enforces permissions according to the most specific user class
applicable to that user. If the user is the owner, HDFS checks the Owner class permissions.
If the user is not the owner, but is a member of the file system object’s group, HDFS checks
the Group class permissions. Otherwise, HDFS checks the Others class permissions.

This model can sufficiently address a large number of security requirements. For example,
consider a sales department that would like a single user -- Bruce, the department manager
-- to control all modifications to sales data. Other members of the sales department need to
view the data, but must not be allowed to modify it. Everyone else in the company (outside
of the sales department) must not be allowed to view the data. This requirement can be
implemented by running chmod 640 on the file, with the following outcome:

-rw-r-----1 brucesales22K Nov 18 10:55 sales-data

Only Bruce can modify the file, only members of the sales group can read the file, and no
one else can access the file in any way.

Suppose that new requirements arise. The sales department has grown, and it is no longer
feasible for Bruce to control all modifications to the file. The new requirement is that Bruce,
Diana, and Clark are allowed to make modifications. Unfortunately, there is no way for
Permission Bits to address this requirement, because there can be only one owner and
one group, and the group is already used to implement the read-only requirement for the
sales team. A typical workaround is to set the file owner to a synthetic user account, such
as "salesmgr," and allow Bruce, Diana, and Clark to use the "salesmgr" account via sudo or
similar impersonation mechanisms. The drawback with this workaround is that it forces
complexity onto end-users, requiring them to use different accounts for different actions.

Now suppose that in addition to the sales staff, all executives in the company need to be
able to read the sales data. This is another requirement that cannot be expressed with
Permission Bits, because there is only one group, and it is already used by sales. A typical
workaround is to set the file’s group to a new synthetic group, such as "salesandexecs,"
and add all users of "sales" and all users of "execs" to that group. The drawback with this
workaround is that it requires administrators to create and manage additional users and
groups.

Based on the preceding examples, you can see that it can be awkward to use Permission
Bits to address permission requirements that differ from the natural organizational
hierarchy of users and groups. The advantage of using ACLs is that it enables you to
address these requirements more naturally, in that for any file system object, multiple users
and multiple groups can have different sets of permissions.

Example 1: Granting Access to Another Named Group

To address one of the issues raised in the preceding section, we will set an ACL that grants
Read access to sales data to members of the "execs" group.

• Set the ACL:

> hdfs dfs -setfacl -m group:execs:r-- /sales-data

• Run getfacl to check the results:

> hdfs dfs -getfacl /sales-data
file: /sales-data
owner: bruce

Hortonworks Data Platform March 1, 2016

4

group: sales
user::rw-
group::r--
group:execs:r--
mask::r--
other::---

• If we run the "ls" command, we see that the listed permissions have been appended with
a plus symbol (+) to indicate the presence of an ACL. The plus symbol is appended to the
permissions of any file or directory that has an ACL.

> hdfs dfs -ls /sales-data
Found 1 items
-rw-r-----+ 3 bruce sales 0 2014-03-04 16:31 /sales-data

The new ACL entry is added to the existing permissions defined by the Permission Bits. As
the file owner, Bruce has full control. Members of either the "sales" group or the "execs"
group have Read access. All others do not have access.

Example 2: Using a Default ACL for Automatic Application to New Children

In addition to an ACL enforced during permission checks, there is also the separate concept
of a default ACL. A default ACL can only be applied to a directory -- not to a file. Default
ACLs have no direct effect on permission checks for existing child files and directories,
but instead define the ACL that new child files and directories will receive when they are
created.

Suppose we have a "monthly-sales-data" directory that is further subdivided into separate
directories for each month. We will set a default ACL to guarantee that members of the
"execs" group automatically get access to new subdirectories as they get created each
month.

• Set a default ACL on the parent directory:

> hdfs dfs -setfacl -m default:group:execs:r-x /monthly-sales-data

• Make subdirectories:

> hdfs dfs -mkdir /monthly-sales-data/JAN
> hdfs dfs -mkdir /monthly-sales-data/FEB

• Verify that HDFS has automatically applied the default ACL to the subdirectories:

> hdfs dfs -getfacl -R /monthly-sales-data
file: /monthly-sales-data
owner: bruce
group: sales
user::rwx
group::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

file: /monthly-sales-data/FEB
owner: bruce

Hortonworks Data Platform March 1, 2016

5

group: sales
user::rwx
group::r-x
group:execs:r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

file: /monthly-sales-data/JAN
owner: bruce
group: sales
user::rwx
group::r-x
group:execs:r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

Example 3: Blocking Access to a Sub-Tree for a Specific User

Suppose there is a need to immediately block access to an entire sub-tree for a specific
user. Applying a named user ACL entry to the root of that sub-tree is the fastest way to
accomplish this without accidentally revoking permissions for other users.

• Add an ACL entry to block user Diana's access to "monthly-sales-data":

> hdfs dfs -setfacl -m user:diana:--- /monthly-sales-data

• Run getfacl to check the results:

> hdfs dfs -getfacl /monthly-sales-data
file: /monthly-sales-data
owner: bruce
group: sales
user::rwx
user:diana:---
group::r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

It is important to keep in mind the order of evaluation for ACL entries when a user
attempts to access a file system object:

• If the user is the file owner, the Owner Permission Bits are enforced.

• Else, if the user has a named user ACL entry, those permissions are enforced.

Hortonworks Data Platform March 1, 2016

6

• Else, if the user is a member of the file’s group or any named group in an ACL entry,
then the union of permissions for all matching entries are enforced. (The user may be a
member of multiple groups.)

• If none of the above are applicable, the Other Permission Bits are enforced.

In this example, the named user ACL entry accomplished our goal because the user is not
the file owner and the named user entry takes precedence over all other entries.

1.4. ACLS on HDFS Features
POSIX ACL Implementation

ACLs on HDFS have been implemented with the POSIX ACL model. If you have ever used
POSIX ACLs on a Linux file system, the HDFS ACLs work the same way.

Compatibility and Enforcement

HDFS can associate an optional ACL with any file or directory. All HDFS operations
that enforce permissions expressed with Permission Bits must also enforce any ACL
that is defined for the file or directory. Any existing logic that bypasses Permission
Bits enforcement also bypasses ACLs. This includes the HDFS super-user and setting
dfs.permissions to "false" in the configuration.

Access Through Multiple User-Facing Endpoints

HDFS supports operations for setting and getting the ACL associated with a file or
directory. These operations are accessible through multiple user-facing endpoints. These
endpoints include the FsShell CLI, programmatic manipulation through the FileSystem and
FileContext classes, WebHDFS, and NFS.

User Feedback: CLI Indicator for ACLs

The plus symbol (+) is appended to the listed permissions of any file or directory with an
associated ACL. To view, use the ls -l command.

Backward-Compatibility

The implementation of ACLs is backward-compatible with existing usage of Permission
Bits. Changes applied via Permission Bits (chmod) are also visible as changes in the ACL.
Likewise, changes applied to ACL entries for the base user classes (Owner, Group, and
Others) are also visible as changes in the Permission Bits. Permission Bit and ACL operations
manipulate a shared model, and the Permission Bit operations can be considered a subset
of the ACL operations.

Low Overhead

The addition of ACLs will not cause a detrimental impact to the consumption of system
resources in deployments that choose not to use ACLs. This includes CPU, memory, disk,
and network bandwidth.

Using ACLs does impact NameNode performance. It is therefore recommended that you
use Permission Bits, if adequate, before using ACLs.

Hortonworks Data Platform March 1, 2016

7

ACL Entry Limits

The number of entries in a single ACL is capped at a maximum of 32. Attempts to add ACL
entries over the maximum will fail with a user-facing error. This is done for two reasons: to
simplify management, and to limit resource consumption. ACLs with a very high number
of entries tend to become difficult to understand, and may indicate that the requirements
are better addressed by defining additional groups or users. ACLs with a very high number
of entries also require more memory and storage, and take longer to evaluate on each
permission check. The number 32 is consistent with the maximum number of ACL entries
enforced by the "ext" family of file systems.

Symlinks

Symlinks do not have ACLs of their own. The ACL of a symlink is always seen as the default
permissions (777 in Permission Bits). Operations that modify the ACL of a symlink instead
modify the ACL of the symlink’s target.

Snapshots

Within a snapshot, all ACLs are frozen at the moment that the snapshot was created. ACL
changes in the parent of the snapshot are not applied to the snapshot.

Tooling

Tooling that propagates Permission Bits will not propagate ACLs. This includes the cp -p
shell command and distcp -p.

1.5. Use Cases for ACLs on HDFS
ACLs on HDFS supports the following use cases:

Multiple Users

In this use case, multiple users require Read access to a file. None of the users are the owner
of the file. The users are not members of a common group, so it is impossible to use group
Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named user
entries:

ACLs on HDFS supports the following use cases:

Multiple Groups

In this use case, multiple groups require Read and Write access to a file. There is no group
containing all of the group members, so it is impossible to use group Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named group
entries:

group:sales:rw-
group:execs:rw-

Hive Partitioned Tables

Hortonworks Data Platform March 1, 2016

8

In this use case, Hive contains a partitioned table of sales data. The partition key is
"country". Hive persists partitioned tables using a separate subdirectory for each distinct
value of the partition key, so the file system structure in HDFS looks like this:

user
`-- hive
 `-- warehouse
 `-- sales
 |-- country=CN
 |-- country=GB
 `-- country=US

All of these files belong to the "salesadmin" group. Members of this group have Read and
Write access to all files. Separate country groups can run Hive queries that only read data
for a specific country, such as "sales_CN", "sales_GB", and "sales_US". These groups do not
have Write access.

This use case can be addressed by setting an access ACL on each subdirectory containing an
owning group entry and a named group entry:

country=CN
group::rwx
group:sales_CN:r-x

country=GB
group::rwx
group:sales_GB:r-x

country=US
group::rwx
group:sales_US:r-x

Note that the functionality of the owning group ACL entry (the group entry with no name)
is equivalent to setting Permission Bits.

Important

Storage-based authorization in Hive does not currently consider the ACL
permissions in HDFS. Rather, it verifies access using the traditional POSIX
permissions model.

Default ACLs

In this use case, a file system administrator or sub-tree owner would like to define an access
policy that will be applied to the entire sub-tree. This access policy must apply not only to
the current set of files and directories, but also to any new files and directories that are
added later.

This use case can be addressed by setting a default ACL on the directory. The default ACL
can contain any arbitrary combination of entries. For example:

default:user::rwx
default:user:bruce:rw-
default:user:diana:r--
default:user:clark:rw-
default:group::r--

Hortonworks Data Platform March 1, 2016

9

default:group:sales::rw-
default:group:execs::rw-
default:others::---

It is important to note that the default ACL gets copied from the directory to newly
created child files and directories at time of creation of the child file or directory. If you
change the default ACL on a directory, that will have no effect on the ACL of the files and
subdirectories that already exist within the directory. Default ACLs are never considered
during permission enforcement. They are only used to define the ACL that new files and
subdirectories will receive automatically when they are created.

Minimal ACL/Permissions Only

HDFS ACLs support deployments that may want to use only Permission Bits and not ACLs
with named user and group entries. Permission Bits are equivalent to a minimal ACL
containing only 3 entries. For example:

user::rw-
group::r--
others::---

Block Access to a Sub-Tree for a Specific User

In this use case, a deeply nested file system sub-tree was created as world-readable,
followed by a subsequent requirement to block access for a specific user to all files in that
sub-tree.

This use case can be addressed by setting an ACL on the root of the sub-tree with a named
user entry that strips all access from the user.

For this file system structure:

dir1
`-- dir2
 `-- dir3
 |-- file1
 |-- file2
 `-- file3

Setting the following ACL on "dir2" blocks access for Bruce to "dir3,""file1,""file2," and "file3":

user:bruce:---

More specifically, the removal of execute permissions on "dir2" means that Bruce cannot
access "dir2", and therefore cannot see any of its children. This also means that access is
blocked automatically for any new files added under "dir2". If a "file4" is created under
"dir3", Bruce will not be able to access it.

ACLs with Sticky Bit

In this use case, multiple named users or named groups require full access to a shared
directory, such as "/tmp". However, Write and Execute permissions on the directory also
give users the ability to delete or rename any files in the directory, even files created by
other users. Users must be restricted so that they are only allowed to delete or rename files
that they created.

Hortonworks Data Platform March 1, 2016

10

This use case can be addressed by combining an ACL with the sticky bit. The sticky bit is
existing functionality that currently works with Permission Bits. It will continue to work as
expected in combination with ACLs.

Hortonworks Data Platform March 1, 2016

11

2. Archival Storage
This section describes how to use storage policies to assign files and directories to archival
storage types.

2.1. Introduction
Archival storage lets you store data on physical media with high storage density and low
processing resources.

Implementing archival storage involves the following steps:

1. Shut down the DataNode.

2. Assign the ARCHIVE storage type to DataNodes designed for archival storage.

3. Set HOT, WARM, or COLD storage policies on HDFS files and directories.

4. Restart the DataNode.

If you update a storage policy setting on a file or directory, you must use the HDFS mover
data migration tool to actually move blocks as specified by the new storage policy.

2.2. HDFS Storage Types
HDFS storage types can be used to assign data to different types of physical storage media.
The following storage types are available:

• DISK -- Disk drive storage (default storage type)

• ARCHIVE -- Archival storage (high storage density, low processing resources)

• SSD -- Solid State Drive

• RAM_DISK -- DataNode Memory

If no storage type is assigned, DISK is used as the default storage type.

2.3. Storage Policies: Hot, Warm, and Cold
You can store data on DISK or ARCHIVE storage types using the following preconfigured
storage policies:

• HOT– Used for both storage and compute. Data that is being used for processing will
stay in this policy. When a block is HOT, all replicas are stored on DISK. There is no
fallback storage for creation, and ARCHIVE is used for replication fallback storage.

• WARM - Partially HOT and partially COLD. When a block is WARM, the first replica is
stored on DISK, and the remaining replicas are stored on ARCHIVE. The fallback storage
for both creation and replication is DISK, or ARCHIVE if DISK is unavailable.

Hortonworks Data Platform March 1, 2016

12

• COLD - Used only for storage, with limited compute. Data that is no longer being used,
or data that needs to be archived, is moved from HOT storage to COLD storage. When
a block is COLD, all replicas are stored on ARCHIVE, and there is no fallback storage for
creation or replication.

The following table summarizes these replication policies:

Policy ID Policy Name Replica Block
Placement (for n
replicas)

Fallback storage for
creation

Fallback storage for
replication

12 HOT (default) Disk: n <none> ARCHIVE

8 WARM Disk: 1, ARCHIVE: n-1 DISK, ARCHIVE DISK, ARCHIVE

4 COLD ARCHIVE: n <none> <none>

Note

Currently, storage policies cannot be edited.

2.4. Configuring Archival Storage
Use the following steps to configure archival storage:

1. Shut down the DataNode, using the applicable commands in the Controlling HDP
Services Manually section of the HDP Reference Guide.

2. Assign the ARCHIVE Storage Type to the DataNode.

You can use the dfs.datanode.data.dir property in the/etc/hadoop/conf/
hdfs-site.xml file to assign the ARCHIVE storage type to a DataNode.

The dfs.datanode.data.dir property determines where on the local filesystem a
DataNode should store its blocks.

If you specify a comma-delimited list of directories, data will be stored in all named
directories, typically on different devices. Directories that do not exist are ignored.
You can specify that each directory resides on a different type of storage: DISK, SSD,
ARCHIVE, or RAM_DISK.

To specify a DataNode as DISK storage, specify [DISK] and a local file system path. For
example:

<property>
 <name>dfs.datanode.data.dir</name>
 <value>[DISK]/grid/1/tmp/data_trunk</value>
</property>

To specify a DataNode as ARCHIVE storage, insert [ARCHIVE] at the beginning of the
local file system path. For example:

<property>
 <name>dfs.datanode.data.dir</name>
 <value>[ARCHIVE]/grid/1/tmp/data_trunk</value>
</property>

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform March 1, 2016

13

3. Set or Get Storage Policies. To set a storage policy on a file or a directory:

hdfs storagepolicies -setStoragePolicy <path> <policyName>

Arguments:

Table 2.1. Setting Storage Policy

Argument Description

<path> The path to a directory or file.

<policyName> The name of the storage policy.

Example:

hdfs storagepolicies -setStoragePolicy /cold1 COLD

To get the storage policy of a file or a directory:

hdfs storagepolicies -getStoragePolicy <path>

Argument:

Table 2.2. Getting Storage Policy

Argument Description

<path> The path to a directory or file.

Example:

hdfs storagepolicies -getStoragePolicy /cold1

4. Start the DataNode, using the applicable commands in the "Controlling HDP Services
Manually" section of Installing HDP Manually.

5. Use Mover to Apply Storage Policies:

When you update a storage policy setting on a file or directory, the new policy is not
automatically enforced. You must use the HDFS mover data migration tool to actually
move blocks as specified by the new storage policy.

The mover data migration tool scans the specified files in HDFS and checks to see if
the block placement satisfies the storage policy. For the blocks that violate the storage
policy, it moves the replicas to a different storage type in order to fulfill the storage
policy requirements.

Command:

hdfs mover [-p <files/dirs> | -f <local file name>]

Arguments:

Table 2.3. HDFS Mover Arguments

Arguments Description

-p <files/dirs> Specify a space-separated list of HDFS files/directories to
migrate.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_installing_manually_book/index.html

Hortonworks Data Platform March 1, 2016

14

Arguments Description

-f <local file> Specify a local file containing a list of HDFS files/
directories to migrate.

Note

Note that when both -p and -f options are omitted, the default path is the
root directory.

Hortonworks Data Platform March 1, 2016

15

3. Centralized Cache Management in
HDFS

This section provides instructions on setting up and using centralized cache management
in HDFS. Centralized cache management enables you to specify paths to directories or
files that will be cached by HDFS, thereby improving performance for applications that
repeatedly access the same data.

3.1. Overview
Centralized cache management in HDFS is an explicit caching mechanism that enables you
to specify paths to directories or files that will be cached by HDFS. The NameNode will
communicate with DataNodes that have the desired blocks available on disk, and instruct
the DataNodes to cache the blocks in off-heap caches.

Centralized cache management in HDFS offers many significant advantages:

• Explicit pinning prevents frequently used data from being evicted from memory. This
is particularly important when the size of the working set exceeds the size of main
memory, which is common for many HDFS workloads.

• Because DataNode caches are managed by the NameNode, applications can query the
set of cached block locations when making task placement decisions. Co-locating a task
with a cached block replica improves read performance.

• When a block has been cached by a DataNode, clients can use a new, more efficient,
zero-copy read API. Since checksum verification of cached data is done once by the
DataNode, clients can incur essentially zero overhead when using this new API.

• Centralized caching can improve overall cluster memory utilization. When relying on the
operating system buffer cache on each DataNode, repeated reads of a block will result
in all n replicas of the block being pulled into the buffer cache. With centralized cache
management, you can explicitly pin only m of the n replicas, thereby saving n-m memory.

3.2. Caching Use Cases
Centralized cache management is useful for:

• Files that are accessed repeatedly -- For example, a small fact table in Hive that is often
used for joins is a good candidate for caching. Conversely, caching the input of a once-
yearly reporting query is probably less useful, since the historical data might only be read
once.

• Mixed workloads with performance SLAs -- Caching the working set of a high priority
workload ensures that it does not compete with low priority workloads for disk I/O.

3.3. Caching Architecture
The following figure illustrates the centralized cached management architecture.

Hortonworks Data Platform March 1, 2016

16

In this architecture, the NameNode is responsible for coordinating all of the DataNode
off-heap caches in the cluster. The NameNode periodically receives a cache report from
each DataNode. The cache report describes all of the blocks cached on the DataNode. The
NameNode manages DataNode caches by piggy-backing cache and uncache commands on
the DataNode heartbeat.

The NameNode queries its set of Cache Directives to determine which paths should be
cached. Cache Directives are persistently stored in the fsimage and edit logs, and can be
added, removed, and modified via Java and command-line APIs. The NameNode also stores
a set of Cache Pools, which are administrative entities used to group Cache Directives
together for resource management, and to enforce permissions.

The NameNode periodically re-scans the namespace and active Cache Directives to
determine which blocks need to be cached or uncached, and assigns caching work to
DataNodes. Re-scans can also be triggered by user actions such as adding or removing a
Cache Directive or removing a Cache Pool.

Cache blocks that are under construction, corrupt, or otherwise incomplete are not cached.
If a Cache Directive covers a symlink, the symlink target is not cached.

Currently, caching can only be applied to directories and files.

3.4. Caching Terminology
Cache Directive

A Cache Directive defines the path that will be cached. Paths can point either directories or
files. Directories are cached non-recursively, meaning only files in the first-level listing of the
directory will be cached.

Cache Directives also specify additional parameters, such as the cache replication factor
and expiration time. The replication factor specifies the number of block replicas to cache.
If multiple Cache Directives refer to the same file, the maximum cache replication factor is
applied.

The expiration time is specified on the command line as a time-to-live (TTL), which
represents a relative expiration time in the future. After a Cache Directive expires, it is no
longer taken into consideration by the NameNode when making caching decisions.

Cache Pool

Hortonworks Data Platform March 1, 2016

17

A Cache Pool is an administrative entity used to manage groups of Cache Directives. Cache
Pools have UNIX-like permissions that restrict which users and groups have access to the
pool. Write permissions allow users to add and remove Cache Directives to the pool. Read
permissions allow users to list the Cache Directives in a pool, as well as additional metadata.
Execute permissions are unused.

Cache Pools are also used for resource management. Cache Pools can enforce a maximum
memory limit, which restricts the aggregate number of bytes that can be cached by
directives in the pool. Normally, the sum of the pool limits will approximately equal the
amount of aggregate memory reserved for HDFS caching on the cluster. Cache Pools also
track a number of statistics to help cluster users track what is currently cached, and to
determine what else should be cached.

Cache Pools can also enforce a maximum time-to-live. This restricts the maximum expiration
time of directives being added to the pool.

3.5. Configuring Centralized Caching
Native Libraries

In order to lock block files into memory, the DataNode relies on native JNI code found
in libhadoop.so. Be sure to enable JNI if you are using HDFS centralized cache
management.

Configuration Properties

Configuration properties for centralized caching are specified in the hdfs-site.xml file.

Required Properties

Currently, only one property is required:

• dfs.datanode.max.locked.memory This property determines the maximum
amount of memory (in bytes) that a DataNode will use for caching. The "locked-in-
memory size" ulimit (ulimit -l) of the DataNode user also needs to be increased to
exceed this parameter (for more details, see the following section on). When setting this
value, remember that you will need space in memory for other things as well, such as the
DataNode and application JVM heaps, and the operating system page cache. Example:

<property>
 <name>dfs.datanode.max.locked.memory</name>
 <value>268435456</value>
</property>

Optional Properties

The following properties are not required, but can be specified for tuning.

• dfs.namenode.path.based.cache.refresh.interval.ms The NameNode will
use this value as the number of milliseconds between subsequent cache path re-scans. By
default, this parameter is set to 300000, which is five minutes. Example:

<property>
 <name>dfs.namenode.path.based.cache.refresh.interval.ms</name>

Hortonworks Data Platform March 1, 2016

18

 <value>300000</value>
</property>

• dfs.time.between.resending.caching.directives.ms The NameNode
will use this value as the number of milliseconds between resending caching directives.
Example:

<property>
 <name>dfs.time.between.resending.caching.directives.ms</name>
 <value>300000</value>
</property>

• dfs.datanode.fsdatasetcache.max.threads.per.volume The DataNode will
use this value as the maximum number of threads per volume to use for caching new
data. By default, this parameter is set to 4. Example:

<property>
 <name>dfs.datanode.fsdatasetcache.max.threads.per.volume</name>
 <value>4</value>
</property>

• dfs.cachereport.intervalMsec The DataNode will use this value as the number
of milliseconds between sending a full report of its cache state to the NameNode. By
default, this parameter is set to 10000, which is 10 seconds. Example:

<property>
 <name>dfs.cachereport.intervalMsec</name>
 <value>10000</value>
</property>

• dfs.namenode.path.based.cache.block.map.allocation.percent The
percentage of the Java heap that will be allocated to the cached blocks map. The cached
blocks map is a hash map that uses chained hashing. Smaller maps may be accessed more
slowly if the number of cached blocks is large. Larger maps will consume more memory.
The default value is 0.25 percent. Example:

<property>
 <name>dfs.namenode.path.based.cache.block.map.allocation.percent</name>
 <value>0.25</value>
</property>

OS Limits

If you get the error "Cannot start datanode because the configured max locked memory
size...is more than the datanode's available RLIMIT_MEMLOCK ulimit," that means that
the operating system is imposing a lower limit on the amount of memory that you can lock
than what you have configured. To fix this, you must adjust the ulimit -l value that the
DataNode runs with. This value is usually configured in /etc/security/limits.conf,
but this may vary depending on what operating system and distribution you are using.

You have correctly configured this value when you can run ulimit - l from the shell
and get back either a higher value than what you have configured or the string "unlimited",
which indicates that there is no limit. Typically, ulimit -l returns the memory lock limit
in kilobytes (KB), but dfs.datanode.max.locked.memory must be specified in bytes.

For example, if the value of dfs.datanode.max.locked.memory is set to 128000
bytes:

Hortonworks Data Platform March 1, 2016

19

<property>
 <name>dfs.datanode.max.locked.memory</name>
 <value>128000</value>
</property>

Set the memlock (max locked-in-memory address space) to a slightly higher value. For
example, to set memlock to 130 KB (130,000 bytes) for the hdfs user, you would add the
following line to /etc/security/limits.conf.

hdfs - memlock 130

Note

The information in this section does not apply to deployments on Windows.
Windows has no direct equivalent of ulimit -l.

3.6. Using Cache Pools and Directives
You can use the Command-Line Interface (CLI) to create, modify, and list Cache Pools and
Cache Directives via the hdfs cacheadmin subcommand.

Cache Directives are identified by a unique, non-repeating, 64-bit integer ID. IDs will not be
reused even if a Cache Directive is removed.

Cache Pools are identified by a unique string name.

You must first create a Cache Pool, and then add Cache Directives to the Cache Pool.

Cache Pool Commands

• addPool -- Adds a new Cache Pool.

Usage:

hdfs cacheadmin -addPool <name> [-owner <owner>] [-group <group>]
[-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]

Options:

Table 3.1. Cache Pool Add Options

Option Description

<name The name of the pool.

<owner The user name of the owner of the pool. Defaults to the
current user.

<group The group that the pool is assigned to. Defaults to the
primary group name of the current user.

<mode The UNIX-style permissions assigned to the pool.
Permissions are specified in octal (e.g. 0755). Pool
permissions are set to 0755 by default.

<limit The maximum number of bytes that can be cached by
directives in the pool, in aggregate. By default, no limit is
set.

<maxTtl The maximum allowed time-to-live for directives being
added to the pool. This can be specified in seconds,
minutes, hours, and days (e.g. 120s, 30m, 4h, 2d). Valid

Hortonworks Data Platform March 1, 2016

20

Option Description

units are [smhd]. By default, no maximum is set. A value
of "never" specifies that there is no limit.

• modifyPool -- Modifies the metadata of an existing Cache Pool.

Usage:

hdfs cacheadmin -modifyPool <name> [-owner <owner>] [-group <group>]
[-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]

Options:

Table 3.2. Cache Pool Modify Options

Option Description

name The name of the pool to modify.

owner The user name of the owner of the pool.

group The group that the pool is assigned to.

mode The UNIX-style permissions assigned to the pool.
Permissions are specified in octal (e.g. 0755).

limit The maximum number of bytes that can be cached by
directives in the pool, in aggregate.

maxTtl The maximum allowed time-to-live for directives being
added to the pool. This can be specified in seconds,
minutes, hours, and days (e.g. 120s, 30m, 4h, 2d). Valid
units are [smdh]. By default, no maximum is set. A value
of "never" specifies that there is no limit.

• removePool -- Removes a Cache Pool. This command also "un-caches" paths that are
associated with the pool.

Usage:

hdfs cacheadmin -removePool <name>

Options:

Table 3.3. Cache Pool Remove Options

Option Description

name The name of the Cache Pool to remove.

• listPools -- Displays information about one or more Cache Pools, such as name,
owner, group, permissions, and so on.

Usage:

hdfs cacheadmin -listPools [-stats] [<name>]

Options:

Table 3.4. Cache Pools List Options

Option Description

stats Displays additional Cache Pool statistics.

Hortonworks Data Platform March 1, 2016

21

Option Description

name If specified, lists only the named Cache Pool.

• help -- Displays detailed information about a command.

Usage:

hdfs cacheadmin -help <command-name>

Options:

Table 3.5. Cache Pool Help Options

Option Description

<command-name Displays detailed information for the specified command
name. If no command name is specified, detailed help is
displayed for all commands.

Cache Directive Commands

• addDirective -- Adds a new Cache Directive.

Usage:

hdfs cacheadmin -addDirective -path <path> -pool <pool-name> [-force]
[-replication <replication>] [-ttl <time-to-live>]

Options:

Table 3.6. Cache Pool Add Directive Options

Option Description

<path> The path to the cache directory or file.

<pool-name> The Cache Pool to which the Cache Directive will be
added. You must have Write permission for the Cache
Pool in order to add new directives.

<-force> Skips checking of the Cache Pool resource limits.

<-replication> The cache replication factor to use. Default setting is 1.

<time-to-live> How long the directive is valid. This can be specified in
minutes, hours and days (e.g. 30m, 4h, 2d). Valid units
are [smdh]. A value of "never" indicates a directive that
never expires. If unspecified, the directive never expires.

• removeDirective -- Removes a Cache Directive.

Usage:

hdfs cacheadmin -removeDirective <id>

Options:

Table 3.7. Cache Pools Remove Directive Options

Option Description

<id> The ID of the Cache Directive to remove. You must
have Write permission for the pool that the directive

Hortonworks Data Platform March 1, 2016

22

Option Description

belongs to in order to remove it. You can use the -
listDirectives command to display a list of Cache
Directive IDs.

• removeDirectives -- Removes all of the Cache Directives in a specified path.

Usage:

hdfs cacheadmin -removeDirectives <path>

Options:

Table 3.8. Cache Pool Remove Directives Options

Option Description

<path> The path of the Cache Directives to remove. You must
have Write permission for the pool that the directives
belong to in order to remove them. You can use the -
listDirectives command to display a list of Cache
Directives.

• listDirectives -- Returns a list of Cache Directives.

Usage:

hdfs cacheadmin -listDirectives [-stats] [-path <path>] [-pool <pool>]

Options:

Table 3.9. Cache Pools List Directives Options

Option Description

<path> Lists only the Cache Directives in the specified path. If
there is a Cache Directive in the <path> that belongs to a
Cache Pool for which you do not have Read access, it will
not be listed.

<pool> Lists on the Cache Directives in the specified Cache Pool.

<-stats> Lists path-based Cache Directive statistics.

Hortonworks Data Platform March 1, 2016

23

4. Configuring HDFS Compression
This section describes how to configure HDFS compression on Linux.

Linux supports GzipCodec, DefaultCodec, BZip2Codec, LzoCodec, and
SnappyCodec. Typically, GzipCodec is used for HDFS compression. Use the following
instructions to use GZipCodec.

• Option I: To use GzipCodec with a one-time only job:

hadoop jar hadoop-examples-1.1.0-SNAPSHOT.jar sort sbr"-Dmapred.compress.
map.output=true" sbr"-Dmapred.map.output.compression.codec=org.apache.
hadoop.io.compress.GzipCodec"sbr "-Dmapred.output.compress=true" sbr"-
Dmapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec"sbr
 -outKey org.apache.hadoop.io.Textsbr -outValue org.apache.hadoop.io.Text
 input output

• Option II: To enable GzipCodec as the default compression:

• Edit the core-site.xml file on the NameNode host machine:

<property>
 <name>io.compression.codecs</name>
 <value>org.apache.hadoop.io.compress.GzipCodec,
 org.apache.hadoop.io.compress.DefaultCodec,com.hadoop.compression.lzo.
LzoCodec,
 org.apache.hadoop.io.compress.SnappyCodec</value>
<description>A list of the compression codec classes that can be used
 for compression/decompression.</description>
</property>

• Edit the mapred-site.xml file on the JobTracker host machine:

<property>
 <name>mapreduce.map.output.compress</name>
 <value>true</value>
</property>

<property>
 <name>mapreduce.map.output.compress.codec</name>
 <value>org.apache.hadoop.io.compress.GzipCodec</value>
</property>

<property>
 <name>mapreduce.output.fileoutputformat.compress.type</name>
 <value>BLOCK</value>
</property>

• (Optional) - Enable the following two configuration parameters to enable job output
compression. Edit the mapred-site.xml file on the Resource Manager host
machine:

Hortonworks Data Platform March 1, 2016

24

<property>
 <name>mapreduce.output.fileoutputformat.compress</name>
 <value>true</value>
</property>

<property>
 <name>mapreduce.output.fileoutputformat.compress.codec</name>
 <value>org.apache.hadoop.io.compress.GzipCodec</value>
</property>

• Restart the cluster using the applicable commands in Controlling HDP Services
Manually.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform March 1, 2016

25

5. Configuring Rack Awareness On HDP
Use the following instructions to configure rack awareness on an HDP cluster.

5.1. Create a Rack Topology Script
Topology scripts are used by Hadoop to determine the rack location of nodes. This
information is used by Hadoop to replicate block data to redundant racks.

1. Create a topology script and data file. The topology script must be executable.

Sample Topology Script Named rack-topology.sh

#!/bin/bash

Adjust/Add the property "net.topology.script.file.name"
to core-site.xml with the "absolute" path the this
file. ENSURE the file is "executable".

Supply appropriate rack prefix
RACK_PREFIX=default

To test, supply a hostname as script input:
if [$# -gt 0]; then

CTL_FILE=${CTL_FILE:-"rack_topology.data"}

HADOOP_CONF=${HADOOP_CONF:-"/etc/hadoop/conf"}

if [! -f ${HADOOP_CONF}/${CTL_FILE}]; then
 echo -n "/$RACK_PREFIX/rack "
 exit 0
fi

while [$# -gt 0] ; do
 nodeArg=$1
 exec< ${HADOOP_CONF}/${CTL_FILE}
 result=""
 while read line ; do
 ar=($line)
 if ["${ar[0]}" = "$nodeArg"] ; then
 result="${ar[1]}"
 fi
 done
 shift
 if [-z "$result"] ; then
 echo -n "/$RACK_PREFIX/rack "
 else
 echo -n "/$RACK_PREFIX/rack_$result "
 fi
done

else
 echo -n "/$RACK_PREFIX/rack "
fi

Sample Topology Data File Named rack_topology.data

Hortonworks Data Platform March 1, 2016

26

This file should be:
- Placed in the /etc/hadoop/conf directory
- On the Namenode (and backups IE: HA, Failover, etc)
- On the Job Tracker OR Resource Manager (and any Failover JT's/RM's)
This file should be placed in the /etc/hadoop/conf directory.

Add Hostnames to this file. Format <host ip> <rack_location>
192.168.2.10 01
192.168.2.11 02
192.168.2.12 03

2. Copy both of these files to the /etc/hadoop/conf directory on all cluster nodes.

3. Run the rack-topology.sh script to ensure that it returns the correct rack
information for each host.

5.2. Add the Topology Script Property to core-
site.xml

1. Stop HDFS using the applicable commands in the "Controlling HDP Services Manually"
section of Installing HDP Manually

2. Add the following property to core-site.xml:

<property>
 <name>net.topology.script.file.name</name>
 <value>/etc/hadoop/conf/rack-topology.sh</value>
</property>

By default the topology script will process up to 100 requests per invocation. You can also
specify a different number of requests with the net.topology.script.number.args
property. For example:

<property>
 <name>net.topology.script.number.args</name>
 <value>75</value>
</property>

5.3. Restart HDFS and MapReduce
Restart HDFS and MapReduce using the applicable commands in the "Controlling HDP
Services Manually" section of Installing HDP Manually

5.4. Verify Rack Awareness
After the services have started, you can use the following methods to verify that rack
awareness has been activated:

1. Look in the NameNode logs located in /var/log/hadoop/hdfs/. For example:
hadoop-hdfs-namenode-sandbox.log. You should see an entry like this:

014-01-13 15:58:08,495 INFO org.apache.hadoop.net.NetworkTopology: Adding

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Hortonworks Data Platform March 1, 2016

27

 a new node: /rack01/<ipaddress>

2. The Hadoop fsck command should return something like the following (if there are
two racks):

 Status: HEALTHY Total size: 123456789 B Total dirs: 0 Total files: 1
 Total blocks (validated): 1 (avg. block size 123456789 B)
 Minimally replicated blocks: 1 (100.0 %) Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %) Mis-replicated blocks: 0 (0.0 %)
 Default replication factor: 3 Average block replication: 3.0 Corrupt
 blocks: 0 Missing replicas: 0 (0.0 %) Number of data-nodes: 40 Number of
 racks: 2 FSCK ended at Mon Jan 13 17:10:51 UTC 2014 in 1 milliseconds

3. The Hadoop dfsadmin -report command will return a report that includes the
rack name next to each machine. The report should look something like the following
excerpted example:

 [bsmith@hadoop01 ~]$ sudo -u hdfs hadoop dfsadmin -report
 Configured Capacity: 19010409390080 (17.29 TB) Present Capacity:
 18228294160384 (16.58 TB) DFS Remaining: 5514620928000 (5.02 TB) DFS
 Used: 12713673232384 (11.56 TB) DFS Used%: 69.75% Under replicated blocks:
 181 Blocks with corrupt replicas: 0 Missing blocks: 0
 --- Datanodes available:
 5 (5 total, 0 dead) Name: 192.168.90.231:50010 (h2d1.hdp.local) Hostname:
 h2d1.hdp.local Rack: /default/rack_02 Decommission Status : Normal
 Configured Capacity: 15696052224 (14.62 GB) DFS Used: 314380288
(299.82 MB) Non DFS Used: 3238612992 (3.02 GB) DFS Remaining: 12143058944
 (11.31 GB) DFS Used%: 2.00% DFS Remaining%: 77.36%
 Configured Cache Capacity: 0 (0 B) Cache Used: 0 (0 B) Cache Remaining: 0
 (0 B) Cache Used%: 100.00% Cache Remaining%: 0.00% Last contact: Thu Jun 12
 11:39:51 EDT 2014

Hortonworks Data Platform March 1, 2016

28

6. Customizing HDFS

6.1. Customize the HDFS Home Directory
By default, the HDFS home directory is set to /user/<user_name>. You can use the
dfs.user.home.base.dir property to customize the HDFS home directory.

1. In the hdfs-site.xml file, set the following property:

<property>
 <name>dfs.user.home.base.dir</name>
 <value>/user</value>
 <description>Base directory of user home.</description>
</property>

Where <value> is the path to the new home directory.

6.2. Set the Size of the NameNode Edits Directory
You can use the following hdfs-site.xml properties to control the size of the directory
that holds the NameNode edits directory.

• dfs.namenode.num.checkpoints.retained – The number of image checkpoint
files that are retained in storage directories. All edit logs necessary to recover an up-to-
date namespace from the oldest retained checkpoint are also retained.

• dfs.namenode.num.extra.edits.retained – The number of extra transactions
that should be retained beyond what is minimally necessary for a NameNode restart. This
can be useful for audit purposes, or for an HA setup where a remote Standby Node may
have been offline for some time and require a longer backlog of retained edits in order
to start again.

Hortonworks Data Platform March 1, 2016

29

7. Hadoop Archives
The Hadoop Distributed File System (HDFS) is designed to store and process large data sets,
but HDFS can be less efficient when storing a large number of small files. When there are
many small files stored in HDFS, these small files occupy a large portion of the namespace.
As a result, disk space is under-utilized because of the namespace limitation.

Hadoop Archives (HAR) can be used to address the namespace limitations associated
with storing many small files. A Hadoop Archive packs small files into HDFS blocks more
efficiently, thereby reducing NameNode memory usage while still allowing transparent
access to files. Hadoop Archives are also compatible with MapReduce, allowing transparent
access to the original files by MapReduce jobs.

7.1. Introduction
The Hadoop Distributed File System (HDFS) is designed to store and process large
(terabytes) data sets. For example, a large production cluster may have 14 PB of disk space
and store 60 million files.

However, storing a large number of small files in HDFS is inefficient. A file is generally
considered to be "small" when its size is substantially less than the HDFS block size, which
is 256 MB by default in HDP. Files and blocks are name objects in HDFS, meaning that they
occupy namespace (space on the NameNode). The namespace capacity of the system is
therefore limited by the physical memory of the NameNode.

When there are many small files stored in the system, these small files occupy a large
portion of the namespace. As a consequence, the disk space is underutilized because of the
namespace limitation. In one real-world example, a production cluster had 57 million files
less than 256 MB in size, with each of these files taking up one block on the NameNode.
These small files used up 95% of the namespace but occupied only 30% of the cluster disk
space.

Hadoop Archives (HAR) can be used to address the namespace limitations associated
with storing many small files. HAR packs a number of small files into large files so that the
original files can be accessed transparently (without expanding the files).

HAR increases the scalability of the system by reducing the namespace usage and
decreasing the operation load in the NameNode. This improvement is orthogonal to
memory optimization in the NameNode and distributing namespace management across
multiple NameNodes.

Hadoop Archive is also compatible with MapReduce — it allows parallel access to the
original files by MapReduce jobs.

7.2. Hadoop Archive Components
HAR Format Data Model

The Hadoop Archive data format has the following layout:

Hortonworks Data Platform March 1, 2016

30

foo.har/_masterindex //stores hashes and offsets
foo.har/_index //stores file statuses
foo.har/part-[1..n] //stores actual file data

The file data is stored in multipart files, which are indexed in order to retain the original
separation of data. Moreover, the file parts can be accessed in parallel by MapReduce
programs. The index files also record the original directory tree structures and file status.

HAR File System

Most archival systems, such as tar, are tools for archiving and de-archiving. Generally, they
do not fit into the actual file system layer and hence are not transparent to the application
writer in that the archives must be expanded before use.

The Hadoop Archive is integrated with the Hadoop file system interface. The
HarFileSystem implements the FileSystem interface and provides access via the
har:// scheme. This exposes the archived files and directory tree structures transparently
to users. Files in a HAR can be accessed directly without expanding them.

For example, if we have the following command to copy an HDFS file to a local directory:

hdfs dfs –get hdfs://namenode/foo/file-1 localdir

Suppose a Hadoop Archive bar.har is created from the foo directory. With the HAR, the
command to copy the original file becomes:

hdfs dfs –get har://namenode/bar.har/foo/file-1 localdir

Users only need to change the URI paths. Alternatively, users may choose to create a
symbolic link (from hdfs://namenode/foo to har://namenode/bar.har/foo in
the example above), and then even the URIs do not need to be changed. In either case,
HarFileSystem will be invoked automatically to provide access to the files in the HAR.
Because of this transparent layer, HAR is compatible with the Hadoop APIs, MapReduce,
the FS shell command-line interface, and higher-level applications such as Pig, Zebra,
Streaming, Pipes, and DistCp.

Hadoop Archiving Tool

Hadoop Archives can be created using the Hadoop archiving tool. The archiving tool uses
MapReduce to efficiently create Hadoop Archives in parallel. The tool can be invoked using
the command:

hadoop archive -archiveName name -p <parent> <src>* <dest>

A list of files is generated by traversing the source directories recursively, and then the list
is split into map task inputs. Each map task creates a part file (about 2 GB, configurable)
from a subset of the source files and outputs the metadata. Finally, a reduce task collects
metadata and generates the index files.

7.3. Creating a Hadoop Archive
The Hadoop archiving tool can be invoked using the following command:

hadoop archive -archiveName name -p <parent> <src>* <dest>

Hortonworks Data Platform March 1, 2016

31

Where -archiveName is the name of the archive you would like to create. The archive
name should be given a .har extension. The <parent> argument is used to specify the
relative path to the location where the files are to be archived in the HAR.

Example

hadoop archive -archiveName foo.har -p /user/hadoop dir1 dir2 /user/zoo

This example creates an archive using /user/hadoop as the relative archive directory. The
directories /user/hadoop/dir1 and /user/hadoop/dir2 will be archived in the /
user/zoo/foo.har archive.

Archiving does not delete the source files. If you would like to delete the input files after
creating an archive to reduce namespace, you must manually delete the source files.

Although the hadoop archive command can be run from the host file system, the archive
file is created in the HDFS file system from directories that exist in HDFS. If you reference a
directory on the host file system rather than in HDFS, you will get the following error:

The resolved paths set is empty. Please check whether the srcPaths exist,
 where srcPaths
 = [</directory/path>]

To create the HDFS directories used in the preceding example, use the following series of
commands:

hdfs dfs -mkdir /user/zoo
hdfs dfs -mkdir /user/hadoop
hdfs dfs -mkdir /user/hadoop/dir1
hdfs dfs -mkdir /user/hadoop/dir2

7.4. Looking Up Files in Hadoop Archives
The hdfs dfs -ls command can be used to look up files in Hadoop archives. Using the
example /user/zoo/foo.har archive created in the previous section, use the following
command to list the files in the archive:

hdfs dfs -ls har:///user/zoo/foo.har/

This command returns:

har:///user/zoo/foo.har/dir1
har:///user/zoo/foo.har/dir2

These archives were created with the following command:

hadoop archive -archiveName foo.har -p /user/hadoop dir1 dir2 /user/zoo

If you change the command to:

hadoop archive -archiveName foo.har -p /user/ hadoop/dir1 hadoop/dir2 /user/
zoo

And then run the following command:

hdfs dfs -ls -R har:///user/zoo/foo.har

Hortonworks Data Platform March 1, 2016

32

The following output is returned:

har:///user/zoo/foo.har/hadoop
har:///user/zoo/foo.har/hadoop/dir1
har:///user/zoo/foo.har/hadoop/dir2

Note that the modified parent argument causes the files to be archived relative to /user/
rather than /user/hadoop.

7.5. Hadoop Archives and MapReduce
To use Hadoop Archives with MapReduce, you must reference files slightly differently than
with the default file system. If you have a Hadoop Archive stored in HDFS in /user/ zoo/
foo.har, you must specify the input directory as har:///user/zoo/foo.har to use it
as a MapReduce input. Since Hadoop Archives are exposed as a file system, MapReduce is
able to use all of the logical input files in Hadoop Archives as input.

Hortonworks Data Platform March 1, 2016

33

8. JMX Metrics APIs for HDFS Daemons
You can use the following methods to access HDFS metrics using the Java Management
Extensions (JMX) APIs.

Use the HDFS Daemon Web Interface

You can access JMX metrics through the web interface of an HDFS daemon. This is the
recommended method.

For example, use the following command format to access the NameNode JMX:

curl -i http://localhost:50070/jmx

You can use the qry parameter to fetch only a particular key:

curl -i http://localhost:50070/jmx?qry=Hadoop:service=NameNode,name=
NameNodeInfo

Directly Access the JMX Remote Agent

This method requires that the JMX remote agent is enabled with a JVM option when
starting HDFS services.

For example, the following JVM options in hadoop-env.sh are used to enable the JMX
remote agent for the NameNode. It listens on port 8004 with SSL disabled. The user name
and password are saved in the mxremote.password file.

export HADOOP_NAMENODE_OPTS="-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.password.file=$HADOOP_CONF_DIR/jmxremote.
password
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.port=8004 $HADOOP_NAMENODE_OPTS"

Details about related settings can be found here. You can also use the jmxquery tool to
retrieve information through JMX.

Hadoop also has a built-in JMX query tool, jmxget. For example:

hdfs jmxget -server localhost -port 8004 -service NameNode

Note that jmxget requires that authentication be disabled, as it does not accept a user
name and password.

Using JMX can be challenging for operations personnel who are not familiar with
JMX setup, especially JMX with SSL and firewall tunnelling. Therefore, it is generally
recommended that you collect JXM information through the web interface of HDFS
daemons rather than directly accessing the JMX remote agent.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html
https://code.google.com/p/jmxquery/

Hortonworks Data Platform March 1, 2016

34

9. Memory as Storage (Technical
Preview)

This chapter describes how to use DataNode memory as storage in HDFS.

Note

This feature is a technical preview and considered under development. Do not
use this feature in your production systems. If you have questions regarding this
feature, contact Support by logging a case on our Hortonworks Support Portal
at https://support.hortonworks.com.

9.1. Introduction
HDFS supports efficient writes of large data sets to durable storage, and also provides
reliable access to the data. This works well for batch jobs that write large amounts of
persistent data.

Emerging classes of applications are driving use cases for writing smaller amounts of
temporary data. Using DataNode memory as storage addresses the use case of applications
that want to write relatively small amounts of intermediate data sets with low latency.

Writing block data to memory reduces durability, as data can be lost due to process restart
before it is saved to disk. HDFS attempts to save replica data to disk in a timely manner to
reduce the window of possible data loss.

DataNode memory is referenced using the RAM_DISK storage type and the LAZY_PERSIST
storage policy.

Using DataNode memory as HDFS storage involves the following steps:

1. Shut down the DataNode.

2. Mount a portion of DataNode memory for use by HDFS.

3. Assign the RAM_DISK storage type to the DataNode, and enable short-circuit reads.

4. Set the LAZY_PERSIST storage policy on the HDFS files and directories that will use
memory as storage.

5. Restart the DataNode.

If you update a storage policy setting on a file or directory, you must use the HDFS mover
data migration tool to actually move blocks as specified by the new storage policy.

Memory as storage represents one aspect of YARN resource management capabilities that
includes CPU scheduling, CGroups, node labels, and archival storage.

9.2. HDFS Storage Types
HDFS storage types can be used to assign data to different types of physical storage media.
The following storage types are available:

https://support.hortonworks.com

Hortonworks Data Platform March 1, 2016

35

• DISK -- Disk drive storage (default storage type)

• ARCHIVE -- Archival storage (high storage density, low processing resources)

• SSD -- Solid State Drive

• RAM_DISK -- DataNode Memory

If no storage type is assigned, DISK is used as the default storage type.

9.3. The LAZY_PERSIST Memory Storage Policy
You can store data on configured DataNode memory using the LAZY_PERSIST storage
policy.

For LAZY_PERSIST, the first replica is stored on RAM_DISK (DataNode memory), and
the remaining replicas are stored on DISK. The fallback storage for both creation and
replication is DISK.

The following table summarizes these replication policies:

Policy ID Policy Name Block Placement (for
n replicas)

Fallback storage for
creation

Fallback storage for
replication

15 LAZY_PERSIST RAM_DISK: 1,
DISK:n-1

DISK DISK

Note

Currently, storage policies cannot be edited.

9.4. Configuring Memory as Storage
Use the following steps to configure DataNode memory as storage:

1. Shut Down the DataNode

Shut down the DataNode using the applicable commands in the Controlling HDP Services
Manually section of the HDP Reference Guide.

2. Mount a Portion of DataNode Memory for HDFS

To use DataNode memory as storage, you must first mount a portion of the DataNode
memory for use by HDFS.

For example, you would use the following commands to allocate 2GB of memory for HDFS
storage:

sudo mkdir -p /mnt/hdfsramdisk
sudo mount -t tmpfs -o size=2048m tmpfs /mnt/hdfsramdisk
Sudo mkdir -p /usr/lib/hadoop-hdfs

3. Assign the RAM_DISK Storage Type and Enable Short-Circuit Reads

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform March 1, 2016

36

Edit the following properties in the /etc/hadoop/conf/hdfs-site.xml file to assign
the RAM_DISK storage type to DataNodes and enable short-circuit reads.

• The dfs.name.dir property determines where on the local filesystem a DataNode
should store its blocks. To specify a DataNode as RAM_DISK storage, insert [RAM_DISK]
at the beginning of the local file system mount path and add it to the dfs.name.dir
property.

• To enable short-circuit reads, set the value of dfs.client.read.shortcircuit to
true.

For example:

<property>
 <name>dfs.data.dir</name>
 <value>file:///grid/3/aa/hdfs/data/,[RAM_DISK]file:///mnt/hdfsramdisk/</
value>
</property>

<property>
 <name>dfs.client.read.shortcircuit</name>
 <value>true</value>
</property>

<property>
 <name>dfs.domain.socket.path</name>
 <value>/var/lib/hadoop-hdfs/dn_socket</value>
</property>

<property>
 <name>dfs.checksum.type</name>
 <value>NULL</value>
</property>

4. Set the LAZY_PERSIST Storage Policy on Files or Directories

Set a storage policy on a file or a directory.

Command:

hdfs dfsadmin -setStoragePolicy <path> <policyName>

Arguments:

• <path> - The path to a directory or file.

• <policyName> - The name of the storage policy.

Example:

hdfs dfsadmin -setStoragePolicy /memory1 LAZY_PERSIST

Get the storage policy of a file or a directory.

Command:

hdfs dfsadmin -getStoragePolicy <path>

Arguments:

Hortonworks Data Platform March 1, 2016

37

• <path> - The path to a directory or file.

Example:

hdfs dfsadmin -getStoragePolicy /memory1 LAZY_PERSIST

5. Start the DataNode

Start the DataNode using the applicable commands in the Controlling HDP Services
Manually section of the HDP Reference Guide.

Using Mover to Apply Storage Policies

When you update a storage policy setting on a file or directory, the new policy is not
automatically enforced. You must use the HDFS mover data migration tool to actually
move blocks as specified by the new storage policy.

The mover data migration tool scans the specified files in HDFS and checks to see if the
block placement satisfies the storage policy. For the blocks that violate the storage policy,
it moves the replicas to the applicable storage type in order to fulfill the storage policy
requirements.

Command:

hdfs mover [-p <files/dirs> | -f <local file name>]

Arguments:

• -p<files/dirs> - Specify a space-separated list of HDFS files/directories to migrate.

• -f<local file> - Specify a local file list containing a list of HDFS files/directories to migrate.

Note

When both -p and -f options are omitted, the default path is the root
directory.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform March 1, 2016

38

10. Running DataNodes as Non-Root
This chapter describes how to run DataNodes as a non-root user.

10.1. Introduction
Historically, part of the security configuration for HDFS involved starting the DataNode
as the root user, and binding to privileged ports for the server endpoints. This was done
to address a security issue whereby if a MapReduce task was running and the DataNode
stopped running, it would be possible for the MapReduce task to bind to the DataNode
port and potentially do something malicious. The solution to this scenario was to run the
DataNode as the root user and use privileged ports. Only the root user can access privileged
ports.

You can now use Simple Authentication and Security Layer (SASL) to securely run
DataNodes as a non-root user. SASL is used to provide secure communication at the
protocol level.

Important

Make sure to execute a migration from using root to start DataNodes to using
SASL to start DataNodes in a very specific sequence across the entire cluster.
Otherwise, there could be a risk of application downtime.

In order to migrate an existing cluster that used root authentication to start using SASL
instead, first ensure that HDP 2.2 or later has been deployed to all cluster nodes as well
as any external applications that need to connect to the cluster. Only the HDFS client in
versions HDP 2.2 and later can connect to a DataNode that uses SASL for authentication of
data transfer protocol, so it is vital that all callers have the correct version before migrating.
After HDP 2.2 or later has been deployed everywhere, update the configuration of any
external applications to enable SASL. If an HDFS client is enabled for SASL, it can connect
successfully to a DataNode running with either root authentication or SASL authentication.
Changing configuration for all clients guarantees that subsequent configuration changes
on DataNodes will not disrupt the applications. Finally, each individual DataNode can be
migrated by changing its configuration and restarting. It is acceptable to temporarily have
a mix of some DataNodes running with root authentication and some DataNodes running
with SASL authentication during this migration period, because an HDFS client enabled for
SASL can connect to both.

10.2. Configuring DataNode SASL
Use the following steps to configure DataNode SASL to securely run a DataNode as a non-
root user:

1. Shut Down the DataNode

Shut down the DataNode using the applicable commands in the "Controlling HDP Services
Manually" section of HDP Reference Guide.

2. Enable SASL

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform March 1, 2016

39

Configure the following properties in the /etc/hadoop/conf/hdfs-site.xml file to
enable DataNode SASL.

The dfs.data.transfer.protection property enables DataNode SASL. You can set
this property to one of the following values:

• authentication -- Establishes mutual authentication between the client and the
server.

• integrity -- in addition to authentication, it guarantees that a man-in-the-middle
cannot tamper with messages exchanged between the client and the server.

• privacy -- in addition to the features offered by authentication and integrity, it also
fully encrypts the messages exchanged between the client and the server.

In addition to setting a value for the dfs.data.transfer.protection property, you
must set the dfs.http.policy property to HTTPS_ONLY. You must also specify ports
for the DataNode RPC and HTTP Servers.

Note

For more information on configuring SSL, see the sections "Creating and
Managing SSL Certificates" and "Enabling SSL for HDP Components" in the
Hadoop Security Guide.

For example:

<property>
 <name>dfs.data.transfer.protection</name>
 <value>integrity</value>
</property>

<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:10019</value>
</property>

<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:10022</value>
</property>

<property>
 <name>dfs.http.policy</name>
 <value>HTTPS_ONLY</value>
</property>

Note

If you are already using the following encryption setting:

dfs.encrypt.data.transfer=true

This is similar to:

dfs.data.transfer.protection=privacy

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_Security_Guide/content/ch_hdp-security-guide-wire-encryption.html

Hortonworks Data Platform March 1, 2016

40

These two settings are mutually exclusive, so you should not have both of them
set. However, if both are set, dfs.encrypt.data.transfer will not be
used.

3. Update Environment Settings

Edit the following setting in the /etc/hadoop/conf/hadoop-env.sh file, as shown
below:

#On secure datanodes, user to run the datanode as after dropping privileges
export HADOOP_SECURE_DN_USER=

The export HADOOP_SECURE_DN_USER=hdfs line enables the legacy security
configuration, and must be set to an empty value in order for SASL to be enabled.

4. Start the DataNode

Start the DataNode services using the applicable commands in the "Controlling HDP
Services Manually" section of HDP Reference Guide.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_HDP_Reference_Guide/content/ch_controlling_hdp_svcs_manually.html

Hortonworks Data Platform March 1, 2016

41

11. Short Circuit Local Reads On HDFS
In HDFS, reads normally go through the DataNode. Thus, when a client asks the DataNode
to read a file, the DataNode reads that file off of the disk and sends the data to the client
over a TCP socket. "Short-circuit" reads bypass the DataNode, allowing the client to read the
file directly. Obviously, this is only possible in cases where the client is co-located with the
data. Short-circuit reads provide a substantial performance boost to many applications.

11.1. Prerequisites
To configure short-circuit local reads, you must enable libhadoop.so. See Native Libraries
for details on enabling this library.

11.2. Configuring Short-Circuit Local Reads on
HDFS

To configure short-circuit local reads, add the following properties to the hdfs-site.xml
file. Short-circuit local reads need to be configured on both the DataNode and the client.

11.3. Short-Circuit Local Read Properties in hdfs-
site.xml

Property Name Property Value Description

dfs.client.read.shortcircuit true Set this to true to enable short-circuit
local reads.

dfs.domain.socket.path /var/lib/hadoop-hdfs/ dn_socket The path to the domain socket. Short-
circuit reads make use of a UNIX
domain socket. This is a special path
in the file system that allows the client
and the DataNodes to communicate.
You will need to set a path to this
socket. The DataNode needs to be able
to create this path. On the other hand,
it should not be possible for any user
except the hdfs user or root to create
this path. For this reason, paths under /
var/run or /var/lib are often used.

In the file system that allows the client
and the DataNodes to communicate.
You will need to set a path to this
socket. The DataNode needs to be able
to create this path. On the other hand,
it should not be possible for any user
except the hdfs user or root to create
this path. For this reason, paths under /
var/run or /var/lib are often used.

dfs.client.domain.socket.data.traffic false This property controls whether or
not normal data traffic will be passed
through the UNIX domain socket. This
feature has not been certified with
HDP releases, so it is recommended
that you set the value of this property
to false.

http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/NativeLibraries.html

Hortonworks Data Platform March 1, 2016

42

Property Name Property Value Description

Abnormal data traffic will be passed
through the UNIX domain socket.

dfs.client.use.legacy.blockreader.local false Setting this value to false specifies
that the new version (based on
HDFS-347) of the short-circuit reader
is used. This new new short-circuit
reader implementation is supported
and recommended for use with HDP.
Setting this value to true would mean
that the legacy short-circuit reader
would be used.

dfs.datanode.hdfs-blocks-
metadata.enabled

true Boolean which enables back-end
DataNode-side support for the
experimental

DistributedFileSystem#getFile

VBlockStorageLocationsAPI.

dfs.client.file-block-storage-
locations.timeout

60 Timeout (in seconds) for the parallel
RPCs made in

DistributedFileSystem

#getFileBlockStorageLocations().

This property is deprecated but is still
supported for backward

compatibility

dfs.client.file-block-storage-
locations.timeout.millis

60000 Timeout (in milliseconds) for the
parallel RPCs made in

DistributedFileSystem

#getFileBlockStorageLocations().

This property replaces

dfs.client.file-block-
storage-locations.timeout,

and offers a finer level of granularity.

dfs.client.read.shortcircuit.

skip.checksum

false If this configuration parameter is
set, short-circuit local reads will skip
checksums. This is normally not
recommended, but it may be useful
for special setups. You might consider
using this if you are doing your own
checksumming outside of HDFS.

dfs.client.read.shortcircuit.

streams.cache.size

256 The DFSClient maintains a cache of
recently opened file descriptors. This
parameter controls the size of that
cache. Setting this higher will use more
file descriptors, but potentially provide
better performance on workloads
involving many seeks.

dfs.client.read.shortcircuit.

streams.cache.expiry.ms

300000 This controls the minimum amount of
time (in milliseconds) file descriptors
need to sit in the client cache context
before they can be closed for being
inactive for too long.

The XML for these entries:

Hortonworks Data Platform March 1, 2016

43

<configuration>

<property>
 <name>dfs.client.read.shortcircuit</name>
 <value>true</value>
</property>

<property>
 <name>dfs.domain.socket.path</name>
 <value>/var/lib/hadoop-hdfs/dn_socket</value>
</property>

<property>
 <name>dfs.client.domain.socket.data.traffic</name>
 <value>false</value>
</property>

<property>
 <name>dfs.client.use.legacy.blockreader.local</name>
 <value>false</value>
</property>

<property>
 <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
 <value>true</value>
</property>

<property>
 <name>dfs.client.file-block-storage-locations.timeout.millis</name>
 <value>60000</value>
</property>

<property>
 <name>dfs.client.read.shortcircuit.skip.checksum</name>
 <value>false</value>
</property>

<property>
 <name>dfs.client.read.shortcircuit.streams.cache.size</name>
 <value>256</value>
</property>

<property>
 <name>dfs.client.read.shortcircuit.streams.cache.expiry.ms</name>
 <value>300000</value>
</property>

</configuration>

Hortonworks Data Platform March 1, 2016

44

12. Accidental Deletion Protection
This chapter describes accidental deletion protection using HDFS features.

12.1. Preventing Accidental Deletion of Files
You can prevent accidental deletion of files by enabling the Trash feature for HDFS. For
additional information regarding HDFS trash configuration, see HDFS Architecture.

You might still cause irrecoverable data loss if the -skipTrash and -R options are
accidentally used on directories with a large number of files. You can obtain an additional
layer of protection by using the -safely option to the fs shell -rm command. The fs shell
-rm command checks the hadoop.shell.safely.delete.limit.num.files property from core-
site.xml file, even if you specify -skipTrash. By specifying the -safely option, the -
rm command requires that you confirm if the number of files to be deleted is greater than
the limit specified by the assigned value. The default limit for value is 100, referring to 100
files.

This confirmation warning is disabled if value is set at 0 or the -safely is not specified to
the -rm command.

To enable the hadoop.shell.safely.delete.limit.num.files property, add the following lines to
core-site.xml:

<property>
<name>hadoop.shell.safely.delete.limit.num.files</name>
<value>100</value>
<description>Used by -safely option of hadoop fs shell -rm command to avoid
accidental deletion of large directories.</description>
</property>

In the following example, the hadoop.shell.safely.delete.limit.num.files property with an
associated value of 10 has been added to core-site.xml with -skipTrash . In this
example, fs shell -r prompts deletion of a directory with only 10 files. It does not prompt if
trash is enabled and -skipTrash is not.

[ambari-qa@c6405 current]$ hdfs dfs -ls -R /tmp/test1
-rw-r--r-- 3 ambari-qa hdfs 2413 2016-10-20 20:57 /tmp/test1/capacity-
scheduler.xml
-rw-r--r-- 3 ambari-qa hdfs 4435 2016-10-20 20:57 /tmp/test1/core-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 1308 2016-10-20 20:57 /tmp/test1/hadoop-
policy.xml
-rw-r--r-- 3 ambari-qa hdfs 8071 2016-10-20 20:57 /tmp/test1/hdfs-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 3518 2016-10-20 20:57 /tmp/test1/kms-acls.
xml
-rw-r--r-- 3 ambari-qa hdfs 5511 2016-10-20 20:57 /tmp/test1/kms-site.
xml
-rw-r--r-- 3 ambari-qa hdfs 7339 2016-10-20 20:57 /tmp/test1/mapred-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 884 2016-10-20 20:57 /tmp/test1/ssl-
client.xml

https://hadoop.apache.org/docs/r3.0.0-alpha1/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

Hortonworks Data Platform March 1, 2016

45

-rw-r--r-- 3 ambari-qa hdfs 1000 2016-10-20 20:57 /tmp/test1/ssl-
server.xml
-rw-r--r-- 3 ambari-qa hdfs 20349 2016-10-20 20:57 /tmp/test1/yarn-
site.xml
[ambari-qa@c6405 current]$ hdfs dfs -rm -R /tmp/test1
16/10/20 20:58:37 INFO fs.TrashPolicyDefault: Moved: 'hdfs://c6403.ambari.
apache.org:8020/tmp/test1' to trash at: hdfs://c6403.ambari.apache.org:8020/
user/ambari-qa/.Trash/Current/tmp/test1

The following example deletes files without prompting or moving to the trash:

[ambari-qa@c6405 current]$ hdfs dfs -ls -R /tmp/test2
-rw-r--r-- 3 ambari-qa hdfs 2413 2016-10-20 20:59 /tmp/test2/capacity-
scheduler.xml
-rw-r--r-- 3 ambari-qa hdfs 4435 2016-10-20 20:59 /tmp/test2/core-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 1308 2016-10-20 20:59 /tmp/test2/hadoop-
policy.xml
-rw-r--r-- 3 ambari-qa hdfs 8071 2016-10-20 20:59 /tmp/test2/hdfs-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 3518 2016-10-20 20:59 /tmp/test2/kms-acls.
xml
-rw-r--r-- 3 ambari-qa hdfs 5511 2016-10-20 20:59 /tmp/test2/kms-site.
xml
-rw-r--r-- 3 ambari-qa hdfs 7339 2016-10-20 20:59 /tmp/test2/mapred-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 884 2016-10-20 20:59 /tmp/test2/ssl-
client.xml
-rw-r--r-- 3 ambari-qa hdfs 1000 2016-10-20 20:59 /tmp/test2/ssl-
server.xml
-rw-r--r-- 3 ambari-qa hdfs 20349 2016-10-20 20:59 /tmp/test2/yarn-
site.xml
[ambari-qa@c6405 current]$ hdfs dfs -rm -R -skipTrash /tmp/test2
Deleted /tmp/test2

The following example prompts for you to confirm file deletion if the
number of files to be deleted is greater than the value specified to
hadoop.shell.safely.delete.limit.num.files:

[ambari-qa@c6405 current]$ hdfs dfs -ls -R /tmp/test3
-rw-r--r-- 3 ambari-qa hdfs 2413 2016-10-20 21:00 /tmp/test3/capacity-
scheduler.xml
-rw-r--r-- 3 ambari-qa hdfs 4435 2016-10-20 21:00 /tmp/test3/core-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 1308 2016-10-20 21:00 /tmp/test3/hadoop-
policy.xml
-rw-r--r-- 3 ambari-qa hdfs 8071 2016-10-20 21:00 /tmp/test3/hdfs-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 3518 2016-10-20 21:00 /tmp/test3/kms-acls.
xml
-rw-r--r-- 3 ambari-qa hdfs 5511 2016-10-20 21:00 /tmp/test3/kms-site.
xml
-rw-r--r-- 3 ambari-qa hdfs 7339 2016-10-20 21:00 /tmp/test3/mapred-
site.xml
-rw-r--r-- 3 ambari-qa hdfs 884 2016-10-20 21:00 /tmp/test3/ssl-
client.xml
-rw-r--r-- 3 ambari-qa hdfs 1000 2016-10-20 21:00 /tmp/test3/ssl-
server.xml
-rw-r--r-- 3 ambari-qa hdfs 20349 2016-10-20 21:00 /tmp/test3/yarn-
site.xml

Hortonworks Data Platform March 1, 2016

46

[ambari-qa@c6405 current]$ hdfs dfs -rm -R -skipTrash -safely /tmp/test3
Proceed deleting 10 files? (Y or N) N
Delete aborted at user request.

Warning

Using the -skipTrash option without the -safely option is not
recommended, as files will be deleted immediately and without warning.

Hortonworks Data Platform March 1, 2016

47

13. WebHDFS Administrator Guide
Use the following instructions to set up WebHDFS:

1. Set up WebHDFS. Add the following property to the hdfs-site.xml file

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>

If running a secure cluster, follow the steps listed below.

1. Create an HTTP service user principal using the command given below:

kadmin: addprinc -randkey HTTP/$<Fully_Qualified_Domain_Name>@$<Realm_Name>.
COM

where:

Create an HTTP service user principal using the command given below:

kadmin: addprinc -randkey HTTP/$<Fully_Qualified_Domain_Name>@$<Realm_Name>.
COM

where:

• Fully_Qualified_Domain_Name: Host where NameNode is deployed

• Realm_Name: Name of your Kerberos realm

2. Create keytab files for the HTTP principals.

kadmin: xst -norandkey -k /etc/security/spnego.service.keytab HTTP/
$<Fully_Qualified_Domain_Name>

3. Verify that the keytab file and the principal are associated with the correct service.

klist –k -t /etc/security/spnego.service.keytab

4. Add the following properties to the hdfs-site.xmlfile.

<property>
 <name>dfs.web.authentication.kerberos.principal</name>
 <value>HTTP/$<Fully_Qualified_Domain_Name>@$<Realm_Name>.COM</value>
</property>
<property>
 <name>dfs.web.authentication.kerberos.keytab</name>
 <value>/etc/security/spnego.service.keytab</value>
</property>

where:

• Fully_Qualified_Domain_Name: Host where NameNode is deployed

• Realm_Name: Name of your Kerberos realm

Hortonworks Data Platform March 1, 2016

48

5. Restart the NameNode and DataNode services using the applicable commands in the
"Controlling HDP Services Manually" section of Installing HDP Manually.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.4.0/bk_installing_manually_book/content/ch_getting_ready_chapter.html

Hortonworks Data Platform March 1, 2016

49

14. Backing Up HDFS Metadata
This chapter focuses on understanding and backing up HDFS metadata.

14.1. Introduction to HDFS Metadata Files and
Directories

HDFS metadata represents the structure of HDFS directories and files in a tree. It also
includes the various attributes of directories and files, such as ownership, permissions,
quotas, and replication factor.

14.1.1. Files and Directories

Warning

Do not attempt to modify metadata directories or files. Unexpected
modifications can cause HDFS downtime, or even permanent data loss. This
information is provided for educational purposes only.

Persistence of HDFS metadata broadly consist of two categories of files:

fsimage Contains the complete state of the file system at a point in time. Every
file system modification is assigned a unique, monotonically increasing
transaction ID. An fsimage file represents the file system state after all
modifications up to a specific transaction ID.

edits file Contains a log that lists each file system change (file creation, deletion or
modification) that was made after the most recent fsimage.

Checkpointing is the process of merging the content of the most recent fsimage, with all
edits applied after that fsimage is merged, to create a new fsimage. Checkpointing
is triggered automatically by configuration policies or manually by HDFS administration
commands.

14.1.1.1. Namenodes

The following example shows an HDFS metadata directory taken from a NameNode.
This shows the output of running the tree command on the metadata directory, which is
configured by setting dfs.namenode.name.dir in hdfs-site.xml.

data/dfs/name
current#
VERSION#
edits_0000000000000000001-0000000000000000007
edits_0000000000000000008-0000000000000000015
edits_0000000000000000016-0000000000000000022
edits_0000000000000000023-0000000000000000029
edits_0000000000000000030-0000000000000000030
edits_0000000000000000031-0000000000000000031
edits_inprogress_0000000000000000032

Hortonworks Data Platform March 1, 2016

50

fsimage_0000000000000000030
fsimage_0000000000000000030.md5
fsimage_0000000000000000031
fsimage_0000000000000000031.md5
seen_txid
in_use.lock

In this example, the same directory has been used for both fsimage and edits.
Alternative configuration options are available that allow separating fsimage and edits
into different directories. Each file within this directory serves a specific purpose in the
overall scheme of metadata persistence:

VERSION Text file that contains the following elements:

layoutVersion Version of the HDFS
metadata format.
When you add new
features that require
a change to the
metadata format,
you change this
number. An HDFS
upgrade is required
when the current
HDFS software uses
a layout version that
is newer than the
current one.

namespaceID/clusterID/
blockpoolID

Unique identifiers
of an HDFS cluster.
These identifiers
are used to
prevent DataNodes
from registering
accidentally with an
incorrect NameNode
that is part of a
different cluster.
These identifiers
also are particularly
important in
a federated
deployment.
Within a federated
deployment,
there are multiple
NameNodes
working
independently. Each
NameNode serves
a unique portion
of the namespace

Hortonworks Data Platform March 1, 2016

51

(namespaceID)
and manages a
unique set of blocks
(blockpoolID).
The clusterID ties
the whole cluster
together as a single
logical unit. This
structure is the same
across all nodes in
the cluster.

storageType Always NAME_NODE
for the NameNode,
and never
JOURNAL_NODE.

cTime Creation time of
file system state.
This field is updated
during HDFS
upgrades.

edits_start transaction ID-end
transaction ID

Finalized and unmodifiable edit log segments. Each of
these files contains all of the edit log transactions in the
range defined by the file name. In an High Availability
deployment, the standby can only read up through
the finalized log segments. The standby NameNode is
not up-to-date with the current edit log in progress.
When an HA failover happens, the failover finalizes the
current log segment so that it is completely caught up
before switching to active.

fsimage_end transaction ID Contains the complete metadata image up through .
Each fsimage file also has a corresponding .md5 file
containing a MD5 checksum, which HDFS uses to guard
against disk corruption.

seen_txid Contains the last transaction ID of the last checkpoint
(merge of edits into an fsimage) or edit log roll
(finalization of current edits_inprogress and
creation of a new one). This is not the last transaction
ID accepted by the NameNode. The file is not updated
on every transaction, only on a checkpoint or an edit log
roll. The purpose of this file is to try to identify if edits
are missing during startup. It is possible to configure
the NameNode to use separate directories for fsimage
and edits files. If the edits directory accidentally gets
deleted, then all transactions since the last checkpoint
would go away, and the NameNode starts up using
just fsimage at an old state. To guard against this,
NameNode startup also checks seen_txid to verify

Hortonworks Data Platform March 1, 2016

52

that it can load transactions at least up through that
number. It aborts startup if it cannot verify the load
transactions.

in_use.lock Lock file held by the NameNode process, used to
prevent multiple NameNode processes from starting up
and concurrently modifying the directory.

14.1.1.2. Journalnodes

In an HA deployment, edits are logged to a separate set of daemons called
JournalNodes. A JournalNode’s metadata directory is configured by setting
dfs.journalnode.edits.dir. The JournalNode contains a VERSION file, multiple edits__
files and an edits_inprogress_, just like the NameNode. The JournalNode does not
have fsimage files or seen_txid. In addition, it contains several other files relevant to
the HA implementation. These files help prevent a split-brain scenario, in which multiple
NameNodes could think they are active and all try to write edits.

committed-txid Tracks last transaction ID committed by a NameNode.

last-promised-epoch Contains the “epoch,” which is a monotonically increasing
number. When a new NameNode, starts as active, it
increments the epoch and presents it in calls to the
JournalNode. This scheme is the NameNode’s way of claiming
that it is active and requests from another NameNode,
presenting a lower epoch, must be ignored.

last-writer-epoch Contains the epoch number associated with the writer who
last actually wrote a transaction.

paxos Specifies the directory that temporary files used in the
implementation of the Paxos distributed consensus protocol.
This directory often appears as empty.

14.1.1.3. Datanodes

Although DataNodes do not contain metadata about the directories and files stored in an
HDFS cluster, they do contain a small amount of metadata about the DataNode itself and
its relationship to a cluster. This shows the output of running the tree command on the
DataNode’s directory, configured by setting dfs.datanode.data.dir in hdfs-site.xml.

data/dfs/data/
current
BP-1079595417-192.168.2.45-1412613236271
current
VERSION
finalized
subdir0# # # # ### subdir1
blk_1073741825
blk_1073741825_1001.meta
lazyPersist
rbw
dncp_block_verification.log.curr
dncp_block_verification.log.prev
tmp

Hortonworks Data Platform March 1, 2016

53

VERSION
in_use.lock

The purpose of these files are as follows:

BP-random integer-NameNode-
IP address-creation time

Top level directory for datanodes. The naming
convention for this directory is significant and
constitutes a form of cluster metadata. The name
is a block pool ID. “BP” stands for “block pool,” the
abstraction that collects a set of blocks belonging
to a single namespace. In the case of a federated
deployment, there are multiple “BP” sub-directories,
one for each block pool. The remaining components
form a unique ID: a random integer, followed by the IP
address of the NameNode that created the block pool,
followed by creation time.

VERSION Text file containing multiple properties, such as
layoutVersion, clusterId and cTime, which is much like
the NameNode and JournalNode. There is a VERSION
file tracked for the entire DataNode as well as a
separate VERSION file in each block pool sub-directory.

In addition to the properties already discussed earlier,
the DataNode’s VERSION files also contain:

storageType storageType field is set to
DATA_NODE.

blockpoolID Repeats the block pool ID information
encoded into the sub-directory name.

finalized/rbw Both finalized and rbw contain a directory structure
for block storage. This holds numerous block files, which
contain HDFS file data and the corresponding .meta
files, which contain checksum information. rbw stands
for “replica being written”. This area contains blocks
that are still being written to by an HDFS client. The
finalized sub-directory contains blocks that are not
being written to by a client and have been completed.

lazyPersist HDFS is incorporating a new feature to support writing
transient data to memory, followed by lazy persistence
to disk in the background. If this feature is in use, then
a lazyPersist sub-directory is present and used for lazy
persistence of in-memory blocks to disk. We’ll cover this
exciting new feature in greater detail in a future blog
post.

scanner.cursor File to which the "cursor state" is saved.

The DataNode runs a block scanner which periodically
does checksum verification of each block file on disk.

Hortonworks Data Platform March 1, 2016

54

This scanner maintains a "cursor," representing the last
block to be scanned in each block pool slice on the
volume, and called the "cursor state."

in_use.lock Lock file held by the DataNode process, used to prevent
multiple DataNode processes from starting up and
concurrently modifying the directory.

14.1.2. HDFS Commands

You can use the following HDFS commands to manipulate metadata files and directories:

hdfs namenode Automatically saves a new checkpoint at NameNode
startup. As stated earlier, checkpointing is the process
of merging any outstanding edit logs with the latest
fsimage, saving the full state to a new fsimage file,
and rolling edits. Rolling edits means finalizing the
current edits_inprogress and starting a new one.

hdfs dfsadmin -safemode enter,
hdfs dfsadmin -saveNamespace

Saves a new checkpoint (similar to restarting
NameNode) while the NameNode process remains
running. The NameNode must be in safe mode, and all
attempted write activity fails while this command runs.

hdfs dfsadmin -rollEdits Manually rolls edits. Safe mode is not required.

This can be useful if a standby NameNode is lagging
behind the active NameNode and you want it to get
caught up more quickly. The standby NameNode can
only read finalized edit log segments, not the current in
progress edits file.

hdfs dfsadmin -fetchImage Downloads the latest fsimage from the NameNode.
This can be helpful for a remote backup type of
scenario.

14.1.2.1. Configuration Properties

dfs.namenode.name.dir Specifies where on the local filesystem the DFS name
node stores the name table (fsimage). If this is a
comma-delimited list of directories then the name table
is replicated in all of the directories, for redundancy.

dfs.namenode.edits.dir Specifies where on the local filesystem the DFS
name node stores the transaction (edits) file.
If this is a comma-delimited list of directories, the
transaction file is replicated in all of the directories, for
redundancy. The default value is set to the same value
as dfs.namenode.name.dir.

dfs.namenode.checkpoint.period Specifies the number of seconds between two periodic
checkpoints.

Hortonworks Data Platform March 1, 2016

55

dfs.namenode.checkpoint.txns The standby creates a checkpoint of the namespace
every dfs.namenode.checkpoint.txns
transactions, regardless of whether
dfs.namenode.checkpoint.period has expired.

dfs.namenode.checkpoint.check.periodSpecifies how frequently to query for the number of un-
checkpointed transactions.

dfs.namenode.num.checkpoints.retainedSpecifies the number of image checkpoint files to be
retained in storage directories. All edit logs necessary
to recover an up-to-date namespace from the oldest
retained checkpoint are also retained.

dfs.namenode.num.extra.edits.retainedSpecifies the number of extra transactions which are
retained beyond what is minimally necessary for a NN
restart. This can be useful for audit purposes or for an
HA setup where a remote Standby Node might have
been offline and need to have a longer backlog of
retained edits to start again.

dfs.namenode.edit.log.autoroll.multiplier.thresholdSpecifies when an active namenode rolls its own
edit log. The actual threshold (in number of
edits) is determined by multiplying this value by
dfs.namenode.checkpoint.txns. This prevents extremely
large edit files from accumulating on the active
namenode, which can cause timeouts during namenode
start-up and pose an administrative hassle. This
behavior is intended as a fail-safe for when the standby
fails to roll the edit log by the normal checkpoint
threshold.

dfs.namenode.edit.log.autoroll.check.interval.msSpecifies the time in milliseconds that an active
namenode checks if it needs to roll its edit log.

dfs.datanode.data.dir Determines where on the local filesystem an DFS data
node should store its blocks. If this is a comma-delimited
list of directories, then data is stored in all named
directories, typically on different devices. Directories
that do not exist are ignored. Heterogeneous storage
allows specifying that each directory resides on a
different type of storage: DISK, SSD, ARCHIVE or
RAM_DISK.

14.2. Backing Up HDFS Metadata
You can backup of HDFS metadata without taking down either HDFS or the NameNodes.

14.2.1. Get Ready to Backup the HDFS Metadata

• Regardless of the solution, a full, up-to-date continuous backup of the namespace is not
possible. Some of the most recent data is always lost. HDFS is not an Online Transaction

Hortonworks Data Platform March 1, 2016

56

Processing (OLTP) system. Most data can be easily recreated if you re-run Extract,
Transform, Load (ETL) or processing jobs.

• Normal NameNode failures are handled by the Standby NameNode. Doing so creates a
safety-net for the very unlikely case where both master NameNodes fail.

• In the case of both NameNode failures, you can start the NameNode service with the
most recent image of the namespace.

• Name Nodes maintain the namespace as follows:

• Standby NameNodes keep a namespace image in memory based on edits available in
a storage ensemble in Journal Nodes.

• Standby NameNodes make a namespace checkpoint and saves a fsimage_* to disk.

• Standby NameNodes transfer the fsimage to the primary NameNodes using HTTP.

Both NameNodes write fsimages to disk in the following sequence:

• NameNodes write the namespace to a file fsimage.ckpt_* on disk.

• NameNodes creates a fsimage_*.md5 file.

• NameNodes moves the file fsimage.ckpt_* to fsimage_.*.

The process by which both NameNodes write fsimages to disk ensures that:

• The most recent namespace image on disk in a fsimage_* file is on the standby
NameNode.

• Any fsimage_* file on disk is finalized and does not receive updates.

14.2.2. Perform a Backup the HDFS Metadata

Use the following procedure to backup HDFS metadata without affecting the availability of
NameNode:

1. Make sure the Standby NameNode checkpoints the namespace to fsimage_ once per
hour.

2. Deploy monitoring on both NameNodes to confirm that checkpoints are triggering
regularly. This helps reduce the amount of missing transactions in the event that you
need to restore from a backup containing only fsimage files without subsequent edit
logs. It is good practice to monitor this anyway, because huge uncheckpointed edit logs
can cause long delays after a NameNode restart while it replays those transactions.

3. Backup the most recent “fsimage_*” and “fsimage_*.md5” from the standby
NameNode periodically. Try to keep the latest version of the file on another machine in
the cluster.

	Hortonworks Data Platform
	Table of Contents
	1. ACLs on HDFS
	1.1. Configuring ACLs on HDFS
	1.2. Using CLI Commands to Create and List ACLs
	1.3. ACL Examples
	1.4. ACLS on HDFS Features
	1.5. Use Cases for ACLs on HDFS

	2. Archival Storage
	2.1. Introduction
	2.2. HDFS Storage Types
	2.3. Storage Policies: Hot, Warm, and Cold
	2.4. Configuring Archival Storage

	3. Centralized Cache Management in HDFS
	3.1. Overview
	3.2. Caching Use Cases
	3.3. Caching Architecture
	3.4. Caching Terminology
	3.5. Configuring Centralized Caching
	3.6. Using Cache Pools and Directives

	4. Configuring HDFS Compression
	5. Configuring Rack Awareness On HDP
	5.1. Create a Rack Topology Script
	5.2. Add the Topology Script Property to core-site.xml
	5.3. Restart HDFS and MapReduce
	5.4. Verify Rack Awareness

	6. Customizing HDFS
	6.1. Customize the HDFS Home Directory
	6.2. Set the Size of the NameNode Edits Directory

	7. Hadoop Archives
	7.1. Introduction
	7.2. Hadoop Archive Components
	7.3. Creating a Hadoop Archive
	7.4. Looking Up Files in Hadoop Archives
	7.5. Hadoop Archives and MapReduce

	8. JMX Metrics APIs for HDFS Daemons
	9. Memory as Storage (Technical Preview)
	9.1. Introduction
	9.2. HDFS Storage Types
	9.3. The LAZY_PERSIST Memory Storage Policy
	9.4. Configuring Memory as Storage

	10. Running DataNodes as Non-Root
	10.1. Introduction
	10.2. Configuring DataNode SASL

	11. Short Circuit Local Reads On HDFS
	11.1. Prerequisites
	11.2. Configuring Short-Circuit Local Reads on HDFS
	11.3. Short-Circuit Local Read Properties in hdfs-site.xml

	12. Accidental Deletion Protection
	12.1. Preventing Accidental Deletion of Files

	13. WebHDFS Administrator Guide
	14. Backing Up HDFS Metadata
	14.1. Introduction to HDFS Metadata Files and Directories
	14.1.1. Files and Directories
	14.1.1.1. Namenodes
	14.1.1.2. Journalnodes
	14.1.1.3. Datanodes

	14.1.2. HDFS Commands
	14.1.2.1. Configuration Properties

	14.2. Backing Up HDFS Metadata
	14.2.1. Get Ready to Backup the HDFS Metadata
	14.2.2. Perform a Backup the HDFS Metadata

