
Hortonworks Data Platform

 (October 13, 2015)

Spark QuickStart Guide

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Data Platform October 13, 2015

ii

Hortonworks Data Platform: Spark QuickStart Guide
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, ZooKeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain, free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
contact us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/training/
https://hortonworks.com/products/hdp/
https://hortonworks.com/services/
https://hortonworks.com/training/
https://hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Data Platform October 13, 2015

iii

Table of Contents
1. Introduction ... 1
2. Prerequisites .. 3
3. Installing Spark .. 4
4. Validating Spark .. 8

4.1. Run the Spark Pi example ... 8
4.2. Run the WordCount Example .. 9

5. Installing Spark with Kerberos .. 12
5.1. Accessing the Hive Metastore in Secure Mode ... 13

6. Using Spark with HDFS .. 14
7. Troubleshooting Spark ... 15

Hortonworks Data Platform October 13, 2015

iv

List of Tables
1.1. Spark Support in HDP, Ambari .. 2
1.2. Spark Feature Support by Version ... 2
2.1. Spark Prerequisites .. 3

Hortonworks Data Platform October 13, 2015

1

1. Introduction
Hortonworks Data Platform supports Apache Spark 1.3.1, a fast, large-scale data processing
engine.

Deep integration of Spark with YARN allows Spark to operate as a cluster tenant alongside
other engines such as Hive, Storm, and HBase, all running simultaneously on a single data
platform. YARN allows flexibility: you can choose the right processing tool for the job.
Instead of creating and managing a set of dedicated clusters for Spark applications, you can
store data in a single location, access and analyze it with multiple processing engines, and
leverage your resources. In a modern data architecture with multiple processing engines
using YARN and accessing data in HDFS, Spark on YARN is the leading Spark deployment
mode.

Spark Features

Spark on HDP supports the following features:

• Spark Core

• Spark on YARN

• Spark on YARN on Kerberos-enabled clusters

• Spark History Server

• Spark MLLib

• Support for Hive 0.1.3, including the collect_list UDF

The following features are available as technical previews:

• Spark DataFrame API

• ORC file support

• Spark SQL

• Spark Streaming

• Spark SQL Thrift Server

• Dynamic Executor Allocation

The following features and tools are not officially supported in this release:

• ML Pipeline API

• SparkR

• Spark Standalone

Hortonworks Data Platform October 13, 2015

2

• GraphX

• iPython

• Zeppelin

Spark on YARN uses YARN services for resource allocation, running Spark Executors in
YARN containers. Spark on YARN supports workload management and Kerberos security
features. It has two modes:

• YARN-Cluster mode, optimized for long-running production jobs.

• YARN-Client mode, best for interactive use such as prototyping, testing, and debugging.
Spark Shell runs in YARN-Client mode only.

The following tables summarize Spark versions and feature support across HDP and Ambari
versions.

Table 1.1. Spark Support in HDP, Ambari

HDP Ambari Spark

2.2.4 2.0.1 1.2.1

2.2.6 2.1.1 1.2.1

2.2.8 2.1.1 1.3.1

2.2.9 2.1.1 1.3.1

Table 1.2. Spark Feature Support by Version

Feature 1.2.1 1.3.1

Spark Core Yes Yes

Spark on YARN Yes Yes

Spark on YARN, Kerberos-enabled
clusters

Yes Yes

Spark History Server Yes Yes

Spark MLLib Yes Yes

Hive 0.1.3, including
collect_list UDF

 Yes

ML Pipeline API (PySpark)

DataFrame API TP

ORC Files TP

Spark SQL TP TP

Spark Streaming TP TP

Spark SQL Thrift Server TP

Dynamic Executor Allocation TP

SparkR

Spark Standalone

GraphX

 TP: Tech Preview

Hortonworks Data Platform October 13, 2015

3

2. Prerequisites
Before installing Spark, make sure your cluster meets the following prerequisites.

Table 2.1. Spark Prerequisites

Prerequisite Description

Cluster Stack Version HDP 2.2.4 or later stack

(Optional) Ambari Version 2.0.0 or later

Components Spark requires HDFS and YARN.

Note

If you used the tech preview, save any configuration changes you made to the
tech preview environment. Install Spark, and then update the configuration
with your changes.

Hortonworks Data Platform October 13, 2015

4

3. Installing Spark
To install Spark manually, see Installing and Configuring Apache Spark in the Manual
Installation Guide.

To install Spark on a Kerberized cluster, first read Installing Spark with Kerberos (the next
topic in this Quick Start Guide).

The remainder of this section describes how to install Spark using Ambari. (For general
information about installing HDP components using Ambari, see Adding a Service in the
Ambari Documentation Suite.)

The following diagram shows the Spark installation process using Ambari.

To install Spark using Ambari, complete the following steps:

1. Choose the Ambari "Services" tab.

In the Ambari "Actions" pulldown menu, choose "Add Service." This will start the Add
Service Wizard. You'll see the Choose Services screen.

Select "Spark", and click "Next" to continue.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.9/bk_installing_manually_book/content/ch_installing_spark_chapter.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.9/bk_spark-quickstart/content/ch_installing-kerb-spark-quickstart.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Users_Guide/content/_adding_a_service_to_your_hadoop_cluster.html

Hortonworks Data Platform October 13, 2015

5

(Starting with HDP 2.2.4, Ambari will install Spark version 1.2.1, not 1.2.0.2.2.)

2. Ambari will display a warning message. Confirm that your cluster is running HDP 2.2.4 or
later, and then click "Proceed".

Note

You can reconfirm component versions in Step 6 before finalizing the
upgrade.

3. On the Assign Masters screen, choose a node for the Spark History Server.

Click "Next" to continue.

Hortonworks Data Platform October 13, 2015

6

4. On the Assign Slaves and Clients screen, specify the machine(s) that will run Spark clients.

Click "Next" to continue.

5. On the Customize Services screen there are no properties that must be specified. We
recommend that you use default values for your initial configuration. Click "Next" to
continue. (When you are ready to customize your Spark configuration, see Apache Spark
1.2.1 properties.)

6. Ambari will display the Review screen.

Important

On the Review screen, make sure all HDP components are version 2.2.4 or
later.

Click "Deploy" to continue.

7. Ambari will display the Install, Start and Test screen. The status bar and messages will
indicate progress.

http://spark.apache.org/docs/1.2.1/configuration.html#available-properties
http://spark.apache.org/docs/1.2.1/configuration.html#available-properties

Hortonworks Data Platform October 13, 2015

7

8. When finished, Ambari will present a summary of results. Click "Complete" to finish
installing Spark.

Caution

Ambari will create and edit several configuration files. Do not edit these files
directly if you configure and manage your cluster using Ambari.

Hortonworks Data Platform October 13, 2015

8

4. Validating Spark
To validate the Spark installation, run the following Spark jobs:

• Spark Pi example

• WordCount example

4.1. Run the Spark Pi example
The Pi program tests compute-intensive tasks by calculating pi using an approximation
method. The program “throws darts” at a circle -- it generates points in the unit square
((0,0) to (1,1)) and sees how many fall within the unit circle. The result approximates pi.

To run Spark Pi:

1. Log on as a user with HDFS access--for example, your spark user (if you defined one) or
hdfs. Navigate to a node with a Spark client and access the spark-client directory:

su hdfs

cd /usr/hdp/current/spark-client

2. Submit the Spark Pi job:

./bin/spark-submit --class org.apache.spark.examples.SparkPi --
master yarn-cluster --num-executors 3 --driver-memory 512m --
executor-memory 512m --executor-cores 1 lib/spark-examples*.jar
10

The job should complete without errors. It should produce output similar to the
following:

15/04/10 17:29:35 INFO Client:
 client token: N/A
 diagnostics: N/A
 ApplicationMaster host: N/A
 ApplicationMaster RPC port: 0
 queue: default
 start time: 1428686924325
 final status: SUCCEEDED
 tracking URL: http://blue1:8088/proxy/
application_1428670545834_0009/
 user: hdfs

To view job status in a browser, copy the URL tracking from the job output and go to
the associated URL.

3. Job output should list the estimated value of pi. In the following example, output was
directed to stdout:

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.9/bk_spark-quickstart/content/run_spark_pi.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.9/bk_spark-quickstart/content/run_wordcount.html

Hortonworks Data Platform October 13, 2015

9

Log Type: stdout
Log Upload Time: 22-Mar-2015 17:13:33
Log Length: 23
Pi is roughly 3.142532

4.2. Run the WordCount Example
WordCount is a simple program that counts how often a word occurs in a text file.

1. Select an input file for the Spark WordCount example. You can use any text file as input.

2. Upload the input file to HDFS. The following example uses log4j.properties as the
input file:

su hdfs

cd /usr/hdp/current/spark-client/

hadoop fs -copyFromLocal /etc/hadoop/conf/log4j.properties /tmp/
data

3. Run the Spark shell:

./bin/spark-shell --master yarn-client --driver-memory 512m --
executor-memory 512m

You should see output similar to the following:

Spark assembly has been built with Hive, including Datanucleus jars on
 classpath
15/03/30 17:42:41 INFO SecurityManager: Changing view acls to: root
15/03/30 17:42:41 INFO SecurityManager: Changing modify acls to: root
15/03/30 17:42:41 INFO SecurityManager: SecurityManager: authentication
 disabled; ui acls disabled; users with view permissions: Set(root); users
 with modify permissions: Set(root)
15/03/30 17:42:41 INFO HttpServer: Starting HTTP Server
15/03/30 17:42:41 INFO Utils: Successfully started service 'HTTP class
 server' on port 55958.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 1.2.1
 /_/

Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.
0_67)
Type in expressions to have them evaluated.
Type :help for more information.
15/03/30 17:42:47 INFO SecurityManager: Changing view acls to: root
15/03/30 17:42:47 INFO SecurityManager: Changing modify acls to: root
15/03/30 17:42:47 INFO SecurityManager: SecurityManager: authentication
 disabled; ui acls disabled; users with view permissions: Set(root); users
 with modify permissions: Set(root)
15/03/30 17:42:48 INFO Slf4jLogger: Slf4jLogger started
15/03/30 17:42:48 INFO Remoting: Starting remoting

Hortonworks Data Platform October 13, 2015

10

15/03/30 17:42:48 INFO Remoting: Remoting started; listening on addresses :
[akka.tcp://sparkDriver@green4:33452]
15/03/30 17:42:48 INFO Utils: Successfully started service 'sparkDriver' on
 port 33452.
15/03/30 17:42:48 INFO SparkEnv: Registering MapOutputTracker
15/03/30 17:42:48 INFO SparkEnv: Registering BlockManagerMaster
15/03/30 17:42:48 INFO DiskBlockManager: Created local directory at /
tmp/spark-a0fdb1ce-d395-497d-bf6f-1cf00ae253b7/spark-52dfe754-7f19-4b5b-
bd73-0745a1f6d158
15/03/30 17:42:48 INFO MemoryStore: MemoryStore started with capacity 265.4
 MB
15/03/30 17:42:48 WARN NativeCodeLoader: Unable to load native-hadoop
 library for your platform... using builtin-java classes where applicable
15/03/30 17:42:49 INFO HttpFileServer: HTTP File server directory
 is /tmp/spark-817944df-07d2-4205-972c-e1b877ca4869/spark-280ea9dd-
e40d-4ec0-8ecf-8c4b159dafaf
15/03/30 17:42:49 INFO HttpServer: Starting HTTP Server
15/03/30 17:42:49 INFO Utils: Successfully started service 'HTTP file
 server' on port 56174.
15/03/30 17:42:49 INFO Utils: Successfully started service 'SparkUI' on port
 4040.
15/03/30 17:42:49 INFO SparkUI: Started SparkUI at http://green4:4040
15/03/30 17:42:49 INFO Executor: Starting executor ID <driver> on host
 localhost
15/03/30 17:42:49 INFO Executor: Using REPL class URI: http://172.23.160.
52:55958
15/03/30 17:42:49 INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.
tcp://sparkDriver@green4:33452/user/HeartbeatReceiver
15/03/30 17:42:49 INFO NettyBlockTransferService: Server created on 47704
15/03/30 17:42:49 INFO BlockManagerMaster: Trying to register BlockManager
15/03/30 17:42:49 INFO BlockManagerMasterActor: Registering block manager
 localhost:47704 with 265.4 MB RAM, BlockManagerId(<driver>, localhost,
 47704)
15/03/30 17:42:49 INFO BlockManagerMaster: Registered BlockManager
15/03/30 17:42:49 INFO SparkILoop: Created spark context..
Spark context available as sc.

scala>

4. Submit the job. At the scala prompt, type the following commands, replacing node
names, file name and file location with your own values:

val file = sc.textFile("/tmp/data")

val counts = file.flatMap(line => line.split(" ")).map(word =>
(word, 1)).reduceByKey(_ +_)

counts.saveAsTextFile("/tmp/wordcount")

5. To view the output from within the scala shell:

counts.toArray().foreach(println)

To view the output using HDFS:

a. Exit the scala shell:

scala > exit

Hortonworks Data Platform October 13, 2015

11

b. View WordCount job results:

hadoop fs -l /tmp/wordcount

You should see output similar to the following:

/tmp/wordcount/_SUCCESS
/tmp/wordcount/part-00000
/tmp/wordcount/part-00001

c. Use the HDFS cat command to list WordCount output. For example:

hadoop fs -cat /tmp/wordcount/part*

Hortonworks Data Platform October 13, 2015

12

5. Installing Spark with Kerberos
Spark jobs are submitted to a Hadoop cluster as YARN jobs. The developer creates a Spark
application in a local environment, and tests it in a single-node Spark Standalone cluster on
their developer workstation.

When a job is ready to run in a production environment, there are a few additional steps if
the cluster is Kerberized:

• The Spark History Server daemon needs a Kerberos account and keytab to run in a
Kerberized cluster.

• When you enable Kerberos for a Hadoop cluster with Ambari, Ambari configures
Kerberos for the Spark History Server and automatically creates a Kerberos account
and keytab for it. For more information, see Configuring Ambari and Hadoop for
Kerberos.

• If you are not using Ambari, or if you plan to enable Kerberos manually for the Spark
History Server, see Creating Service Principals and Keytab Files for HDP in the Manual
Install Guide.

• To submit Spark jobs in a Kerberized cluster, the account (or person) submitting jobs
needs a Kerberos account & keytab.

• When access is authenticated without human interaction -- as happens for processes
that submit job requests -- the process would use a headless keytab. Security risk is
mitigated by ensuring that only the service who should be using the headless keytab
has the permissions to read it.

• An end user should use their own keytab when submitting a Spark job.

Setting Up Principals and Keytabs for End User Access to Spark

In the following example, user $USERNAME runs the Spark Pi job in a Kerberos-enabled
environment:

su $USERNAME
kinit USERNAME@YOUR-LOCAL-REALM.COM
cd /usr/hdp/current/spark-client/
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-cluster \
 --num-executors 3 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 lib/spark-examples*.jar 10

Setting Up Service Principals and Keytabs for Processes Submitting Spark Jobs

The following example shows the creation and use of a headless keytab for a spark service
user account that will submit Spark jobs on node blue1@example.com:

1. Create a Kerberos service principal for user spark:

kadmin.local -q "addprinc -randkey spark/blue1@EXAMPLE.COM"

https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Security_Guide/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/Ambari-2.1.2.1/bk_Ambari_Security_Guide/content/ch_configuring_amb_hdp_for_kerberos.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.2.9/bk_installing_manually_book/content/creating_service_principals_and_keytab_files_for_hdp.html

Hortonworks Data Platform October 13, 2015

13

2. Create the keytab:

kadmin.local -q "xst -k /etc/security/keytabs/spark.keytab
spark/blue1@EXAMPLE.COM"

3. Create a spark user and add it to the hadoop group. (Do this for every node of your
cluster.)

useradd spark -g hadoop

4. Make spark the owner of the newly-created keytab:

chown spark:hadoop /etc/security/keytabs/spark.keytab

5. Limit access: make sure user spark is the only user with access to the keytab:

chmod 400 /etc/security/keytabs/spark.keytab

In the following steps, user spark runs the Spark Pi example in a Kerberos-enabled
environment:

su spark
kinit -kt /etc/security/keytabs/spark.keytab spark/blue1@EXAMPLE.COM
cd /usr/hdp/current/spark-client/
./bin/spark-submit --class org.apache.spark.examples.SparkPi \
 --master yarn-cluster \
 --num-executors 1 \
 --driver-memory 512m \
 --executor-memory 512m \
 --executor-cores 1 \
 lib/spark-examples*.jar 10

5.1. Accessing the Hive Metastore in Secure Mode
Requirements for accessing the Hive Metastore in secure mode (with Kerberos):

• The Spark thrift server must be co-located with the Hive thrift server.

• The spark user must be able to access the Hive keytab.

• In yarn-client mode on a secure cluster you can use HiveContext to access the Hive
Metastore. (HiveContext is not supported for yarn-cluster mode on a secure cluster.)

Hortonworks Data Platform October 13, 2015

14

6. Using Spark with HDFS
Specifying Compression

To specify compression in Spark-shell when writing to HDFS, use code similar to:

rdd.saveAsHadoopFile("/tmp/spark_compressed",

"org.apache.hadoop.mapred.TextOutputFormat",

compressionCodecClass="org.apache.hadoop.io.compress.GzipCodec")

Hortonworks Data Platform October 13, 2015

15

7. Troubleshooting Spark
When you run a Spark job, you will see a standard set of console messages. In addition, the
following information is available:

• A list of running applications, where you can retrieve the application ID and check the
application log:

yarn application –list

yarn logs -applicationId <app_id>

• Check the Spark environment for a specific job:

http://<host>:8088/proxy/<job_id>/environment/

Specific Issues

The following paragraphs describe specific issues and possible solutions:

Issue: Job stays in "accepted" state; it doesn't run. This can happen when a job requests
more memory or cores than available.

Solution: Assess workload to see if any resources can be released. You might need to stop
unresponsive jobs to make room for the job.

Issue: Insufficient HDFS access. This can lead to errors such as the following:

“Loading data to table default.testtable
Failed with exception
Unable to move sourcehdfs://blue1:8020/tmp/hive-spark/hive_2015-03-04_
12-45-42_404_3643812080461575333-1/-ext-10000/kv1.txt to destination
hdfs://blue1:8020/apps/hive/warehouse/testtable/kv1.txt”

Solution: Make sure the user or group running the job has sufficient HDFS privileges to the
location.

Issue: Wrong host in Beeline, shows error as invalid URL:

Error: Invalid URL: jdbc:hive2://localhost:10001 (state=08S01,code=0)

Solution: Specify the correct Beeline host assignment.

Issue: Error: closed SQLContext.

Solution: Restart the Thrift server.

	Hortonworks Data Platform
	Table of Contents
	1. Introduction
	2. Prerequisites
	3. Installing Spark
	4. Validating Spark
	4.1. Run the Spark Pi example
	4.2. Run the WordCount Example

	5. Installing Spark with Kerberos
	5.1. Accessing the Hive Metastore in Secure Mode

	6. Using Spark with HDFS
	7. Troubleshooting Spark

