
docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform Dec 2, 2014

ii

Hortonworks Data Platform: Adding a New Component to Apache
Ranger
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, Zookeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

//hortonworks.com/training/
//hortonworks.com/products/hdp/
//hortonworks.com/services/
//hortonworks.com/training/
//hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hortonworks Data Platform Dec 2, 2014

iii

Table of Contents
1. Adding a New Component to Apache Ranger ... 1
2. Developing a Custom Authorization Module ... 4

Hortonworks Data Platform Dec 2, 2014

1

1. Adding a New Component to Apache
Ranger

This document provides a general description of how to add a new component to Apache
Ranger.

Apache Ranger has three main components:

• Admin Tool -- Provides web interface & REST API for managing security policies

• Custom Authorization Module for components -- Provides custom authorization within
the (Hadoop) component to enforce the policies defined in Admin Tool

• UserGroup synchronizer -- Enables the user/group information in Apache Ranger
to synchronize with the Enterprise user/group information stored in LDAP or Active
directory.

For supporting new component authorization using Apache Ranger, the component details
needs to be added to Apache Ranger as follows:

• Add component details to the Admin Tool

• Develop a custom authorization module for the new component

Adding Component Details to the Admin Tool

The Apache Ranger Admin tool supports policy management via both a web interface (UI)
and support for (public) REST API. In order to support a new component in both the UI and
the Server, the Admin Tool needs to be modified.

Required UI changes to support the new component:

1. Add a new component template to the Policy Manager page (console home page):

Show new component on the policy manager page i.e home page[#!/policymanager].
Apache Ranger needs to add table template to policy manager page and make changes
in corresponding JS files. Ranger also needs to create a new repository type enum to
distinguish the component for which the repository/policy is created/updated.

For example: Add a table template to PolicyManagerLayout_tmpl.html file to
view the new component on the Policy Manager page and make changes in the
PolicyManagerLayout.js file related to the new componen, such as passing knox
repository collection data to the PolicyManagerLayout_tmpl template. Also create a new
repository type enum (for example, ASSET_KNOX) in the XAEnums.js file.

2. Add new configuration information to the Repository Form:

Add new configuration fields to Repository Form [AssetForm.js] as per new component
configuration information. This will cause the display of new configuration fields in the
corresponding repository Create/Update page. Please note that the AssetForm.js is a
common file for every component to create/update the repository.

Hortonworks Data Platform Dec 2, 2014

2

For example: Add new field(configuration) information to AssetForm.js and
AssetForm_tmpl.js.

3. Add a new Policy Listing page:

Add a new policy listing page for the new component in the View Policy list. For
example: Create a new KnoxTableLayout.js file and add JS-related changes as per the old
component[HiveTableLayout.js] to the View Policy listing. Also create a template page,
KnoxTableLayout_tmpl.html.

4. Add a new Policy Create/Update page:

Add a Policy Create/Update page for the new component. Also add a policy form JS file
and its template to handle all policy form-related actions for the new component. For
example: Create a new KnoxPolicyCreate.js file for Create/Update Knox Policy. Create a
KnoxPolicyForm.js file to add knox policy fields information. Also create a corresponding
KnoxPolicyForm_tmpl.html template.

5. Other file changes, as needed:

Make changes in existing common files as per our new component like Router.js,
Controller.js, XAUtils.js, FormInputList.js, UserPermissionList.js, XAEnums.js, etc.

Required server changes for the new component:

Let's assume that Apache Ranger has three components supported in their portal and we
want to introduce one new component, Knox:

1. Create New Repository Type

If Apache Ranger is introducing new component i.e Knox, then they will add one new
repository type for knox. i.e repositoryType = “Knox”. On the basis of repository type,
while creating/updating repository/policy, Apache Ranger will distinguish for which
component this repository/policy is created/updated.

2. Add new required parameters in existig objects and populate objects

For Policy Creation/Update of any component (i.e HDFS, Hive, Hbase), Apache
Ranger uses only one common object, `VXPolicy.` The same goes for the Repository
Creation/Update of any component: Apache Ranger uses only one common object
`VXRepository.` As Apache Ranger has three components, it will have all the required
parameters of all of those three components in `VXPolicy/VXRepository.` But for Knox,
Apache Ranger requires some different parameters which are not there in previous
components. Thus, it will add only required parameters into `VXPolicy/VXRepository`
object. When a user sends a request to the Knox create/update policy, they will only
send the parameters that are required for Knox to create/update the VXPolicy object.

After adding new parameters into VXPolixy/VXRepository, Apache Ranger populates
the newly-added parameters in corresponding services, so that it can map those objects
with Entity Object.

3. Add newly-added fields (into database table) related parameters into entity object and
populate them

Hortonworks Data Platform Dec 2, 2014

3

As Apache Ranger is using JPA-EclipseLink for database mapping into java, it is necessary
to update the Entity object. For example, if for Knox policy Apache Ranger has added
two new fields (`topology` and `service`) into db table `x_resource`, it will also have to
update the entity object of table (i.e `XXResource`), since it is altering table structure.

After updating the entity object Apache Ranger will populate newly-added parameters
in corresponding services (i.e XResourceService), so that it can communicate with the
client using the updated entity object.

4. Change middleware code business logic

After adding and populating newly required parameters for new component, Apache
Ranger will have to write business logic into file `AssetMgr`, where it may also need to
do some minor changes. For example, if it wants to create a default policy while creating
the Repository, then on the basis of repositoryType, Apache Ranger will create one
default policy for the given repository. Everything else will work fine, as it is common for
all components.

Required database changes for the new component:

For repository and policy management, Apache Ranger includes the following tables:

• x_asset (for repository)

• x_resource (for repository)

As written above, if Apache Ranger is introducing new component then it is not required to
create individual table in database for each component. Apache Ranger has common tables
for all components.

If Apache Ranger has three components and wants to introduce a fourth one, then it
will add required fields into these two tables and will map accordingly with java object.
For example, for Knox, Apache Ranger will add two fields (`topology`, `service`) into
`x_resource`. After this, it will be able to perform CRUD operation of policy and repository
for our new component, and also for previous components.

Hortonworks Data Platform Dec 2, 2014

4

2. Developing a Custom Authorization
Module

In the Hadoop ecosystem, each component (i.e., Hive, HBase) has its own authorization
implementation and ability to plug in a custom authorization module. To implement the
centralized authorization and audit feature for a component, the component should
support a customizable (or pluggable) authorization module.

The custom component Authorization Plugin should do the following:

• Provide authorization based on Policies defined in Policy Admin Tool

• Provide audit information based on the authorization decisions

Implementing Custom Component Authorization

To implement the custom component authorization plugin, the Ranger common agent
framework provides the following functionalities:

• Ability to read all policies from Policy Manager for a given repository-id

• Ability to log audit information

When the custom authorization module is initialized, the module should do the following:

1. Initiate a REST API call to the “Policy Admin Tool” to retrieve all policies associated with
the specific component.

2. Once the policies are available, it should:

• be built into a custom data structure for enabling the authorization module.

• kick off the policy updater thread to refresh policies from “Policy Admin Tool” at a
regular interval.

When the custom authorization module is called to perform authorization of a component
action (such as READ action) on a specific component resource (such as /app folder), the
authorization module will:

• Identify authorization decision - For each policy:policyList:

• If (resource in policy <match> auth-requested-resource)

• If (action-in-policy <match>action-requested

• If (current-user or current-user-groups or public-group <allowed> for the policy), Return
access-allowed

• Identify auditing needs - For each policy:policyList

• If (resource in policy <match> auth-requested-resource), return policy.isAuditEnabled()

	Hortonworks Data Platform
	Table of Contents
	1. Adding a New Component to Apache Ranger
	2. Developing a Custom Authorization Module

