Hortonworks Data Platform

Data Governance with Apache Falcol

(May 2, 2014)

docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform May 2, 2014

Hortonworks Data Platform : Data Governance with Apache Falcon
Copyright © 2012-2014 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, Zookeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

@ @ Except where otherwise noted, this document is licensed under
@ Creative Commons Attribution ShareAlike 3.0 License.
BY SA

http://creativecommons.org/licenses/by-sa/3.0/legalcode

//hortonworks.com/training/
//hortonworks.com/products/hdp/
//hortonworks.com/services/
//hortonworks.com/training/
//hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hortonworks Data Platform May 2, 2014

1. Data Governance with Apache Falconcoooiiiiiiiiiiiii e 1
1.1. Understanding FalCONuuuiiiiiiiiiiiiiiiiiiiiiii e 2
1.1.1. Additonal Readingccoviiiiiiiiiiiiiiiiiiiiie 3

1.2. Defining Data Pipelinescooiiiiiiiiiiiii 4
1.3. Deploying Data PipeliNeSuuuuiueieieiiieiiiiieiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseneennnne 6
1.4. Data Replicationcoooioioio e 7
1.4.1. distCP Throttleccoovenieee e 8
1.4.2. Replacing JMS with ActiveMQ ..o 8

1.5. Viewing Alerts in Falcon ... 9
1.6. Late Data Handlingccooeeeiiiiiie e 10
1.7. Setting @ Retention POIICYcooviiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 11
1.8. Setting @ RETIY POJICYuueuiiiiiiiiiiiiiiiiiit ittt se e e enseeeeeees 1
1.9. Understanding Dependencies in Falconccccueeiiiiimiiiiiiiiie 12
1.10. VIeWING DEPENUENCIESuuuuieiuiuriiiiuieiuiutuieeniaenesenessnenesssssssesssensnsssnsnsnsnsnsnnns 12
2. Troubleshooting FalCon ..o 14
2.1, FAICON 10GS . 14
2.2. Falcon Server Failure ..ot 14
2.3. Delegation Token Renewal ISSUESccooiiiiiiiiiiiiii i 14
2.4, Invalid Entity SChemacoooiiiiiie e 14
2.5, INCOITECt ENTITY ooeeeiiiiieie et e e e e e e e e e e e eeeenes 14
2.6. Bad Config STOre ErTOrcooiiiiiiiiiiiiice e 14
2.7. Unable to set DataSet ENtitycoooveiiiiiiiiiiie 15
B2 @ Lo A 1= I Lo) o1 PO 15
3. Appendix A: Falcon Referencecooiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 16
2 O T =T SRR 16
3.1.1. Valid Cluster Tag Attributesoooooiiiiiii i, 16
3.1.2. Cluster INTerfacescoeiuiueiie e e e 16
3.1.3. Cluster XSD Specificationoouieiiiiiiii 16

3.2, FEOA ENLILY .ovvveeeececeeeeeee et s s en s se s st enen s eeenneseeenen e 16
3.3, ProCESS ENTItY .ovueuiiieieieeiiii et e e e e e e e e e e e 17
3.4. Managing Entities Using the CLIccooiiiiiiii 17
3.5. Managing Falcon using the CLI ... 18

Hortonworks Data Platform May 2, 2014

List of Figures

LI I 1 (ol o Ao oV PP 3
1.2, Graph_VIBW.PING ..o 13

Hortonworks Data Platform May 2, 2014

List of Tables

1.1. Available Falcon EVENt AlBITSoiiiiiiiieeeicee e e 9
3.1, Cluster tag IE@MENTScoiiiiiiiiiiiiiiiiiiiie ettt ettt ee et e et eaeeeeeeeeeeeeeeeeeeenrnees 16
I @ 10 1 T ol 1 1 = - TS 16
3.3. ENTItY ACHIONS ittt ettt e e e e e e e e e e e e e ee e e e e e e eeernnn e e aaaeenen 17
3.4, ENtitY ACHIONS .oooiiiiiiiiiiiiieeeeeeeee ettt 18

Hortonworks Data Platform

May 2, 2014

1. Data Governance with Apache Falcon

Apache Falcon provides a framework for automating data governance by defining data
pipelines and providing dynamic changes to that pipeline through the Falcon interface.
Falcon eliminates hard coding complex data sets and offers:

« Data Replication: Falcon can replicate HDFS and Hive datasets, trigger processes for

retry, and handle late data arrival logic.

¢ Data Lifecycle Management: Falcon schedules eviction based on data retention policies

you set.

« Dataset Traceability: Falcon exposes coarse-grained dependencies between clusters,

datasets, and processes.

Falcon Architecture

A | Centralized Falcon Framework
Fal A

can 5
Users s
ul
Entity Scheduled Process
Specs Jobs Status
Job Status
Y
Oozie
EEEEER
EEEEEE
N MapReduce / Pig /
HDFS / Hive Hive / Sqoop / Flume / E
DistCP

HDP 2.1 Components

Alerts

91

Management
via AMBARI

pe

c;—]’Service

Management

Falcon can be installed and managed by Apache Ambari, and jobs can be traced through
the native Falcon Ul. Falcon can process data from:

¢ Oozie jobs
* Pig scripts

* Hive scripts

These jobs can then trigger alerts back to Falcon to give you the latest status on your data

pipeline activities.

To learn more about Falcon, choose any of the following topics:

¢ Understanding Falcon

Hortonworks Data Platform May 2, 2014

¢ Defining Data Piplelines

* Deploying Data Piplelines

* Viewing Alerts in Falcon

* Late Data Handling

¢ Setting a Retention Policy

¢ Setting a Retry Policy

¢ Understanding Dependencies in Falcon
¢ Viewing Dependencies in Falcon

* Falcon Schemas

¢ Troubleshooting

1.1. Understanding Falcon

Falcon manages dynamic data processing through the concept of pipelines. A pipeline
combines data and processes across your cluster.

A Falcon Data Pipeline for Hadoop

CREATES
FEED
(DATASET) INPUT TO’

CLUSTER
(COLO)

Each pipeline consists of XML pipeline specifications, called entities. These entities act
together to provide a dynamic flow of information to load, clean, and process data.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.2/bk_falcon/content/ch_appendix_falcon_schemas.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.2/bk_falcon/content/falcon_troubleshooting.html

Hortonworks Data Platform May 2, 2014

There are three types of Falcon entities:
¢ Cluster: Defines where data and processes are stored.
¢ Feed: Defines the datasets to be cleaned and processed.

* Process: Consumes feeds, invokes processing logic, and produces further feeds. A process
defines the configuration of the Oozie workflow and defines when and how often the
workflow should run. Also allows for late data handling.

Each entity is defined separately and then linked together to form a data pipeline. Falcon
provides predefined policies for data replication, retention, late data handling, and
replication. These sample policies are easily customized to suit your needs in these areas.

These entities are defined and can be reused many times to define data management
policies for Oozie jobs, Pig scripts, and Hive queries. For example, Falcon data management
policies become Oozie coordinator jobs:

Figure 1.1. falc2flow.png

Data Pipeline

Defined in

(@ APACHE FALCON

Falcon adds the required data governance features

DEFINITION TRACING
Replication | Retention Audit | Lineage
Eviction | Late Data Tagging

Auto Generate
& Orchestrate

Multiple complex Oozie workflows Other Hadoop
ecosystem
I|I|Z - m tools
such as
Job? < Job3. ob DistCp

1.1.1. Additonal Reading

For additional sources on the Falcon architecture and control flow:
¢ Falcon Community Documentation on Falcon Architecture

¢ Falcon Community Documentation on Falcon Control Flow

http://falcon.incubator.apache.org/docs/FalconArchitecture.html#Architecture
http://falcon.incubator.apache.org/docs/FalconArchitecture.html#Control_flow

Hortonworks Data Platform May 2, 2014

To create a data pipeline you must:

1. Create the cluster specification XML file, also known as a cluster entity. There are several
interfaces to define in a cluster entity. For example, here is a cluster entity with all cluster
interfaces defined:

¢ Colo: Name of the Data Center
* Name: Filename of the Data Center

* <interface>: Specify the interface type

<?xm version="1.0"?>
<l--
Cl ust er Exanpl e
ca D
<cl uster col o="$M/Dat aCenter" description="description" nanme=
"$MyDat aCent er " >
<interfaces>
<interface type="readonly" endpoint="hftp://nn:50070" version="2.4.0" />
<l-- Required for distcp for replications. -->
<interface type="wite" endpoint="hdfs://nn:8020" version="2.4.0" />
<I-- Needed for witing to HDFS-->
<interface type="execute" endpoi nt="rm 8050" version="2.4.0" /> <!--
Needed to wite to jobs as MapReduce-->
<interface type="workflow' endpoint="http://os: 11000/ oozi e/" version="4.
0.0" /> <!-- Required. Submits Oozie jobs.-->
<interface type="registry" endpoint="thrift://hnms:9083" version="0.
13.0" /> <!--Register/deregister partitions in the Hi ve Metastore and get
events on partition availability
-->
<interface type="nessagi ng" endpoi nt="tcp://ng: 61616?daenon=t r ue"
version="5.1.6" /> <!--Needed for alerts-->
</interfaces>
<l ocati ons>
<l ocati on name="st agi ng" pat h="/apps/fal con/ prod-cl ust er/stagi ng" />
<!--HDFS directories used by the Fal con server-->
<l ocation name="tenp" path="/tnp" />
<l ocati on nanme="wor ki ng" pat h="/apps/fal con/ prod-cl uster/working" />
</l ocati ons>
</cluster>

E

2. Next, create a dataset specification XML file, or feed entity:

Additional properties must be set if you are configuring for a secure cluster.
For more information, see Configuring for Secure Clusters.

* Reference the cluster entity to determine which clusters the feed uses.
* <frequency>: Specify the frequency of the feed.

 <retention limit>: Choose a retention policy for the data to remain on the cluster.
4

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.2/bk_installing_manually_book/content/ch_rpm_falcon-config_secure.html

Hortonworks Data Platform May 2, 2014

¢ <location>: Provide the HDFS path to the files.
¢ <ACL owner>: Specify the HDFS access permissions.

¢ Optional. Specify a Late Data Handling cut-off.

<?xm version="1.0"?>

<l--
Feed Exanpl e
-->
<f eed descri pti on="$r awl nput Feed" nanme="t est Feed” xm ns="uri:fal con: feed: 0.
1">
<frequency>hours(1) </ frequency> <!--Feed run frequency-->
<l ate-arrival cut-off="hours(6)”/> <!-- Late arrival cut-off -->

<gr oups>chur nAnal ysi sFeeds</ groups> <!--Feed group, feeds can belong to
mul tiple groups -->
<t ags external Sour ce=$M/EDW ext er nal Tar get =Mar keti ng> <!-- Mt adata
tagging -->
<clusters> <!-- Target clusters for retention and replication. -->
<cl uster nanme="$M/Dat aCenter" type="source">
<validity start="$date" end="$date"/>
<retention |limt="days($n)" action="delete"> <!--Currently delete is
the only action available -->
</cl uster>
<cl ust er nanme="$My/Dat aCent er - secondary" type="target">
<validity start="2012-01-01T00: 00Z" end="2099-12-31T00: 00Z"/ >
<l ocation type="data” path="/churn/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} -
${HOUR} "/>
<retention limt="days(7)" action="delete"/>
</cl uster>
</cl usters>
<l ocations> <!-- d obal |ocation across clusters - HDFS paths or Hive
tables -->
<l ocation type="data" path="/webl ogs/ ${ YEAR} - ${ MONTH} - ${ DAY} - ${ HOUR} "/ >
</l ocati ons>

<ACL owner ="hdfs" group="users" perm ssion="0755"/> <!-- Required for
HDFS. -->

<schema | ocati on="/none" provi der="none"/> <!-- Required for HDFS. -->
</feed>

3. Create the process specification XML file:
 <cluster name>: Reference the cluster entity to define where the process runs.
» <feed>: Reference the feed entity to define the datasets that the process uses.

¢ Optional. Specifiy Late Data Handling policies or a Retry Policy.

<?xm version="1.0"?>
<l--
Process Exanpl e
-->
<process nane="process-test" xm ns="uri:fal con:process:0.1">
<cl usters>
<cl uster nanme="$M/Dat aCent er" >
<validity start="2011-11-02T00: 00Z" end="2011-12-30T00: 00Z"
</cl uster>
</cl usters>

Hortonworks Data Platform May 2, 2014

<paral | el >1</parall el >
<or der >FlI FO</ order> <!--You can al so use LI FO and LASTONLY but FIFO is
reconmmended i n nost cases-->
<frequency>days(1)</frequency>
<i nput s>
<i nput end="today(0,0)" start="today(0,0)" feed="feed-clicks-raw'
name="i nput" />
</i nput s>
<out put s>
<out put instance="now(0, 2)" feed="feed-clicks-clean" nane="output" /

</ out put s>
<wor kf | ow engi ne="pi g" pat h="/apps/clickstreanm cl ean-script.pig" />
<retry policy="periodic" delay="m nutes(10)" attenpts="3"/>
<| at e- process policy="exp-backoff" del ay="hours(1)">
<l ate-i nput input="input" workfl ow path="/apps/clickstreanf|ate" />
</ | at e- process>

</ process>

2

You can now move on to Deploying Data Piplelines.

LIFO and LASTONLY are also supported schedule changes for <order>.

After you create your data pipeline with Falcon, you can deploy it though the Falcon CLI.
To deploy the data pipeline:
1. Submit your entities to Falcon. Be sure to specifiy the correct entity type.

a. Submit your cluster entity.

For example, to submit $sampleClusterFile.xml:

falcon entity -type cluster -subnmit -file $sanpl ed usterFile.xm
b. Submit your dataset or feed entity.

For example, to submit $sampleFeedFile.xml:

falcon entity -type feed -subnit -file $sanpl eFeedFil e. xm
¢. Submit your process entity.

For example, to submit $sampleProcessFile.xml:

falcon entity -type process -subnit -file $sanpl eProcessFil e. xni
2. Schedule your feed and process entities.
a. Schedule your feed.

For example, to schedule $feedName:

falcon entity -type feed -schedul e -name $f eedNane

Hortonworks Data Platform May 2, 2014

b. Schedule your process.

For example, to schedule $processName:

falcon entity -type process -schedul e -name $processName

Your data pipeline is now deployed with basic necessary information to run Oozie jobs, Pig
scripts, and Hive queries. You can now explore other sections such as Late Data Handling or
Retry Policy.

Falcon can replicate data across multiple clusters using distcp, and do it according to the
fequency you specify in the feed entity. Falcon uses a pull-based replication mechanism,
meaning in every target cluster, for a given source cluster, a coordinator is scheduled
which pulls the data using distcp from source cluster. And, for every instance that a feed is
replicated Falcon sends a JMS message on the success or failure of the replication instance.

For example, in this feed two clusters are replicating data to a backup cluster:

<cl ust er s>
<cl uster nane=C uster 1" type="source" partition="%${cluster.nanme}" del ay=
"days(2)">
<validity start="2011-11-01T00: 00Z" end="2021-11-30T00: 00Z"/ >
</cluster>
<cl uster name="Cl uster2" type="source" partition="COUNTRY/${cl uster.
nane}" >
<validity start="2011-11-01T00: 002" end="2021-11-30T00: 00Z"/ >
</cl uster>
<cl ust er nane="Backup" type="target">
<validity start="2011-11-01T00: 002" end="2011-11-31T00: 00Z"/ >
</cl uster>
</cl usters>

=

In this example, two coordinators are scheduled to pull data in to the target, Backup, one
coordinator pulls the data from a partition in Cluster1 and the other coordinator pulls from
a partition in Cluster2. A replication delay of 2 days has been set for Cluster1, which means
that it will run every 30 days with an offset of 2 days. This means that the feed instance
that is scheduled for replication November 30 is elligible December 2nd.

We recommend that the data path be as granular as the frequency of the feed.
For example, if you are specifying the feed frequency in hours, provide a data
path that is/${YEAR}/${MONTH}/${DAY}/${HOUR]}.

If you are using Falcon for Data Replication, explore the following topics:
* Falcon Community Documentation on Language Expression
* Section 1.4.1, "distCP Throttle" [8]

» Replacing JMS with ActiveMQ

http://falcon.incubator.apache.org/docs/FalconArchitecture.html#Falcon_EL_Expressions

Hortonworks Data Platform May 2, 2014

Falcon uses distcp (distributed copy) for data replication. If you need to optimize
bandwidth between data centers, you can throttle bandwidth during Falcon data
replication as needed and limit the number of maps used during replication.

To throttle distcp:

1.

If you already have Falcon running on your clusters, suspend your current active feeds
and processes:

$FALCON_HOVE/ bi n/ fal con entity -type $f eedNane - nane $nane -suspend

$FALCON_HOVE/ bi n/ fal con entity -type $processNane -nane $nanme -suspend

. Edit your feed entity or entities. Add the following lines:

<properties>
<property nanme="nmaxMaps" val ue="3$i nt eger Val ue" />
<property name="nmaxBandw dt h" val ue="$M/ sval ue" />
</ properties>

=

Specify the maximum number of mappers for Falcon to use in maxMaps.
Specify the bandwidth in MB for each mapper in mapBandwi dt h.

. Sumbit your updated feed entity.

$FALCON_HOVE/ bi n/fal con entity -submit -type feed -file ~$feedFil eNane

. Resume your processes.

$FALCON_HOVE/ bi n/ fal con entity -type $processNanme -nane $nanme -resunme

$FALCON_HOVE/ bi n/ fal con entity -type $f eedNanme -nane $name -resune

Falcon embeds ActiveMQ in its distribution.

To use ActiveMQ to broker JMS messaging:

1.

If you already have Falcon running on your clusters, suspend your current active feeds
and processes:

$FALCON_HOVE/ bi n/fal con entity -type $f eedNane -nane $name -suspend

$FALCON_HOMVE/ bi n/ fal con entity -type $processNane -nane $nane -suspend

. Edit your cluster entity or entities. Add the following line:

<properties>

<property nane="broker| npl Cl ass" val ue="org. apache. acti veny.
Act i veMXConnect i onFactory" />
</ properties>

. Submit your updated cluster entity.

Hortonworks Data Platform May 2, 2014

$FALCON_HOVE/ bi n/fal con entity -submit -type cluster -file ~$cl usterFil eNane

4. Resume your processes.
$FALCON_HOVE/ bi n/fal con entity -type $processNane -nanme $name -resune

$FALCON_HOVE/ bi n/ fal con entity -type $f eedName -nane $nanme -resune
In ActiveMQ, you should now see Falcon publishing messages to:
* FALCON.my-process topic: For each execution of the process.

* FALCON.ENTITY.TOPIC topic: For each change on the feeds.

Falcon provides alerting for a variety of events to let you monitor the health of your data
pipelines. All events are logged to the metric.log file, which is installed by default in your
$user /1 ogs/ directory. You can view the events from the log or capture them using a
custom interface.

Each event logged provides the following information:

» Date: UTC date of action.

* Action: Event name.

* Dimensions: List of name/value pairs of various attributes for a given action.
* Status: Result of the action. Can be FAILED or SUCCEEDED (when applicable).
* Time-taken: Time in nanoseconds for a given action to complete.

For example, a new process-definition alert would log the following information:

2012- 05-04 12:23: 34,026 {Action:submt, D nensions:{entityType=process},
St at us: SUCCEEDED, Ti nme-taken: 97087000 ns}

Entity Type Action Returns Success/Falilure
Cluster New cluster definitions submitted to Falcon Yes
Cluster Cluster update events Yes
Cluster Cluster remove events Yes
Feed New feed definition submitted to Falcon Yes
Feed Feed update events Yes
Feed Feed suspend events Yes
Feed Feed resume events Yes
Feed Feed remove events Yes
Feed Feed instance deletion event No
Feed Feed instance deletion failure event (no retries) |No
Feed Feed instance replication event No
Feed Feed instance replication failure event No

Hortonworks Data Platform

May 2, 2014

Entity Type Action Returns Success/Falilure
Feed Feed instance replication auto-retry event No
Feed Feed instance replication retry exhaust event No
Feed Feed instance late arrival event No
Feed Feed instance post cut-off arrival event No
Process New process definition posted to Falcon Yes
Process Process update events Yes
Process Process suspend events Yes
Process Process resume events Yes
Process Process remove events Yes
Process Process instance kill events Yes
Process Process instance re-run events Yes
Process Process instance generation events No
Process Process instance failure events No
Process Process instance auto-retry events No
Process Process instance retry exhaust events No
Process Process re-run due to late feed event No
N/A Transaction rollback failed event No

=

For more information on alerting, see the Falcon Communit Documentation on
Alerting.

Late data handling in Falcon defines how long data can be delayed and how that late data
is handled. For example, a late arrival cut-off of hour s(6) in the feed entity means that
data for the specified hour can delay as much as 6 hours later. The late data specification in
the process entity defines how this late data is handled. The late data policy in the process
entity defines how frequently Falcon checks for late data.

The supported policies for late data handling are:
* backoff: Take the maximum late cut-off and check every specified time.

» exp-backoff (default): Recommended. Take the maximum cut-off date and check on an
exponentially determined time.

* final:Take the maximum late cut-off and check once.

The policy, along with delay, defines the interval at which late data check is done. Late
input specification for each input defines the workflow that should run when late data is
detected for that input.

To handle late data, you need to modify the feed and process entities.
1. Specify the cut-off time in your feed entity.

For example, to set a cut-off of 4 hours:

10

http://falcon.incubator.apache.org/docs/FalconArchitecture.html#Alerting_and_Monitoring

Hortonworks Data Platform May 2, 2014

<late-arrival cut-off="hours(4)”/>
2. Specify a check for late data in all your process entities that reference that feed entity.

For example, to check each hour until the cut-off time with a specified policy of
backof f and a delay of 1 hour:

<| at e- process pol i cy="exp-backof f" del ay="hours(1)”>

<l ate-input input="input" workfl ow path="/apps/clickstreani|late" />
</ | at e- process>

You can set retention policies on a per-cluster basis. You must specify the amount of time
to retain data before deletion.

Falcon kicks off the retention policy on the basis of the time value you specify:
* Less than 24 hours: Falcon kicks off the retention policy every 6 hours.
» More than 24 hours: Falcon kicks off the retention policy every 24 hours.

* When a feed is scheduled: Falcon kicks off the retention policy immediately.

To set a retention policy, add the following lines to your cluster entity as part of the
<cluster> definition:

When a feed is successfully scheduled, Falcon triggers the retention policy
immediately regardless of the current timestamp/state of the cluster.

<cl ust er s>
<cl uster name="corp" type="source">
<validity start="2012-01-30T00: 00Z" end="2013-03-31T23: 597"
ti mezone="UTC"' />
<retention limt="%uni tF Ti me($n)" action="delete" /> <!--
Retention policy. -->
</cluster>
</ cl usters>

Where | i m t can be minutes, hours, days, or months and then a specified numeric value.
Falcon then retains data spanning from the current moment back to the time specified in
the attribute. Any data beyond the limit (past or future) is erased.

2

Delete is the only supported action for HDP 2.1.

You can set retry policies on a per-process basis.

To set a retry policy, add the following lines to your process entity:

11

Hortonworks Data Platform May 2, 2014

<retry policy=[retry policy] delay=[retry del ay]attenpts=[attenpts]/>
<retry policy="%$policy" delay="mninutes($n)" attenpts="$n"/>

1.9. Understanding Dependencies in Falcon

Cross-entity depedencies in Falcon are important because a dependency cannot be
removed until all the dependents are first removed. For example, if Falcon manages two
clusters, one in Oregon and one in Virginia, and the Oregon cluster is going to be taken
down, you must first resolve the Virginia cluster dependencies as one Dataset (Dataset 3)
has a cross-entity dependency and depends on Email Ingest (Process 1).

Entity Dependencies

Email ingest Email cleanse

Dataset 1 Dataset 2

Virginia Hadoop
cluster

CLUSTER1 CLUSTER 2

To remove the Oregon cluster, you must resolve this dependency. Before you can remove
the Oregon Hadoop cluster, you must remove not only Process 1, Datasets 1 and 2 but also
modify the Dataset 3 entity to remove its dependence on Process 1.

As Falcon manages more clusters, viewing these dependenices becomes more crucial. For

information on viewing dependencies in Falcon, see Viewing Dependencies. For more

information on Cross-Enity validations, see Falcon Community Documentation on Cross-
Entity Validations.

1.10. Viewing Dependencies

The Falcon native Ul provides dependency viewing for datasets and processes as the
following possible views:

e List: View the various dependencies and their types in a linear format.

¢ Graph: View the relationships between dependencies as a graph to determine
requirements for removal.

12

http://falcon.incubator.apache.org/docs/FalconArchitecture.html#Cross_entity_validations
http://falcon.incubator.apache.org/docs/FalconArchitecture.html#Cross_entity_validations

Hortonworks Data Platform May 2, 2014

e Note
4

Dependencies are view-only in HDP 2.1. You must remove processes and
datasets using the Falcon CLI.

Figure 1.2. Graph_view.png

Dependency

~ZrawEmailingestPro >ZcleanseEmailProce

N

gz rawEmailFeed

|

& primaryCluster

13

Hortonworks Data Platform May 2, 2014

2. Troubleshooting Falcon

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

The following information can help you troubleshoot issues with your Falcon server
installation.

Falcon logs

The Falcon server logs are available in the logs directory under $FALCON_HOME.

To get logs for an instance of a feed or process:

$FALCON _HOVE/ bi n/ fal con instance -type $feed/ process -nane $nanme -1o0gs -start
"yyyy-Mdd' T"HH: i Z' " [-end "yyyy-MMdd' T"HH: nmm Z' "] [-runid $runid]

Falcon Server Failure

The Falcon server is stateless. All you need to do is restart Falcon for recovery, because a
Falcon server failure does not affect currently scheduled feeds and processes.

Delegation Token Renewal Issues

Inconsistencies in rules for hadoop.security.auth_to_local can lead to issues with delegation
token renewals.

If you are using secure clusters, verify that hadoop. security. auth _to | ocal in core-
site.xml is consistent across all clusters.

Invalid Entity Schema

Invalid values in cluster, feeds (datasets), or processing schema can occur.

Review Falcon schemas.

Incorrect Entity

Failure to specify the correct entity type to Falcon for any action results in a validation
error.

For example, if you specify -type feed to sumbit -type process, you will see the following
error:

[org. xm . sax. SAXPar seExcepti on; |ineNunber: 5; columNunber: 68; cvc-elt.1.a:
Cannot find the declaration of el ement 'process'.]

Bad Config Store Error

The configuration store directory must be owned by your "falcon" user.

14

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.2/bk_falcon/content/ch_appendix_falcon_schemas.html

Hortonworks Data Platform May 2, 2014

2.7. Unable to set DataSet Entity

Ensure ‘validity times’ make sense.
¢ They must align between clusters, processes, and feeds.

¢ In a given pipeline Dates need to be 1ISO8601 format:

yyyy- MMt dd' T' HH: mm 2’

2.8. Oozie Jobs

Always start with the Oozie bundle job, one bundle job per feed and process. Feeds have
one coordinator job to set the retention policy and one coordinator for the replication

policy.

15

Hortonworks Data Platform May 2, 2014

3. Appendix A: Falcon Reference

Valid entity schemas are required for a successful data pipline.

3.1. Cluster

Always specify a cluster entity before determining the other elements in your data pipeline.

3.1.1. Valid Cluster Tag Attributes

The Cluster tag contains the following attributes to set:

<cluster col o="NJ-datacenter" description="test_cluster" nane="prod-
cluster">

Table 3.1. Cluster tag elements

Example Definition Required?
col 0="$uni que_nang" Unigue name of the cluster, Yes
such as New Jersey Data
Center.
description="$your _text" Description of the cluster, if No
desired.
name="$f i | enane" Description of the cluster Yes
readiness.

3.1.2. Cluster Interfaces

You can define the following interfaces in your cluster entity:

Table 3.2. Cluster Interfaces

Type Required Interface Example Code

readonly Yes <interface type="readonly" endpoint="hftp://nn: 50070" version="2.4.0" />

write Yes <interface type="write" endpoint="hdfs://nn:8020" version="2.4.0" />

execute Yes <interface type="execute" endpoint ="rm 8050" version="0.20.2" />

workflow Yes <interface type="workfl ow' endpoint="http://Ilocal host: 11000/ oozi e/" version="3.1" />

registry No, unless your <interface type="registry" endpoint="thrift://|ocal host:9083" version="0.11.0" />
feeds are Hive
tables.

messaging Yes <interface type="nmessagi ng" endpoi nt="tcp://I| ocal host: 61616?daenon=true" versi on="5. ¢

3.1.3. Cluster XSD Specification

The Cluster XSD specification is defined here.

3.2. Feed Entity

The Feed XSD specification is defined here.

16

https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/cluster-0.1.xsd;hb=HEAD
https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/feed-0.1.xsd;hb=HEAD

Hortonworks Data Platform

May 2, 2014

3.3. Process Entity

The Process XSD specification is defined here.

3.4. Managing Entities Using the CLI

Falcon supports the following options for Entity Management:

Table 3.3. Entity Actions

Option Entities Definition CLI Usage

submit All Creates a new cluster, $FALCON_HOME/bin/falcon entity -submit -type
feed, or process entity cluster -file /cluster/definition.xml
and validate it against
the appropriate XSD.
Check for dependent
entities.

list All Lists all scheduled and $FALCON_HOME/bin/falcon entity -type [cluster|
submitted entities in feed | process] -list
Falcon for a specified
entity.

dependency Feeds, Processes CLI dependency $FALCON_HOME/bin/falcon entity -type [cluster]|
tracking. Returns all feed|process] -name $name -dependency
dependencies of the
specified entity.

schedule Feeds, Processes Schedules submitted $FALCON_HOME/bin/falcon entity -type
feeds or processes. [process | feed] -name $name -schedule

suspend Feeds, Processes Suspends any scheduled | $FALCON_HOME/bin/falcon entity -type [feed |
entity by triggering process] -name $name -suspend
suspend on the Oozie
bundle.

resume Feeds, Processes Restores a feed or $FALCON_HOME/bin/falcon entity -type [feed |
process back to the process] -name $name -resume
active state, resuming
the related Oozie
bundle.

status All Current status of the $FALCON_HOME/bin/falcon entity -type [cluster]|
entity. feed | process] -name $name -status

definition All Current entity definition. | $FALCON_HOME/bin/falcon entity -type [cluster|
Any documentation feed | process] -name $name -definition
you have made within
the entity will NOT be
retained.

delete All Removes the entity $FALCON_HOME/bin/falcon entity -type [cluster]|
from any scheduled feed | process] -name $name -delete
activity and the Falcon
configuration store.

update Feeds, Processes Allows an already $FALCON_HOME/bin/falcon entity -type [feed |
submitted or scheduled | process] -name $name -update [-effective
entity to be updated. $effective time]
Not allowed for cluster
entities.

17

https://git-wip-us.apache.org/repos/asf?p=incubator-falcon.git;a=blob_plain;f=client/src/main/resources/process-0.1.xsd;hb=HEAD

Hortonworks Data Platform

May 2, 2014

3.5. Managing Falcon using the CLI

Table 3.4. Entity Actions

Option

Definition

CLI Usage

kill

Kills all the instances of the specified process whose nominal time is
between the given start time and end time.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name kill
-start "yyyy-MM-dd'T'"HH:mm'Z" -end
"yyyy-MM-dd'T'HH:mm'Z'

suspend

Suspends one or more instances for the given process. Pauses the
parent workflow at the state.

Usage: $FALCON_HOME/bin/falcon
instance -type $feed/process -name
$name -suspend -start "yyyy-MM-
dd'T'HH:mm'Z" -end "yyyy-MM-
dd'T'HH:mm'Z2"™

continue

Continue a process instance in a terminal state such as SUCCEDDED,
KILLED, or FAILED.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -re-
run -start "yyyy-MM-dd'T'HH:mm'Z" -
end "yyyy-MM-dd'T'"HH:mm'Z"™

rerun

Rerun a process instance in a terminal state such as SUCCEEDED,
KILLED, or FAILED.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -re-
run -start "yyyy-MM-dd'T'HH:mm'Z"
-end "yyyy-MM-dd'T'HH:mm'Z" [-file
$properties file]

resume

Resumes any instance in a suspended state.

$FALCON_HOME/bin/falcon
instance -type $feed/process -name
$name -resume -start "yyyy-MM-
dd'T'HH:mm'Z" -end "yyyy-MM-
dd'T'HH:mm'Z"

status

Gets the status of one or multiple instances of a process.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
status -start "yyyy-MM-dd'T'HH:mm'Z"
-end "yyyy-MM-dd'T"HH:mm'Z"

summary

Summary of the status of feeds or processes within the time periods
specified.

$FALCON_HOME/bin/falcon
instance -type $feed/process -name
$name -summary -start "yyyy-MM-
dd'T'HH:mm'Z" -end "yyyy-MM-
dd'T'HH:mm'Z2"™

logs

Gets logs for instance actions.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
logs -start "yyyy-MM-dd'T'HH:mm'Z"™ [-
end "yyyy-MM-dd'T'"HH:mm'Z"™] [-runid
$runid]

running

Provides all running instances of the specified process.

$FALCON_HOME/bin/falcon instance
-type $feed/process -name $name -
running

help

Returns help on Falcon commands.

$FALCON_HOME/bin/falcon admin -
help

version

Returns current version of Falcon.

$FALCON_HOME/bin/falcon admin -
version

18

	Hortonworks Data Platform
	Table of Contents
	1. Data Governance with Apache Falcon
	1.1. Understanding Falcon
	1.1.1. Additonal Reading

	1.2. Defining Data Pipelines
	1.3. Deploying Data Pipelines
	1.4. Data Replication
	1.4.1. distCP Throttle
	1.4.2. Replacing JMS with ActiveMQ

	1.5. Viewing Alerts in Falcon
	1.6. Late Data Handling
	1.7. Setting a Retention Policy
	1.8. Setting a Retry Policy
	1.9. Understanding Dependencies in Falcon
	1.10. Viewing Dependencies

	2. Troubleshooting Falcon
	2.1. Falcon logs
	2.2. Falcon Server Failure
	2.3. Delegation Token Renewal Issues
	2.4. Invalid Entity Schema
	2.5. Incorrect Entity
	2.6. Bad Config Store Error
	2.7. Unable to set DataSet Entity
	2.8. Oozie Jobs

	3. Appendix A: Falcon Reference
	3.1. Cluster
	3.1.1. Valid Cluster Tag Attributes
	3.1.2. Cluster Interfaces
	3.1.3. Cluster XSD Specification

	3.2. Feed Entity
	3.3. Process Entity
	3.4. Managing Entities Using the CLI
	3.5. Managing Falcon using the CLI

