
docs.hortonworks.com

http://docs.hortonworks.com

Hortonworks Data Platform May 26, 2015

ii

Hortonworks Data Platform: System Administration Guides
Copyright © 2012-2015 Hortonworks, Inc. Some rights reserved.

The Hortonworks Data Platform, powered by Apache Hadoop, is a massively scalable and 100% open
source platform for storing, processing and analyzing large volumes of data. It is designed to deal with
data from many sources and formats in a very quick, easy and cost-effective manner. The Hortonworks
Data Platform consists of the essential set of Apache Hadoop projects including MapReduce, Hadoop
Distributed File System (HDFS), HCatalog, Pig, Hive, HBase, Zookeeper and Ambari. Hortonworks is the
major contributor of code and patches to many of these projects. These projects have been integrated and
tested as part of the Hortonworks Data Platform release process and installation and configuration tools
have also been included.

Unlike other providers of platforms built using Apache Hadoop, Hortonworks contributes 100% of our
code back to the Apache Software Foundation. The Hortonworks Data Platform is Apache-licensed and
completely open source. We sell only expert technical support, training and partner-enablement services.
All of our technology is, and will remain free and open source.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 3.0 License.
http://creativecommons.org/licenses/by-sa/3.0/legalcode

//hortonworks.com/training/
//hortonworks.com/products/hdp/
//hortonworks.com/services/
//hortonworks.com/training/
//hortonworks.com/contact-us/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Hortonworks Data Platform May 26, 2015

iii

Table of Contents
1. ACLs on HDFS ... 1

1.1. Configuring ACLs on HDFS ... 1
1.2. Using CLI Commands to Create and List ACLs ... 1
1.3. ACLs Examples ... 3

1.3.1. Introduction: ACLs Versus Permission Bits ... 3
1.3.2. Example 1: Granting Access to Another Named Group 4
1.3.3. Example 2: Using a Default ACL for Automatic Application to New
Children .. 4
1.3.4. Example 3: Blocking Access to a Sub-Tree for a Specific User 6

1.4. ACLS on HDFS Features .. 6
1.5. Use Cases for ACLs on HDFS ... 8

1.5.1. Multiple Users .. 8
1.5.2. Multiple Groups ... 8
1.5.3. Hive Partitioned Tables .. 9
1.5.4. Default ACLs .. 9
1.5.5. Minimal ACL/Permissions Only ... 10
1.5.6. Block Access to a Sub-Tree for a Specific User 10
1.5.7. ACLs with Sticky Bit ... 10

2. Capacity Scheduler .. 12
2.1. Introduction ... 12
2.2. Enabling Capacity Scheduler ... 13
2.3. Setting up Queues .. 13
2.4. Controlling Access to Queues with ACLs .. 15
2.5. Managing Cluster Capacity with Queues ... 16
2.6. Setting User Limits .. 19
2.7. Application Reservations ... 21
2.8. Starting and Stopping Queues .. 21
2.9. Setting Application Limits ... 22
2.10. Preemption ... 23
2.11. Scheduler User Interface ... 24

3. Centralized Cache Management in HDFS ... 26
3.1. Overview .. 26
3.2. Caching Use Cases .. 26
3.3. Caching Architecture .. 27
3.4. Caching Terminology .. 28
3.5. Configuring Centralized Caching ... 28

3.5.1. Native Libraries .. 29
3.5.2. Configuration Properties .. 29
3.5.3. OS Limits ... 30

3.6. Using Cache Pools and Directives .. 31
3.6.1. Cache Pool Commands ... 31
3.6.2. Cache Directive Commands .. 32

4. Configuring Rack Awareness on HDP ... 35
4.1. Create a Rack Topology Script .. 35
4.2. Add the Topology Script Property to core-site.xml ... 36
4.3. Restart HDFS and MapReduce .. 36
4.4. Verify Rack Awareness .. 37

5. Using DistCp to Copy Files ... 39

Hortonworks Data Platform May 26, 2015

iv

5.1. Using DistCp ... 39
5.2. Command Line Options .. 40
5.3. Update and Overwrite .. 41
5.4. DistCp and Security Settings ... 42
5.5. DistCp and HDP Version ... 44
5.6. DistCp Data Copy Matrix: HDP1/HDP2 to HDP2 .. 44
5.7. Copying Data from HDP-2.x to HDP-1.x Clusters .. 45
5.8. DistCp Architecture ... 45

5.8.1. DistCp Driver ... 45
5.8.2. Copy-listing Generator ... 46
5.8.3. InputFormats and MapReduce Components ... 47

5.9. DistCp Frequently Asked Questions ... 47
5.10. Appendix .. 48

5.10.1. Map Sizing ... 48
5.10.2. Copying Between Versions of HDFS .. 49
5.10.3. MapReduce and Other Side-Effects ... 49
5.10.4. SSL Configurations for HSFTP Sources ... 49

6. Decommissioning Slave Nodes ... 51
6.1. Prerequisites ... 51
6.2. Decommission DataNodes or NodeManagers .. 51

6.2.1. Decommission DataNodes .. 52
6.2.2. Decommission NodeManagers ... 52

6.3. Decommission HBase RegionServers .. 53
7. Manually Add Slave Nodes to a HDP Cluster .. 55

7.1. Prerequisites ... 55
7.2. Add Slave Nodes .. 56
7.3. Add HBase RegionServer .. 57

8. NameNode High Availability for Hadoop ... 60
8.1. Architecture .. 61
8.2. Hardware Resources ... 62
8.3. Deploy NameNode HA Cluster .. 62

8.3.1. Configure NameNode HA Cluster ... 63
8.3.2. Deploy NameNode HA Cluster ... 68
8.3.3. Deploy Hue with an HA Cluster .. 71
8.3.4. Deploy Oozie with HA Cluster .. 72

8.4. Operating a NameNode HA cluster ... 72
8.5. Configure and Deploy NameNode Automatic Failover 73

8.5.1. Prerequisites .. 74
8.5.2. Instructions .. 75
8.5.3. Configuring Oozie Failover ... 77

8.6. Appendix: Administrative Commands .. 77
9. ResourceManager High Availability for Hadoop ... 79

9.1. Hardware Resources ... 79
9.2. Deploy ResourceManager HA Cluster .. 80

9.2.1. Configure Manual or Automatic ResourceManager Failover 80
9.2.2. Deploy the ResourceManager HA Cluster ... 83
9.2.3. Minimum Settings for Automatic ResourceManager HA Configuration
.. 85

10. Hadoop Archives ... 88
10.1. Introduction ... 88
10.2. Hadoop Archive Components ... 89

Hortonworks Data Platform May 26, 2015

v

10.3. Creating a Hadoop Archive ... 90
10.4. Looking Up Files in Hadoop Archives .. 90
10.5. Hadoop Archives and MapReduce .. 91

11. High Availability for Hive Metastore .. 92
11.1. Use Cases and Fail Over Scenarios ... 92
11.2. Software Configuration .. 92

11.2.1. Install HDP ... 93
11.2.2. Update the Hive Metastore .. 93
11.2.3. Validate configuration ... 94

12. Highly Available Reads with HBase .. 95
12.1. Understanding HBase Concepts .. 95

12.1.1. Region Servers and Secondary Mode .. 95
12.1.2. Timeline and Strong Data Consistency .. 97

12.2. Enabling HA Reads for HBase ... 97
12.3. Creating Highly-Available HBase Tables ... 99

12.3.1. Creating HA Tables with the HBase Java API 100
12.3.2. Creating HA Tables with the HBase Shell .. 100

12.4. Querying Secondary Region Servers .. 100
12.4.1. Querying HBase with the Java API .. 100
12.4.2. Querying HBase Interactively .. 101

12.5. Monitoring Secondary Region Servers ... 101
13. HBase Cluster Capacity and Region Sizing .. 103

13.1. Node Count and JVM Configuration ... 105
13.2. Region Count and Size .. 107

13.2.1. Increase Memstore Size for region server .. 108
13.2.2. Increase Size of the Region .. 109

13.3. Initial Configuration and Tuning ... 109
14. Short-Circuit Local Reads on HDFS .. 111

14.1. Prerequisites ... 111
14.2. Configuring Short-Circuit Local Reads on HDFS .. 111

15. Timeline Server .. 114
15.1. Introduction .. 114
15.2. Configuring the Timeline Server .. 114
15.3. Configuring Generic Data Collection .. 116
15.4. Configuring Per-Framework Data Collection .. 117
15.5. Running the Timeline Server ... 118
15.6. Accessing Generic Data from the Command-Line ... 119
15.7. Publishing Per-Framework Data in Applications ... 119

16. WebHDFS Administrator Guide .. 120
17. Configuring HDFS Compression .. 122

Hortonworks Data Platform May 26, 2015

vi

List of Tables
8.1. Hue Configuration Properties ... 71
12.1. .. 98
13.1. HBase Concepts .. 103
13.2. Factors Affecting Physical Size of Data .. 105
13.3. Authentication Schemes in TCP Transport Mode .. 110
14.1. Short-Circuit Local Read Properties in hdfs-site.xml .. 111

Hortonworks Data Platform May 26, 2015

1

1. ACLs on HDFS
This guide describes how to use Access Control Lists (ACLs) on the Hadoop Distributed
File System (HDFS). ACLs extend the HDFS permission model to support more granular file
access based on arbitrary combinations of users and groups.

In this section:

• Configuring ACLs on HDFS

• Using CLI Commands to Create and List ACLs

• ACLs Examples

• ACLS on HDFS Features

• Use Cases for ACLs on HDFS

1.1. Configuring ACLs on HDFS
Only one property needs to be specified in the hdfs-site.xml file in order to enable
ACLs on HDFS:

• dfs.namenode.acls.enabled

Set this property to "true" to enable support for ACLs. ACLs are disabled by default.
When ACLs are disabled, the NameNode rejects all attempts to set an ACL.

Example:

<property>
 <name>dfs.namenode.acls.enabled</name>
 <value>true</value>
</property>

1.2. Using CLI Commands to Create and List ACLs
Two new sub-commands are added to FsShell: setfacl and getfacl. These
commands are modeled after the same Linux shell commands, but fewer flags are
implemented. Support for additional flags may be added later if required.

• setfacl

Sets ACLs for files and directories.

Usage:

-setfacl [-bkR] {-m|-x} <acl_spec> <path>

-setfacl --set <acl_spec> <path>

Options:

Hortonworks Data Platform May 26, 2015

2

Option Description

-b Remove all entries, but retain the base ACL entries. The entries for User, Group, and Others are retained for compatibility with Permission Bits.

-k Remove the default ACL.

-R Apply operations to all files and directories recursively.

-m Modify the ACL. New entries are added to the ACL, and existing entries are retained.

-x Remove the specified ACL entries. All other ACL entries are retained.

--set Fully replace the ACL and discard all existing entries. The <acl_spec> must include entries for User, Group, and Others for compatibility with
Permission Bits.

<acl_spec> A comma-separated list of ACL entries.

<path> The path to the file or directory to modify.

Examples:

hdfs dfs -setfacl -m user:hadoop:rw- /file

hdfs dfs -setfacl -x user:hadoop /file

hdfs dfs -setfacl -b /file

hdfs dfs -setfacl -k /dir

hdfs dfs -setfacl --set user::rw-,user:hadoop:rw-,group::r--,other::r-- /
file

hdfs dfs -setfacl -R -m user:hadoop:r-x /dir

hdfs dfs -setfacl -m default:user:hadoop:r-x /dir

Exit Code:

Returns 0 on success and non-zero on error.

• getfacl

Displays the ACLs of files and directories. If a directory has a default ACL, getfacl also
displays the default ACL.

Usage:

-getfacl [-R] <path>

Options:

Option Description

-R List the ACLs of all files and directories recursively.

<path> The path to the file or directory to list.

Examples:

hdfs dfs -getfacl /file

hdfs dfs -getfacl -R /dir

Exit Code:

Hortonworks Data Platform May 26, 2015

3

Returns 0 on success and non-zero on error.

1.3. ACLs Examples
In this section:

• Introduction: ACLs Versus Permission Bits

• Example 1: Granting Access to Another Named Group

• Example 2: Using a Default ACL for Automatic Application to New Children

• Example 3: Blocking Access to a Sub-Tree for a Specific User

1.3.1. Introduction: ACLs Versus Permission Bits
Before the implementation of Access Control Lists (ACLs), the HDFS permission model
was equivalent to traditional UNIX Permission Bits. In this model, permissions for each
file or directory are managed by a set of three distinct user classes: Owner, Group, and
Others. There are three permissions for each user class: Read, Write, and Execute. Thus,
for any file system object, its permissions can be encoded in 3*3=9 bits. When a user
attempts to access a file system object, HDFS enforces permissions according to the most
specific user class applicable to that user. If the user is the owner, HDFS checks the Owner
class permissions. If the user is not the owner, but is a member of the file system object’s
group, HDFS checks the Group class permissions. Otherwise, HDFS checks the Others class
permissions.

This model can sufficiently address a large number of security requirements. For example,
consider a sales department that would like a single user -- Bruce, the department manager
-- to control all modifications to sales data. Other members of the sales department need to
view the data, but must not be allowed to modify it. Everyone else in the company (outside
of the sales department) must not be allowed to view the data. This requirement can be
implemented by running chmod 640 on the file, with the following outcome:

-rw-r----- 1 bruce sales 22K Nov 18 10:55 sales-data

Only Bruce can modify the file, only members of the sales group can read the file, and no
one else can access the file in any way.

Suppose that new requirements arise. The sales department has grown, and it is no longer
feasible for Bruce to control all modifications to the file. The new requirement is that Bruce,
Diana, and Clark are allowed to make modifications. Unfortunately, there is no way for
Permission Bits to address this requirement, because there can be only one owner and
one group, and the group is already used to implement the read-only requirement for the
sales team. A typical workaround is to set the file owner to a synthetic user account, such
as "salesmgr," and allow Bruce, Diana, and Clark to use the "salesmgr" account via sudo or
similar impersonation mechanisms. The drawback with this workaround is that it forces
complexity onto end-users, requiring them to use different accounts for different actions.

Now suppose that in addition to the sales staff, all executives in the company need to be
able to read the sales data. This is another requirement that cannot be expressed with
Permission Bits, because there is only one group, and it is already used by sales. A typical
workaround is to set the file’s group to a new synthetic group, such as "salesandexecs,"

Hortonworks Data Platform May 26, 2015

4

and add all users of "sales" and all users of "execs" to that group. The drawback with this
workaround is that it requires administrators to create and manage additional users and
groups.

Based on the preceding examples, you can see that it can be awkward to use Permission
Bits to address permission requirements that differ from the natural organizational
hierarchy of users and groups. The advantage of using ACLs is that it enables you to
address these requirements more naturally, in that for any file system object, multiple users
and multiple groups can have different sets of permissions.

1.3.2. Example 1: Granting Access to Another Named Group

To address one of the issues raised in the preceding section, we will set an ACL that grants
Read access to sales data to members of the "execs" group.

• Set the ACL:

> hdfs dfs -setfacl -m group:execs:r-- /sales-data

• Run getfacl to check the results:

> hdfs dfs -getfacl /sales-data
file: /sales-data
owner: bruce
group: sales
user::rw-
group::r--
group:execs:r--
mask::r--
other::---

• If we run the ls command, we see that the listed permissions have been appended
with a "+" symbol to indicate the presence of an ACL. The "+" symbol is appended to the
permissions of any file or directory that has an ACL.

> hdfs dfs -ls /sales-data
Found 1 items
-rw-r-----+ 3 bruce sales 0 2014-03-04 16:31 /sales-data

The new ACL entry is added to the existing permissions defined by the Permission Bits. As
the file owner, Bruce has full control. Members of either the "sales" group or the "execs"
group have Read access. All others do not have access.

1.3.3. Example 2: Using a Default ACL for Automatic
Application to New Children

In addition to an ACL enforced during permission checks, there is also the separate concept
of a default ACL. A default ACL can only be applied to a directory -- not to a file. Default
ACLs have no direct effect on permission checks for existing child files and directories,
but instead define the ACL that new child files and directories will receive when they are
created.

Suppose we have a "monthly-sales-data" directory that is further subdivided into separate
directories for each month. We will set a default ACL to guarantee that members of the

Hortonworks Data Platform May 26, 2015

5

"execs" group automatically get access to new subdirectories as they get created each
month.

• Set a default ACL on the parent directory:

> hdfs dfs -setfacl -m default:group:execs:r-x /monthly-sales-data

• Make subdirectories:

> hdfs dfs -mkdir /monthly-sales-data/JAN
> hdfs dfs -mkdir /monthly-sales-data/FEB

• Verify that HDFS has automatically applied the default ACL to the subdirectories :

> hdfs dfs -getfacl -R /monthly-sales-data
file: /monthly-sales-data
owner: bruce
group: sales
user::rwx
group::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

file: /monthly-sales-data/FEB
owner: bruce
group: sales
user::rwx
group::r-x
group:execs:r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

file: /monthly-sales-data/JAN
owner: bruce
group: sales
user::rwx
group::r-x
group:execs:r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

The default ACL is copied from the parent directory to a child file or directory when it is
created. Subsequent changes to the default ACL of the parent directory do not alter the
ACLs of existing children.

Hortonworks Data Platform May 26, 2015

6

1.3.4. Example 3: Blocking Access to a Sub-Tree for a Specific
User

Suppose there is a need to immediately block access to an entire sub-tree for a specific
user. Applying a named user ACL entry to the root of that sub-tree is the fastest way to
accomplish this without accidentally revoking permissions for other users.

• Add an ACL entry to block all access to "monthly-sales-data" by user Diana:

> hdfs dfs -setfacl -m user:diana:--- /monthly-sales-data

• Run getfacl to check the results:

> hdfs dfs -getfacl /monthly-sales-data
file: /monthly-sales-data
owner: bruce
group: sales
user::rwx
user:diana:---
group::r-x
mask::r-x
other::---
default:user::rwx
default:group::r-x
default:group:execs:r-x
default:mask::r-x
default:other::---

The new ACL entry is added to the existing permissions defined by the Permission Bits.
Bruce has full control as the file owner. Members of either the "sales" group or the "execs"
group have Read access. All others do not have access.

It is important to keep in mind the order of evaluation for ACL entries when a user
attempts to access a file system object:

1. If the user is the file owner, the Owner Permission Bits are enforced.

2. Else, if the user has a named user ACL entry, those permissions are enforced.

3. Else, if the user is a member of the file’s group or any named group in an ACL entry,
then the union of permissions for all matching entries are enforced. (The user may be a
member of multiple groups.)

4. If none of the above are applicable, the Other Permission Bits are enforced.

In this example, the named user ACL entry accomplished our goal, because the user is not
the file owner, and the named user entry takes precedence over all other entries.

1.4. ACLS on HDFS Features
POSIX ACL Implementation

ACLs on HDFS have been implemented with the POSIX ACL model. If you have ever used
POSIX ACLs on a Linux file system, the HDFS ACLs work the same way.

Hortonworks Data Platform May 26, 2015

7

Compatibility and Enforcement

HDFS can associate an optional ACL with any file or directory. All HDFS operations
that enforce permissions expressed with Permission Bits must also enforce any ACL
that is defined for the file or directory. Any existing logic that bypasses Permission
Bits enforcement also bypasses ACLs. This includes the HDFS super-user and setting
dfs.permissions to "false" in the configuration.

Access Through Multiple User-Facing Endpoints

HDFS supports operations for setting and getting the ACL associated with a file or
directory. These operations are accessible through multiple user-facing endpoints. These
endpoints include the FsShell CLI, programmatic manipulation through the FileSystem and
FileContext classes, WebHDFS, and NFS.

User Feedback: CLI Indicator for ACLs

The ‘+’ symbol is appended to the listed permissions (the output of the ls -l command)
of any file or directory with an associated ACL.

Backward-Compatibility

The implementation of ACLs is backward-compatible with existing usage of Permission
Bits. Changes applied via Permission Bits (i.e., chmod) are also visible as changes in the
ACL. Likewise, changes applied to ACL entries for the base user classes (Owner, Group,
and Others) are also visible as changes in the Permission Bits. In other words, Permission Bit
and ACL operations manipulate a shared model, and the Permission Bit operations can be
considered a subset of the ACL operations.

Low Overhead

The addition of ACLs will not cause a detrimental impact to the consumption of system
resources in deployments that choose not to use ACLs. This includes CPU, memory, disk,
and network bandwidth.

Using ACLs does impact NameNode performance. It is therefore recommended that you
use Permission Bits, if adequate, before using ACLs.

ACL Entry Limits

The number of entries in a single ACL is capped at a maximum of 32. Attempts to add ACL
entries over the maximum will fail with a user-facing error. This is done for two reasons: to
simplify management, and to limit resource consumption. ACLs with a very high number
of entries tend to become difficult to understand, and may indicate that the requirements
are better addressed by defining additional groups or users. ACLs with a very high number
of entries also require more memory and storage, and take longer to evaluate on each
permission check. The number 32 is consistent with the maximum number of ACL entries
enforced by the "ext" family of file systems.

Symlinks

Symlinks do not have ACLs of their own. The ACL of a symlink is always seen as the default
permissions (777 in Permission Bits). Operations that modify the ACL of a symlink instead
modify the ACL of the symlink’s target.

Hortonworks Data Platform May 26, 2015

8

Snapshots

Within a snapshot, all ACLs are frozen at the moment that the snapshot was created. ACL
changes in the parent of the snapshot are not applied to the snapshot.

Tooling

Tooling that propagates Permission Bits will not propagate ACLs. This includes the cp -p
shell command and distcp -p.

1.5. Use Cases for ACLs on HDFS
ACLs on HDFS supports the following use cases:

• Multiple Users

• Multiple Groups

• Hive Partitioned Tables

• Default ACLs

• Minimal ACL/Permissions Only

• Block Access to a Sub-Tree for a Specific User

• ACLs with Sticky Bit

1.5.1. Multiple Users

In this use case, multiple users require Read access to a file. None of the users are the owner
of the file. The users are not members of a common group, so it is impossible to use group
Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named user
entries:

user:bruce:r--
user:diana:r--
user:clark:r--

1.5.2. Multiple Groups

In this use case, multiple groups require Read and Write access to a file. There is no
group containing the union of all of the groups' members, so it is impossible to use group
Permission Bits.

This use case can be addressed by setting an access ACL containing multiple named group
entries:

group:sales:rw-
group:execs:rw-

Hortonworks Data Platform May 26, 2015

9

1.5.3. Hive Partitioned Tables
In this use case, Hive contains a partitioned table of sales data. The partition key is
"country". Hive persists partitioned tables using a separate subdirectory for each distinct
value of the partition key, so the file system structure in HDFS looks like this:

user
`-- hive
 `-- warehouse
 `-- sales
 |-- country=CN
 |-- country=GB
 `-- country=US

A "salesadmin" group is the owning group for all of these files. Members of this group have
Read and Write access to all files. Separate country-specific groups can run Hive queries
that only read data for a specific country, e.g., "sales_CN", "sales_GB", and "sales_US". These
groups do not have Write access.

This use case can be addressed by setting an access ACL on each subdirectory containing an
owning group entry and a named group entry:

country=CN
group::rwx
group:sales_CN:r-x

country=GB
group::rwx
group:sales_GB:r-x

country=US
group::rwx
group:sales_US:r-x

Note that the functionality of the owning group ACL entry (the group entry with no name)
is equivalent to setting Permission Bits.

Important

Storage-based authorization in Hive does not currently consider the ACL
permissions in HDFS. Rather, it verifies access using the traditional POSIX
permissions model.

1.5.4. Default ACLs
In this use case, a file system administrator or sub-tree owner would like to define an access
policy that will be applied to the entire sub-tree. This access policy must apply not only to
the current set of files and directories, but also to any new files and directories that are
added later.

This use case can be addressed by setting a default ACL on the directory. The default ACL
can contain any arbitrary combination of entries. For example:

default:user::rwx
default:user:bruce:rw-
default:user:diana:r--

Hortonworks Data Platform May 26, 2015

10

default:user:clark:rw-
default:group::r--
default:group:sales::rw-
default:group:execs::rw-
default:others::---

It is important to note that the default ACL gets copied from the directory to newly
created child files and directories at time of creation of the child file or directory. If you
change the default ACL on a directory, that will have no effect on the ACL of the files and
subdirectories that already exist within the directory. Default ACLs are never considered
during permission enforcement. They are only used to define the ACL that new files and
subdirectories will receive automatically when they are created.

1.5.5. Minimal ACL/Permissions Only
HDFS ACLs support deployments that may want to use only Permission Bits and not ACLs
with named user and group entries. Permission Bits are equivalent to a minimal ACL
containing only 3 entries. For example:

user::rw-
group::r--
others::---

1.5.6. Block Access to a Sub-Tree for a Specific User
In this use case, a deeply nested file system sub-tree was created as world-readable,
followed by a subsequent requirement to block access for a specific user to all files in that
sub-tree.

This use case can be addressed by setting an ACL on the root of the sub-tree with a named
user entry that strips all access from the user.

For this file system structure:

dir1
`-- dir2
 `-- dir3
 |-- file1
 |-- file2
 `-- file3

Setting the following ACL on "dir2" blocks access for Bruce to "dir3," "file1," "file2," and
"file3":

user:bruce:---

More specifically, the removal of execute permissions on "dir2" means that Bruce cannot
access "dir2", and therefore cannot see any of its children. This also means that access is
blocked automatically for any newly-added files under "dir2". If a "file4" is created under
"dir3", Bruce will not be able to access it.

1.5.7. ACLs with Sticky Bit
In this use case, multiple named users or named groups require full access to a general-
purpose shared directory, such as "/tmp". However, Write and Execute permissions on

Hortonworks Data Platform May 26, 2015

11

the directory also give users the ability to delete or rename any files in the directory, even
files created by other users. Users must be restricted so they are only allowed to delete or
rename files that they created.

This use case can be addressed by combining an ACL with the sticky bit. The sticky bit is
existing functionality that currently works with Permission Bits. It will continue to work as
expected in combination with ACLs.

Hortonworks Data Platform May 26, 2015

12

2. Capacity Scheduler
This guide describes how to use the Capacity Scheduler to allocate shared cluster resources
among users and groups.

In this section:

• Introduction

• Enabling Capacity Scheduler

• Setting up Queues

• Controlling Access to Queues with ACLs

• Managing Cluster Capacity with Queues

• Setting User Limits

• Application Reservations

• Starting and Stopping Queues

• Setting Application Limits

• Preemption

• Scheduler User Interface

2.1. Introduction
The fundamental unit of scheduling in YARN is the queue. Each queue in the Capacity
Scheduler has the following properties:

• A short queue name.

• A full queue path name.

• A list of associated child-queues and applications.

• The guaranteed capacity of the queue.

• The maximum capacity of the queue.

• A list of active users and their corresponding resource allocation limits.

• The state of the queue.

• Access control lists (ACLs) governing access to the queue. The following sections will
describe how to configure these properties, and how Capacity Scheduler uses these
properties to make various scheduling decisions.

Hortonworks Data Platform May 26, 2015

13

2.2. Enabling Capacity Scheduler
To enable the Capacity Scheduler, set the following property in the /etc/hadoop/conf/
yarn-site.xml file on the ResourceManager host:

Property Value

yarn.resourcemanager.scheduler.class org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler

The settings for the Capacity Scheduler are contained in the /etc/hadoop/conf/
capacity-scheduler.xml file on the ResourceManager host. The Capacity Scheduler
reads this file when starting, and also when an administrator modifies the capacity-
scheduler.xml file and then reloads the settings by running the following command:

yarn rmadmin -refreshQueues

This command can only be run by cluster administrators. Administrator privileges are
configured with the yarn.admin.acl property on the ResourceManager.

2.3. Setting up Queues
The fundamental unit of scheduling in YARN is a queue. The capacity of each queue
specifies the percentage of cluster resources that are available for applications submitted
to the queue. Queues can be set up in a hierarchy that reflects the database structure,
resource requirements, and access restrictions required by the various organizations,
groups, and users that utilize cluster resources.

For example, suppose that a company has three organizations: Engineering, Support, and
Marketing. The Engineering organization has two sub-teams: Development and QA. The
Support organization has two sub-teams: Training and Services. And finally, the Marketing
organization is divided into Sales and Advertising. The following image shoes the queue
hierarchy for this example:

Each child queue is tied to its parent queue with the
yarn.scheduler.capacity.<queue-path>.queues configuration property in the
capacity-scheduler.xml file. The top-level "support", "engineering", and "marketing"
queues would be tied to the "root" queue as follows:

Hortonworks Data Platform May 26, 2015

14

Property: yarn.scheduler.capacity.root.queues

Value: support,engineering,marketing

Example:

<property>
 <name>yarn.scheduler.capacity.root.queues</name>
 <value>support,engineering,marketing</value>
 <description>The top-level queues below root.</description>
</property>

Similarly, the children of the "support" queue would be defined as follows:

Property: yarn.scheduler.capacity.support.queues

Value: training,services

Example:

<property>
 <name>yarn.scheduler.capacity.support.queues</name>
 <value>training,services</value>
 <description>child queues under support</description>
</property>

The children of the "engineering" queue would be defined as follows:

Property: yarn.scheduler.capacity.engineering.queues

Value: development,qa

Example:

<property>
 <name>yarn.scheduler.capacity.engineering.queues</name>
 <value>development,qa</value>
 <description>child queues under engineering</description>
</property>

And the children of the "marketing" queue would be defined as follows:

Property: yarn.scheduler.capacity.marketing.queues

Value: sales,advertising

Example:

<property>
 <name>yarn.scheduler.capacity.marketing.queues</name>
 <value>sales,advertising</value>
 <description>child queues under marketing</description>
</property>

Hierarchical Queue Characteristics

Hortonworks Data Platform May 26, 2015

15

• There are two types of queues: parent queues and leaf queues.

• Parent queues enable the management of resources across organizations and sub-
organizations. They can contain more parent queues or leaf queues. They do not
themselves accept any application submissions directly.

• Leaf queues are the queues that live under a parent queue and accept applications.
Leaf queues do not have any child queues, and therefore do not have any configuration
property that ends with ".queues".

• There is a top-level parent root queue that does not belong to any organization, but
instead represents the cluster itself.

• Using parent and leaf queues, administrators can specify capacity allocations for various
organizations and sub-organizations.

Scheduling Among Queues

Hierarchical queues ensure that guaranteed resources are first shared among the sub-
queues of an organization before any remaining free resources are shared with queues
belonging to other organizations. This enables each organization to have control over the
utilization of its guaranteed resources.

• At each level in the hierarchy, every parent queue keeps the list of its child queues in
a sorted manner based on demand. The sorting of the queues is determined by the
currently used fraction of each queue’s capacity (or the full-path queue names if the
reserved capacity of any two queues is equal).

• The root queue understands how the cluster capacity needs to be distributed among the
first level of parent queues and invokes scheduling on each of its child queues.

• Every parent queue applies its capacity constraints to all of its child queues.

• Leaf queues hold the list of active applications (potentially from multiple users) and
schedules resources in a FIFO (first-in, first-out) manner, while at the same time adhering
to capacity limits specified for individual users.

2.4. Controlling Access to Queues with ACLs
Access-control lists (ACLs) can be used to restrict user and administrator access to queues.
Application submission can really only happen at the leaf queue level, but an ACL
restriction set on a parent queue will be applied to all of its descendant queues.

In the Capacity Scheduler, ACLs are configured by granting queue access to a list of users
and groups with the acl_submit_applications property. The format of the list
is "user1,user2 group1,group" -- a comma-separated list of users, followed by a space,
followed by a comma-separated list of groups.

The value of acl_submit_applications can also be set to "*" (asterisk) to allow access
to all users and groups, or can be set to " " (space character) to block access to all users and
groups.

Hortonworks Data Platform May 26, 2015

16

The following example would restrict access to the "support" queue to the users "sherlock"
and "pacioli" and the members of the "cfo-group" group:

Property:
yarn.scheduler.capacity.root.support.acl_submit_applications

Value: sherlock,pacioli cfo-group

A separate ACL can be used to control the administration of queues at various levels.
Queue administrators can submit applications to the queue (without an explicit submit-
ACL), kill any application in the queue, and obtain information about any application in the
queue (whereas normal users are restricted from viewing all of the details of other users'
applications).

Administrator ACLs are configured with the acl_administer_queue property. The
following example would grant administrator access to the "support" queue to the
members of "cfo-group":

Property: yarn.scheduler.capacity.root.support.acl_administer_queue

Value: cfo-group

Description: A space character followed by "cfo-group" (unquoted).

2.5. Managing Cluster Capacity with Queues
The Capacity Scheduler is designed to allow organizations to share compute clusters using
the very familiar notion of FIFO (first-in, first-out) queues. YARN does not assign entire
nodes to queues. Queues own a fraction of the capacity of the cluster, and this specified
queue capacity can be fulfilled from any number of nodes in a dynamic fashion.

Scheduling is the process of matching resource requirements -- of multiple applications from
various users, and submitted to different queues at multiple levels in the queue hierarchy
-- with the free capacity available on the nodes in the cluster. Because total cluster capacity
can vary, capacity configuration values are expressed as percents.

The capacity property can be used by administrators to allocate a percentage of cluster
capacity to a queue. The following properties would divide the cluster resources between
the Engineering, Support, and Marketing organizations in a 6:1:3 ratio (60%, 10%, and
30%).

Property: yarn.scheduler.capacity.root.engineering.capacity

Value: 60

Property: yarn.scheduler.capacity.root.support.capacity

Value: 10

Property: yarn.scheduler.capacity.root.marketing.capacity

Value: 30

Hortonworks Data Platform May 26, 2015

17

Now suppose that the Engineering group decides to split its capacity between the
Development and QA sub-teams in a 1:4 ratio. That would be implemented by setting the
following properties:

Property:
yarn.scheduler.capacity.root.engineering.development.capacity

Value: 20

Property: yarn.scheduler.capacity.root.engineering.qa.capacity

Value: 80

Note

The sum of capacities at any level in the hierarchy must equal 100%. Also, the
capacity of an individual queue at any level in the hierarchy must be 1% or
more (you cannot set a capacity to a value of 0).

The following image illustrates this cluster capacity configuration:

Resource Distribution Workflow

During scheduling, queues at any level in the hierarchy are sorted in the order of their
current used capacity, and available resources are distributed among them starting with
queues that are currently the most under-served. With respect to capacities alone, the
resource scheduling has the following workflow:

• The more under-served a queue is, the higher the priority it receives during resource
allocation. The most under-served queue is the queue with the least ratio of used
capacity as compared to the total cluster capacity.

• The used capacity of any parent queue is defined as the aggregate sum of used
capacity of all of its descendant queues, recursively.

• The used capacity of a leaf queue is the amount of resources used by the allocated
Containers of all of the applications running in that queue.

Hortonworks Data Platform May 26, 2015

18

• Once it is decided to give a parent queue the currently available free resources, further
scheduling is done recursively to determine which child queue gets to use the resources --
based on the previously described concept of used capacities.

• Further scheduling happens inside each leaf queue to allocate resources to applications in
a FIFO order.

• This is also dependent on locality, user level limits, and application limits.

• Once an application within a leaf queue is chosen, scheduling also happens within the
application. Applications may have different priorities of resource requests.

• To ensure elasticity, capacity that is configured but not utilized by any queue due to lack
of demand is automatically assigned to the queues that are in need of resources.

Resource Distribution Workflow Example

Suppose our cluster has 100 nodes, each with 10 GB of memory allocated for YARN
Containers, for a total cluster capacity of 1000 GB (1 TB). According to the previously
described configuration, the Engineering organization is assigned 60% of the cluster
capacity, i.e., an absolute capacity of 600 GB. Similarly, the Support organization is assigned
100 GB, and the Marketing organization gets 300 GB.

Under the Engineering organization, capacity is distributed between the Development
team and the QA team in a in a 1:4 ratio. So Development gets 120 GB, and 480 GB is
assigned to QA.

Now consider the following timeline of events:

• Initially, the entire "engineering" queue is free with no applications running, while the
"support" and "marketing" queues are utilizing their full capacities.

• Users Sid and Hitesh first submit applications to the "development" leaf queue. Their
applications are elastic and can run with either all of the resources available in the cluster,
or with a subset of cluster resources (depending upon the state of the resource-usage).

• Even though the "development" queue is allocated 120 GB, Sid and Hitesh are each
allowed to occupy 120 GB, for a total of 240 GB.

• This can happen despite the fact that the "development" queue is configured to be run
with a capacity of 120 GB. Capacity Scheduler allows elastic sharing of cluster resources
for better utilization of available cluster resources. Since there are no other users in the
"engineering" queue, Sid and Hitesh are allowed to use the available free resources.

• Next, users Jian, Zhijie and Xuan submit more applications to the "development" leaf
queue. Even though each is restricted to 120 GB, the overall used capacity in the queue
becomes 600 GB -- essentially taking over all of the resources allocated to the "qa" leaf
queue.

• User Gupta now submits an application to the "qa" queue. With no free resources
available in the cluster, his application must wait.

• Given that the "development" queue is utilizing all of the available cluster resources,
Gupta may or may not be able to immediately get back the guaranteed capacity of his
"qa" queue -- depending upon whether or not preemption is enabled.

Hortonworks Data Platform May 26, 2015

19

• As the applications of Sid, Hitesh, Jian, Zhijie, and Xuan finish running and resources
become available, the newly available Containers will be allocated to Gupta’s application.
This will continue until the cluster stabilizes at the intended 1:4 resource usage ratio for
the "development" and "qa" queues.

From this example, you can see that it is possible for abusive users to submit applications
continuously, and thereby lock out other queues from resource allocation until Containers
finish running or get preempted. To avoid this scenario, Capacity Scheduler supports limits
on the elastic growth of any queue. For example, to restrict the "development" queue from
monopolizing the "engineering" queue capacity, an administrator can set a the maximum-
capacity property:

Property:
yarn.scheduler.capacity.root.engineering.development.maximum-
capacity

Value: 40

Once this is set, users of the "development" queue can still go beyond their capacity of 120
GB, but they will not be allocated any more than 40% of the "engineering" parent queue's
capacity (i.e., 40% of 600 GB = 240 GB).

The capacity and maximum-capacity properties can be used to control sharing
and elasticity across the organizations and sub-organizations utilizing a YARN cluster.
Administrators should balance these properties to avoid strict limits that result in a loss of
utilization, and to avoid excessive cross-organization sharing.

Capacity and maximum capacity settings can be dynamically changed at run-time using
yarn rmadmin -refreshQueues.

2.6. Setting User Limits
The minimum-user-limit-percent property can be used to set the minimum
percentage of resources allocated to each leaf queue user. For example, to enable equal
sharing of the "services" leaf queue capacity among five users, you would set the minimum-
user-limit property to 20%:

Property: yarn.scheduler.capacity.root.support.services.minimum-user-
limit-percent

Value: 20

This setting determines the minimum limit that any user’s share of the queue capacity can
shrink to. Irrespective of this limit, any user can come into the queue and take more than
his or her allocated share if there are idle resources available.

The following table shows how the queue resources are adjusted as users submit jobs to a
queue with a minimum-user-limit-percent value of 20%:

Hortonworks Data Platform May 26, 2015

20

• The Capacity Scheduler also manages resources for decreasing numbers of users. As
users’ applications finish running, other existing users with outstanding requirements
begin to reclaim that share.

• Note that despite this sharing among users, the FIFO application scheduling order of
Capacity Scheduler does not change. This guarantees that users cannot monopolize
queues by submitting new applications continuously. Applications (and thus the
corresponding users) that are submitted first always get a higher priority than
applications that are submitted later.

Capacity Scheduler’s leaf queues can also use the user-limit-factor property to
control user resource allocations. This property denotes the fraction of queue capacity that
any single user can consume up to a maximum value, regardless of whether or not there
are idle resources in the cluster.

Property: yarn.scheduler.capacity.root.support.user-limit-factor

Value: 1

The default value of "1" means that any single user in the queue can at maximum only
occupy the queue’s configured capacity. This prevents users in a single queue from
monopolizing resources across all queues in a cluster. Setting the value to "2" would restrict
the queue's users to twice the queue’s configured capacity. Setting it to a value of 0.5
would restrict any user from using resources beyond half of the queue capacity.

These settings can also be dynamically changed at run-time using yarn rmadmin -
refreshQueues.

Hortonworks Data Platform May 26, 2015

21

2.7. Application Reservations
The Capacity Scheduler is responsible for matching free resources in the cluster with the
resource requirements of an application. Many times, a scheduling cycle occurs such that
even though there are free resources on a node, they are not sized large enough to satisfy
the application waiting for a resource at the head of the queue. This typically happens with
high-memory applications whose resource demand for Containers is much larger than the
typical application running in the cluster. This mismatch can lead to starving these resource-
intensive applications.

The Capacity Scheduler reservations feature addresses this issue:

• When a node reports in with a finished Container, the Capacity Scheduler selects an
appropriate queue to utilized the newly available resources based on capacity and
maximum capacity settings.

• Within that selected queue, the Capacity Scheduler looks at the applications in a
FIFO order along with the user limits. Once a needy application is found, the Capacity
Scheduler tries to see if the requirements of that application can be met by the node’s
free capacity.

• If there is a size mismatch, the Capacity Scheduler immediately creates a reservation on
the node for the application’s required Container.

• Once a reservation is made for an application on a node, those resources are not used
by the Capacity Scheduler for any other queue, application, or Container until the
application reservation is fulfilled.

• The node on which a reservation is made reports back when enough Containers finish
running such that the total free capacity on the node now matches the reservation size.
When that happens, the Capacity Scheduler marks the reservation as fulfilled, removes it,
and allocates a Container on the node.

• In some cases another node fulfills the resources required by the application, so the
application no longer needs the reserved capacity on the first node. In this situation, the
reservation is simply cancelled.

To prevent the number of reservations from growing in an unbounded manner, and to
avoid any potential scheduling deadlocks, the Capacity Scheduler maintains only one active
reservation at a time on each node.

2.8. Starting and Stopping Queues
Queues in YARN can be in two states: RUNNING or STOPPED. A RUNNING state indicates
that a queue can accept application submissions, and a STOPPED queue does not accept
application submissions. The default state of any configured queue is RUNNING.

In Capacity Scheduler, parent queues, leaf queues, and the root queue can all be stopped.
For an application to be accepted at any leaf queue, all the queues in the hierarchy all the
way up to the root queue must be running. This means that if a parent queue is stopped,

Hortonworks Data Platform May 26, 2015

22

all of the descendant queues in that hierarchy are inactive, even if their own state is
RUNNING.

The following example sets the value of the state property of the "support" queue to
RUNNING:

Property: yarn.scheduler.capacity.root.support.state

Value: RUNNING

Administrators can use the ability to stop and drain applications in a queue for a number of
reasons, such as when decommissioning a queue and migrating its users to other queues.
Administrators can stop queues at run-time, so that while current applications run to
completion, no new applications are admitted. Existing applications can continue until they
finish running, and thus the queue can be drained gracefully without any end-user impact.

Administrators can also restart the stopped queues by modifying the state configuration
property and then refreshing the queue using yarn rmadmin -refreshQueues as
previously described.

2.9. Setting Application Limits
To avoid system-thrash due to an unmanageable load -- caused either by malicious users, or
by accident -- the Capacity Scheduler enables you to place a static, configurable limit on the
total number of concurrently active (both running and pending) applications at any one
time. The maximum-applications configuration property is used to set this limit, with a
default value of 10,000:

Property: yarn.scheduler.capacity.maximum-applications

Value: 10000

The limit for running applications in any specific queue is a fraction of this total limit,
proportional to its capacity. This is a hard limit, which means that once this limit is reached
for a queue, any new applications to that queue will be rejected, and clients will have to
wait and retry later. This limit can be explicitly overridden on a per-queue basis with the
following configuration property:

Property: yarn.scheduler.capacity.<queue-path>.maximum-applications

Value: absolute-capacity * yarn.scheduler.capacity.maximum-
applications

There is another resource limit that can be used to set a maximum percentage of cluster
resources allocated specifically to ApplicationMasters. The maximum-am-resource-
percent property has a default value of 10%, and exists to avoid cross-application
deadlocks where significant resources in the cluster are occupied entirely by the Containers
running ApplicationMasters. This property also indirectly controls the number of concurrent
running applications in the cluster, with each queue limited to a number of running
applications proportional to its capacity.

Property: yarn.scheduler.capacity.maximum-am-resource-percent

Hortonworks Data Platform May 26, 2015

23

Value: 0.1

As with maximum-applications, this limit can also be overridden on a per-queue basis:

Property: yarn.scheduler.capacity.<queue-path>.maximum-am-resource-
percent

Value: 0.1

All of these limits ensure that no single application, user, or queue can cause catastrophic
failure, or monopolize the cluster and cause excessive degradation of cluster performance.

2.10. Preemption
As mentioned previously, a scenario can occur in which a queue has a guaranteed level
of cluster resources, but must wait to run applications because other queues are utilizing
all of the available resources. If Preemption is enabled, higher-priority applications do not
have to wait because lower priority applications have taken up the available capacity.
With Preemption enabled, under-served queues can begin to claim their allocated cluster
resources almost immediately, without having to wait for other queues' applications to
finish running.

Preemption Workflow

Preemption is governed by a set of capacity monitor policies, which must be enabled by
setting the yarn.resourcemanager.scheduler.monitor.enable property to
"true". These capacity monitor policies apply Preemption in configurable intervals based on
defined capacity allocations, and in as graceful a manner as possible. Containers are only
killed as a last resort. The following image demonstrates the Preemption workflow:

Preemption Configuration

Hortonworks Data Platform May 26, 2015

24

The following properties in the /etc/hadoop/conf/yarn-site.xml file on the
ResourceManager host are used to enable and configure Preemption.

• Property: yarn.resourcemanager.scheduler.monitor.enable

Value: true

Description: Setting this property to "true" enables Preemption. It enables a set of
periodic monitors that affect the Capacity Scheduler. This default value for this property
is "false" (disabled).

• Property: yarn.resourcemanager.scheduler.monitor.policies

Value:
org.apache.hadoop.yarn.server.resourcemanager.monitor.capacity.ProportionalCapacityPreemptionPolicy

Description: The list of SchedulingEditPolicy classes that interact with the
scheduler. The only policy currently available for preemption is the
“ProportionalCapacityPreemptionPolicy”.

• Property:
yarn.resourcemanager.monitor.capacity.preemption.monitoring_interval

Value: 3000

Description: The time in milliseconds between invocations of this policy. Setting this
value to a longer time interval will cause the Capacity Monitor to run less frequently.

• Property:
yarn.resourcemanager.monitor.capacity.preemption.max_wait_before_kill

Value: 15000

Description: The time in milliseconds between requesting a preemption from an
application and killing the container. Setting this to a higher value will give applications
more time to respond to preemption requests and gracefully release Containers.

• Property:
yarn.resourcemanager.monitor.capacity.preemption.total_preemption_per_round

Value: 0.1

Description: The maximum percentage of resources preempted in a single round. You
can use this value to restrict the pace at which Containers are reclaimed from the cluster.
After computing the total desired preemption, the policy scales it back to this limit.

2.11. Scheduler User Interface
You can use the Scheduler page in the Hadoop User Interface (UI) page to view the status
and settings of Capacity Scheduler queues. The following image show the Hadoop UI
Scheduler page (http://<hostname>:8088/cluster/scheduler) with the "support"
queue selected:

Hortonworks Data Platform May 26, 2015

25

Hortonworks Data Platform May 26, 2015

26

3. Centralized Cache Management in
HDFS

This guide provides instructions on setting up and using centralized cache management
in HDFS. Centralized cache management enables you to specify paths to directories or
files that will be cached by HDFS, thereby improving performance for applications that
repeatedly access the same data.

In this document:

• Overview

• Caching Use Cases

• Caching Architecture

• Caching Terminology

• Configuring Centralized Caching

• Using Cache Pools and Directives

3.1. Overview
Centralized cache management in HDFS is an explicit caching mechanism that enables you
to specify paths to directories or files that will be cached by HDFS. The NameNode will
communicate with DataNodes that have the desired blocks available on disk, and instruct
the DataNodes to cache the blocks in off-heap caches.

Centralized cache management in HDFS offers many significant advantages:

• Explicit pinning prevents frequently used data from being evicted from memory. This
is particularly important when the size of the working set exceeds the size of main
memory, which is common for many HDFS workloads.

• Because DataNode caches are managed by the NameNode, applications can query the
set of cached block locations when making task placement decisions. Co-locating a task
with a cached block replica improves read performance.

• When a block has been cached by a DataNode, clients can use a new, more efficient,
zero-copy read API. Since checksum verification of cached data is done once by the
DataNode, clients can incur essentially zero overhead when using this new API.

• Centralized caching can improve overall cluster memory utilization. When relying on the
Operating System (OS) buffer cache on each DataNode, repeated reads of a block will
result in all <n> replicas of the block being pulled into the buffer cache. With centralized
cache management, you can explicitly pin only <m> of the <n> replicas, thereby saving
<n-m> memory.

3.2. Caching Use Cases
Centralized cache management is useful for:

Hortonworks Data Platform May 26, 2015

27

• Files that are accessed repeatedly -- For example, a small fact table in Hive that is often
used for joins is a good candidate for caching. Conversely, caching the input of a once-
yearly reporting query is probably less useful, since the historical data might only be read
once.

• Mixed workloads with performance SLAs -- Caching the working set of a high priority
workload ensures that it does not compete with low priority workloads for disk I/O.

3.3. Caching Architecture
The following figure illustrates the centralized cached management architecture.

In this architecture, the NameNode is responsible for coordinating all of the DataNode
off-heap caches in the cluster. The NameNode periodically receives a cache report from
each DataNode. The cache report describes all of the blocks cached on the DataNode. The
NameNode manages DataNode caches by piggy-backing cache and uncache commands on
the DataNode heartbeat.

The NameNode queries its set of Cache Directives to determine which paths should be
cached. Cache Directives are persistently stored in the fsimage and edit logs, and can
be added, removed, and modified via Java and command-line APIs. The NameNode also
stores a set of Cache Pools, which are administrative entities used to group Cache Directives
together for resource management, and to enforce permissions.

Hortonworks Data Platform May 26, 2015

28

The NameNode periodically re-scans the namespace and active Cache Directives to
determine which blocks need to be cached or uncached, and assigns caching work to
DataNodes. Re-scans can also be triggered by user actions such as adding or removing a
Cache Directive or removing a Cache Pool.

Cache blocks that are under construction, corrupt, or otherwise incomplete are not cached.
If a Cache Directive covers a symlink, the symlink target is not cached.

Currently, caching can only be applied to directories and files.

3.4. Caching Terminology
Cache Directive

A Cache Directive defines the path that will be cached. Paths can point either directories or
files. Directories are cached non-recursively, meaning only files in the first-level listing of the
directory will be cached.

Cache Directives also specify additional parameters, such as the cache replication factor
and expiration time. The replication factor specifies the number of block replicas to cache.
If multiple Cache Directives refer to the same file, the maximum cache replication factor is
applied.

The expiration time is specified on the command line as a time-to-live (TTL), which
represents a relative expiration time in the future. After a Cache Directive expires, it is no
longer taken into consideration by the NameNode when making caching decisions.

Cache Pool

A Cache Pool is an administrative entity used to manage groups of Cache Directives. Cache
Pools have UNIX-like permissions that restrict which users and groups have access to the
pool. Write permissions allow users to add and remove Cache Directives to the pool. Read
permissions allow users to list the Cache Directives in a pool, as well as additional metadata.
Execute permissions are unused.

Cache Pools are also used for resource management. Cache Pools can enforce a maximum
memory limit, which restricts the aggregate number of bytes that can be cached by
directives in the pool. Normally, the sum of the pool limits will approximately equal the
amount of aggregate memory reserved for HDFS caching on the cluster. Cache Pools also
track a number of statistics to help cluster users track what is currently cached, and to
determine what else should be cached.

Cache Pools can also enforce a maximum time-to-live. This restricts the maximum expiration
time of directives being added to the pool.

3.5. Configuring Centralized Caching
• Native Libraries

• Configuration Properties

• OS Limits

Hortonworks Data Platform May 26, 2015

29

3.5.1. Native Libraries

In order to lock block files into memory, the DataNode relies on native JNI code found
in libhadoop.so. Be sure to enable JNI if you are using HDFS centralized cache
management.

3.5.2. Configuration Properties

Configuration properties for centralized caching are specified in the hdfs-site.xml file.

Required Properties

Currently, only one property is required:

• dfs.datanode.max.locked.memory

This property determines the maximum amount of memory a DataNode will use for
caching. The "locked-in-memory size" ulimit (ulimit -l) of the DataNode user also
needs to be increased to match or exceed this parameter (for more details, see the
following section on OS Limits). When setting this value, remember that you will
need space in memory for other things as well, such as the DataNode and application
JVM heaps, and the operating system page cache.

Example:

<property>
 <name>dfs.datanode.max.locked.memory</name>
 <value>268435456</value>
 </property>

Optional Properties

The following properties are not required, but can be specified for tuning.

• dfs.namenode.path.based.cache.refresh.interval.ms

The NameNode will use this value as the number of milliseconds between subsequent
cache path re-scans. By default, this parameter is set to 300000, which is five minutes.

Example:

<property>
 <name>dfs.namenode.path.based.cache.refresh.interval.ms</name>
 <value>300000</value>
 </property>

• dfs.time.between.resending.caching.directives.ms

The NameNode will use this value as the number of milliseconds between resending
caching directives.

Example:

<property>
 <name>dfs.time.between.resending.caching.directives.ms</name>

Hortonworks Data Platform May 26, 2015

30

 <value>300000</value>
 </property>

• dfs.datanode.fsdatasetcache.max.threads.per.volume

The DataNode will use this value as the maximum number of threads per volume to use
for caching new data. By default, this parameter is set to 4.

Example:

<property>
 <name>dfs.datanode.fsdatasetcache.max.threads.per.volume</name>
 <value>4</value>
 </property>

• dfs.cachereport.intervalMsec

The DataNode will use this value as the number of milliseconds between sending a full
report of its cache state to the NameNode. By default, this parameter is set to 10000,
which is 10 seconds.

Example:

<property>
 <name>dfs.cachereport.intervalMsec</name>
 <value>10000</value>
 </property>

• dfs.namenode.path.based.cache.block.map.allocation.percent

The percentage of the Java heap that will be allocated to the cached blocks map. The
cached blocks map is a hash map that uses chained hashing. Smaller maps may be
accessed more slowly if the number of cached blocks is large; larger maps will consume
more memory. The default value is 0.25 percent.

Example:

<property>
 <name>dfs.namenode.path.based.cache.block.map.allocation.percent</name>
 <value>0.25</value>
 </property>

3.5.3. OS Limits
If you get the error "Cannot start datanode because the configured max locked memory
size... is more than the datanode's available RLIMIT_MEMLOCK ulimit," that means that
the operating system is imposing a lower limit on the amount of memory that you can lock
than what you have configured. To fix this, you must adjust the ulimit -l value that the
DataNode runs with. This value is usually configured in /etc/security/limits.conf,
but this may vary depending on what operating system and distribution you are using.

You will know that you have correctly configured this value when you can run ulimit -
l from the shell and get back either a higher value than what you have configured with
dfs.datanode.max.locked.memory, or the string "unlimited", which indicates that
there is no limit. Note that it is typical for ulimit -l to output the memory lock limit in
kilobytes (KB), but dfs.datanode.max.locked.memory must be specified in bytes.

Hortonworks Data Platform May 26, 2015

31

3.6. Using Cache Pools and Directives
You can use the Command-Line Interface (CLI) to create, modify, and list Cache Pools and
Cache Directives via the hdfs cacheadmin subcommand.

Cache Directives are identified by a unique, non-repeating, 64-bit integer ID. IDs will not be
reused even if a Cache Directive is removed.

Cache Pools are identified by a unique string name.

You must first create a Cache Pool, and then add Cache Directives to the Cache Pool.

• Cache Pool Commands

• Cache Directive Commands

3.6.1. Cache Pool Commands

• addPool

Adds a new Cache Pool.

Usage:

hdfs cacheadmin -addPool <name> [-owner <owner>] [-group <group>]
[-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]

Options:

Option Description

<name> The name of the new pool.

<owner> The user name of the owner of the pool. Defaults to the current user.

<group> The group that the pool is assigned to. Defaults to the primary group name of the current user.

<mode> The UNIX-style permissions assigned to the pool. Permissions are specified in octal, e.g., 0755. Pool permissions are set to 0755 by default.

<limit> The maximum number of bytes that can be cached by directives in the pool, in aggregate. By default, no limit is set.

<maxTtl> The maximum allowed time-to-live for directives being added to the pool. This can be specified in seconds, minutes, hours, and days, e.g.,
120s, 30m, 4h, 2d. Valid units are [smhd]. By default, no maximum is set. A value of "never" specifies that there is no limit.

• modifyPool

Modifies the metadata of an existing Cache Pool.

• Usage:

hdfs cacheadmin -modifyPool <name> [-owner <owner>] [-group <group>]
[-mode <mode>] [-limit <limit>] [-maxTtl <maxTtl>]

Options:

Option Description

<name> The name of the pool to modify.

<owner> The user name of the owner of the pool.

Hortonworks Data Platform May 26, 2015

32

<group> The group that the pool is assigned to.

<mode> The UNIX-style permissions assigned to the pool. Permissions are specified in octal, e.g., 0755.

<limit> The maximum number of bytes that can be cached by directives in the pool, in aggregate.

<maxTtl> The maximum allowed time-to-live for directives being added to the pool. This can be specified in seconds, minutes, hours, and days, e.g.,
120s, 30m, 4h, 2d. Valid units are [smhd]. A value of "never" specifies that there is no limit.

• removePool

Remove a Cache Pool. This also un-caches paths associated with the pool.

Usage:

hdfs cacheadmin -removePool <name>

Options:

Option Description

<name> The name of the Cache Pool to remove.

• listPools

Displays information about one or more Cache Pools, e.g., name, owner,
group, permissions, etc.

Usage:

hdfs cacheadmin -listPools [-stats] [<name>]

Options:

Option Description

-stats Display additional Cache Pool statistics.

<name> If specified, list only the named Cache Pool.

• help

Displays detailed information about a command.

Usage:

hdfs cacheadmin -help <command-name>

Options:

Option Description

<command-name> Displays detailed information for the specified command name. If no command name is specified, detailed help is displayed for all commands.

3.6.2. Cache Directive Commands

• addDirective

Adds a new Cache Directive.

Usage:

Hortonworks Data Platform May 26, 2015

33

hdfs cacheadmin -addDirective -path <path> -pool <pool-name> [-force]
[-replication <replication>] [-ttl <time-to-live>]

Options:

Option Description

<path> The path to the cache directory or file.

<pool-name> The Cache Pool to which the Cache Directive will be added. You must have Write permission for the Cache Pool in order to add new
directives.

<-force> Skips checking of Cache Pool resource limits.

<replication> The UNIX-style permissions assigned to the pool. Permissions are specified in octal, e.g., 0755. Pool permissions are set to 0755 by default.

<limit> The cache replication factor to use. Defaults to 1.

<time-to-live> How long the directive is valid. This can be specified in minutes, hours, and days, e.g., 30m, 4h, 2d. Valid units are [smhd]. A value of "never"
indicates a directive that never expires. If unspecified, the directive never expires.

• removeDirective

Removes a Cache Directive.

Usage:

hdfs cacheadmin -removeDirective <id>

Options:

Option Description

<id> The ID of the Cache Directive to remove. You must have Write permission for the pool that the directive belongs to in order to remove it. You
can use the -listDirectives command to display a list of Cache Directive IDs.

• removeDirectives

Removes all of the Cache Directives in a specified path.

Usage:

hdfs cacheadmin -removeDirectives <path>

Options:

Option Description

<path> The path of the Cache Directives to remove. You must have Write permission for the pool that the directives belong to in order to remove
them. You can use the -listDirectives command to display a list of Cache Directives.

• listDirectives

Returns a list of Cache Directives.

Usage:

hdfs cacheadmin -listDirectives [-stats] [-path <path>] [-pool <pool>]

Options:

Option Description

Hortonworks Data Platform May 26, 2015

34

<path> List only the Cache Directives in this path. Note that if there is a Cache Directive in the <path> that belongs to a Cache Pool for which you do
not have Read access, it will not be listed.

<pool> Only list the Cache Directives in the specified Cache Pool.

<-stats> List path-based Cache Directive statistics.

Hortonworks Data Platform May 26, 2015

35

4. Configuring Rack Awareness on HDP
Use the following instructions to configure rack awareness on a HDP cluster:

1. Create a Rack Topology Script

2. Add Properties to core-site.xml

3. Restart HDFS and MapReduce

4. Verify Rack Awareness

4.1. Create a Rack Topology Script
Topology scripts are used by Hadoop to determine the rack location of nodes. This
information is used by Hadoop to replicate block data to redundant racks.

1. Create a topology script and data file. The topology script MUST be executable.

Sample Topology Script

File name: rack-topology.sh

#!/bin/bash

Adjust/Add the property "net.topology.script.file.name"
to core-site.xml with the "absolute" path the this
file. ENSURE the file is "executable".

Supply appropriate rack prefix
RACK_PREFIX=default

To test, supply a hostname as script input:
if [$# -gt 0]; then

CTL_FILE=${CTL_FILE:-"rack_topology.data"}

HADOOP_CONF=${HADOOP_CONF:-"/etc/hadoop/conf"}

if [! -f ${HADOOP_CONF}/${CTL_FILE}]; then
 echo -n "/$RACK_PREFIX/rack "
 exit 0
fi

while [$# -gt 0] ; do
 nodeArg=$1
 exec< ${HADOOP_CONF}/${CTL_FILE}
 result=""
 while read line ; do
 ar=($line)
 if ["${ar[0]}" = "$nodeArg"] ; then
 result="${ar[1]}"
 fi
 done
 shift

Hortonworks Data Platform May 26, 2015

36

 if [-z "$result"] ; then
 echo -n "/$RACK_PREFIX/rack "
 else
 echo -n "/$RACK_PREFIX/rack_$result "
 fi
done

else
 echo -n "/$RACK_PREFIX/rack "
fi

Sample Topology Data File

File name: rack_topology.data

This file should be:
- Placed in the /etc/hadoop/conf directory
- On the Namenode (and backups IE: HA, Failover, etc)
- On the Job Tracker OR Resource Manager (and any Failover JT's/RM's)
This file should be placed in the /etc/hadoop/conf directory.

Add Hostnames to this file. Format <host ip> <rack_location>
192.168.2.10 01
192.168.2.11 02
192.168.2.12 03

2. Copy both of these files to the /etc/hadoop/conf directory on all cluster nodes.

3. Run the rack-topology.sh script to ensure that it returns the correct rack
information for each host.

4.2. Add the Topology Script Property to core-
site.xml

1. Stop HDFS using the instructions on this page.

2. Add the following property to core-site.xml:

<property>
<name>net.topology.script.file.name</name>
<value>/etc/hadoop/conf/rack-topology.sh</value>
</property>

By default the topology script will process up to 100 requests per
invocation. You can also specify a different number of requests with the
net.topology.script.number.args property. For example:

<property>
<name>net.topology.script.number.args</name>
<value>75</value>
</property>

4.3. Restart HDFS and MapReduce
Restart HDFS and MapReduce using the instructions on this page.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap3_2.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap3_1.html

Hortonworks Data Platform May 26, 2015

37

4.4. Verify Rack Awareness
After the services have started, you can use the following methods to verify that rack
awareness has been activated:

• Look in the NameNode logs located in /var/log/hadoop/hdfs/ (for example:
hadoop-hdfs-namenode-sandbox.log). You should see an entry like this:

014-01-13 15:58:08,495 INFO org.apache.hadoop.net.NetworkTopology: Adding a
 new node: /rack01/<ipaddress>

• The Hadoop fsck command should return something like the following (if there are two
racks):

Status: HEALTHY
Total size: 123456789 B
Total dirs: 0
Total files: 1
Total blocks (validated): 1 (avg. block size 123456789 B)
Minimally replicated blocks: 1 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 3
Average block replication: 3.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 40
Number of racks: 2
FSCK ended at Mon Jan 13 17:10:51 UTC 2014 in 1 milliseconds

• The Hadoop dfsadmin -report command will return a report that includes the
rack name next to each machine. The report should look something like the following
(partial) example:

[bsmith@hadoop01 ~]$ sudo -u hdfs hadoop dfsadmin -report
Configured Capacity: 19010409390080 (17.29 TB)
Present Capacity: 18228294160384 (16.58 TB)
DFS Remaining: 5514620928000 (5.02 TB)
DFS Used: 12713673232384 (11.56 TB) DFS Used%: 69.75%
Under replicated blocks: 181
Blocks with corrupt replicas: 0
Missing blocks: 0

Datanodes available: 5 (5 total, 0 dead)

Name: 192.168.90.231:50010 (h2d1.hdp.local)
Hostname: h2d1.hdp.local
Rack: /default/rack_02
Decommission Status : Normal
Configured Capacity: 15696052224 (14.62 GB)
DFS Used: 314380288 (299.82 MB)
Non DFS Used: 3238612992 (3.02 GB)
DFS Remaining: 12143058944 (11.31 GB)
DFS Used%: 2.00%
DFS Remaining%: 77.36%
Configured Cache Capacity: 0 (0 B)

Hortonworks Data Platform May 26, 2015

38

Cache Used: 0 (0 B)
Cache Remaining: 0 (0 B)
Cache Used%: 100.00%
Cache Remaining%: 0.00%
Last contact: Thu Jun 12 11:39:51 EDT 2014

Hortonworks Data Platform May 26, 2015

39

5. Using DistCp to Copy Files
Hadoop DistCp (distributed copy) can be used to copy data between Hadoop clusters (and
also within a Hadoop cluster). DistCp uses MapReduce to implement its distribution, error
handling, and reporting. It expands a list of files and directories into map tasks, each of
which copies a partition of the files specified in the source list.

In this guide:

• Using DistCp

• Command Line Options

• Update and Overwrite

• DistCp Security Settings

• DistCp Data Copy Matrix: HDP1/HDP2 to HDP2

• Copying Data from HDP-2.x to HDP-1.x Clusters

• DistCp Architecture

• DistCp Frequently Asked Questions

• Appendix

5.1. Using DistCp
The most common use of DistCp is an inter-cluster copy:

hadoop distcp hdfs://nn1:8020/source hdfs://nn2:8020/destination

Where hdfs://nn1:8020/source is the data source, and hdfs://nn2:8020/
destination is the destination. This will expand the name space under /source on
NameNode "nn1" into a temporary file, partition its contents among a set of map tasks,
and start copying from "nn1" to "nn2". Note that DistCp requires absolute paths.

You can also specify multiple source directories:

hadoop distcp hdfs://nn1:8020/source/a hdfs://nn1:8020/source/b hdfs://
nn2:8020/destination

Or specify multiple source directories from a file with the -f option:

hadoop distcp -f hdfs://nn1:8020/srclist hdfs://nn2:8020/destination

Where srclist contains:

hdfs://nn1:8020/source/a
hdfs://nn1:8020/source/b

DistCp from HDP-1.3.x to HDP-2.x

Hortonworks Data Platform May 26, 2015

40

When using DistCp to copy from a HDP-1.3.x cluster to a HDP-2.x cluster, the format would
be:

hadoop distcp hftp://<hdp 1.3.x namenode host>:50070/<folder path of source>
 hdfs://<hdp 2.x namenode host>/<folder path of target>

Here is an example of a DistCp copy from HDP 1.3.0 to HDP-2.0:

hadoop distcp hftp://namenodehdp130.test.com:50070/apps/hive/warehouse/db/
 hdfs://namenodehdp20.test.com/data/raw/

When copying from multiple sources, DistCp will abort the copy with an error
message if two sources collide, but collisions at the destination are resolved based on
the options specified. By default, files already existing at the destination are skipped (i.e.
not replaced by the source file). A count of skipped files is reported at the end of each job,
but it may be inaccurate if a copier failed for some subset of its files, but succeeded on a
later attempt.

It is important that each NodeManager is able to communicate with both the source
and destination file systems. For HDFS, both the source and destination must be running
the same version of the protocol, or use a backwards-compatible protocol; see Copying
Between Versions.

After a copy, you should generate and cross-check a listing of the source and destination to
verify that the copy was truly successful. Since DistCp employs both Map/Reduce and the
FileSystem API, issues in or between any of these three could adversely and silently affect
the copy. Some have had success running with -update enabled to perform a second pass,
but users should be acquainted with its semantics before attempting this.

It is also worth noting that if another client is still writing to a source file, the copy will
likely fail. Attempting to overwrite a file being written at the destination should also fail on
HDFS. If a source file is (re)moved before it is copied, the copy will fail with a FileNotFound
exception.

5.2. Command Line Options
Flag Description Notes

-p[rbugpca] Preserve r: replication number
b: block size u: user g: group p:
permission c: checksum-type a:
ACL

Modification times are not preserved. Also, when -update is
specified, status updates will not be synchronized unless the file
sizes also differ (i.e. unless the file is recreated). If -pa is specified,
DistCp also preserves the permissions because ACLs are a super-set
of permissions.

-i Ignore failures This option will keep more accurate statistics about the copy than
the default case. It also preserves logs from failed copies, which can
be valuable for debugging. Finally, a failing map will not cause the
job to fail before all splits are attempted.

-log <logdir> Write logs to <logdir> DistCp keeps logs of each file it attempts to copy as map output. If
a map fails, the log output will not be retained if it is re-executed.

-m <num_maps> Maximum number of
simultaneous copies

Specify the number of maps to copy data. Note that more maps
may not necessarily improve throughput.

-overwrite Overwrite destination If a map fails and -i is not specified, all the files in the split, not
only those that failed, will be recopied. As discussed in the Usage
documentation, it also changes the semantics for generating
destination paths, so users should use this carefully.

-update Overwrite if src size different
from dst size

As noted in the preceding, this is not a “sync” operation. The only
criterion examined is the source and destination file sizes; if they

Hortonworks Data Platform May 26, 2015

41

Flag Description Notes

differ, the source file replaces the destination file. As discussed
in the Usage documentation, it also changes the semantics for
generating destination paths, so users should use this carefully.

-f
<urilist_uri>

Use list at <urilist_uri> as
src list

This is equivalent to listing each source on the command line.
The urilist_uri list should be a fully qualified URI.

-filelimit <n> Limit the total number of files to
be <= n

Deprecated! Ignored in DistCp v2.

-sizelimit <n> Limit the total size to be <= n
bytes

Deprecated! Ignored in DistCp v2.

-delete Delete the files existing in the dst
but not in src

The deletion is done by FS Shell. So the trash will be used, if it is
enabled.

-strategy
{dynamic|
uniformsize}

Choose the copy-strategy to be
used in DistCp.

By default, uniformsize is used. (i.e. Maps are balanced on
the total size of files copied by each map. Similar to legacy.) If
dynamic is specified, DynamicInputFormat is used instead. (This is
described in the Architecture section, under InputFormats.)

-bandwidth Specify bandwidth per map, in
MB/second.

Each map will be restricted to consume only the specified
bandwidth. This is not always exact. The map throttles
back its bandwidth consumption during a copy, such that
the net bandwidth used tends towards the specified value.

-atomic {-tmp
<tmp_dir>}

Specify atomic commit, with
optional tmp directory.

-atomic instructs DistCp to copy the source data to a temporary
target location, and then move the temporary target to the final
location atomically. Data will either be available at final target in a
complete and consistent form, or not at all. Optionally, -tmp may
be used to specify the location of the tmp-target. If not specified,
a default is chosen. Note: tmp_dir must be on the final target
cluster.

-mapredSslConf
<ssl_conf_file>

Specify SSL Config file, to be
used with HSFTP source

When using the hsftp protocol with a source, the security-related
properties may be specified in a config file and passed to DistCp.
<ssl_conf_file> needs to be in the classpath.

-async Run DistCp asynchronously.
Quits as soon as the Hadoop Job
is launched.

The Hadoop Job-id is logged, for tracking.

5.3. Update and Overwrite
The DistCp -update option is used to copy files from a source that do not exist at the
target, or that have different contents. The DistCp -overwrite option overwrites target
files even if they exist at the source, or if they have the same contents.

The -update and -overwrite options warrant further discussion, since their handling of
source-paths varies from the defaults in a very subtle manner.

Consider a copy from /source/first/ and /source/second/ to /target/, where
the source paths have the following contents:

hdfs://nn1:8020/source/first/1
hdfs://nn1:8020/source/first/2
hdfs://nn1:8020/source/second/10
hdfs://nn1:8020/source/second/20

When DistCp is invoked without -update or -overwrite, the DistCp defaults would
create directories first/ and second/, under /target. Thus:

distcp hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second hdfs://
nn2:8020/target

would yield the following contents in /target:

Hortonworks Data Platform May 26, 2015

42

hdfs://nn2:8020/target/first/1
hdfs://nn2:8020/target/first/2
hdfs://nn2:8020/target/second/10
hdfs://nn2:8020/target/second/20

When either -update or -overwrite is specified, the contents of the source directories
are copied to the target, and not the source directories themselves. Thus:

distcp -update hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second
 hdfs://nn2:8020/target

would yield the following contents in /target:

hdfs://nn2:8020/target/1
hdfs://nn2:8020/target/2
hdfs://nn2:8020/target/10
hdfs://nn2:8020/target/20

By extension, if both source folders contained a file with the same name ("0", for example),
then both sources would map an entry to /target/0 at the destination. Rather than
permit this conflict, DistCp will abort.

Now, consider the following copy operation:

distcp hdfs://nn1:8020/source/first hdfs://nn1:8020/source/second hdfs://
nn2:8020/target

With sources/sizes:

hdfs://nn1:8020/source/first/1 32
hdfs://nn1:8020/source/first/2 32
hdfs://nn1:8020/source/second/10 64
hdfs://nn1:8020/source/second/20 32

And destination/sizes:

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/10 32
hdfs://nn2:8020/target/20 64

Will effect:

hdfs://nn2:8020/target/1 32
hdfs://nn2:8020/target/2 32
hdfs://nn2:8020/target/10 64
hdfs://nn2:8020/target/20 32

1 is skipped because the file-length and contents match. 2 is copied because it doesn’t exist
at the target. 10 and 20 are overwritten since the contents don’t match the source.

If the -update option is used, 1 is overwritten as well.

5.4. DistCp and Security Settings
Security settings dictate whether DistCp should be run on the source cluster or the
destination cluster. The general rule-of-thumb is that if one cluster is secure and the other is

Hortonworks Data Platform May 26, 2015

43

not secure, DistCp should be run from the secure cluster -- otherwise there may be security-
related issues.

When copying data from a secure cluster to an non-secure cluster, the following
configuration setting is required for the DistCp client:

<property>
 <name>ipc.client.fallback-to-simple-auth-allowed</name>
 <value>true</value>
</property>

When copying data from a secure cluster to a secure cluster, the following configuration
setting is required in the core-site.xml file:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value></value>
 <description>Maps kerberos principals to local user names</description>
</property>

Secure-to-Secure: Kerberos Principal Name

• distcp hdfs://hdp-2.0-secure hdfs://hdp-2.0-secure

One issue here is that the SASL RPC client requires that the remote server’s Kerberos
principal must match the server principal in its own configuration. Therefore, the same
principal name must be assigned to the applicable NameNodes in the source and the
destination cluster. For example, if the Kerberos principal name of the NameNode in the
source cluster is nn/host1@realm, the Kerberos principal name of the NameNode in
destination cluster must be nn/host2@realm, rather than nn2/host2@realm, for
example.

Secure-to-Secure: ResourceManager Mapping Rules

When copying between two HDP2 secure clusters, or from HDP1 secure to HDP2 secure,
further ResourceManager (RM) configuration is required if the two clusters have different
realms. In order for DistCP to succeed, the same RM mapping rule must be used in both
clusters.

For example, if secure Cluster 1 has the following RM mapping rule:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
RULE:[2:$1@$0](rm@.*SEC1.SUP1.COM)s/.*/yarn/
DEFAULT
 </value>
</property>

And secure Cluster 2 has the following RM mapping rule:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
RULE:[2:$1@$0](rm@.*BA.YISEC3.COM)s/.*/yarn/
DEFAULT
 </value>
</property>

Hortonworks Data Platform May 26, 2015

44

The DistCp job from Cluster 1 to Cluster 2 will fail because Cluster 2 cannot resolve the RM
principle of Cluster 1 correctly to the yarn user, because the RM mapping rule in Cluster 2 is
different than the RM mapping rule in Cluster 1.

The solution is to use the same RM mapping rule in both Cluster 1 and Cluster 2:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
RULE:[2:$1@$0](rm@.*SEC1.SUP1.COM)s/.*/yarn/
RULE:[2:$1@$0](rm@.*BA.YISEC3.COM)s/.*/yarn/
DEFAULT</value>
 </property>

5.5. DistCp and HDP Version
The HDP version of the source and destination clusters can determine which type of file
systems should be used to read the source cluster and write to the destination cluster.

For example, when copying data from a 1.x cluster to a 2.x cluster, it is impossible to use
“hdfs” for both the source and the destination, because HDP 1.x and 2.x have different
RPC versions, and the client cannot understand both at the same time. In this case the
WebHdfsFilesystem (webhdfs://) can be used in both the source and destination clusters, or
the HftpFilesystem (hftp://) can be used to read data from the source cluster.

5.6. DistCp Data Copy Matrix: HDP1/HDP2 to
HDP2

The following table provides a summary of configuration, settings, and results when using
DistCp to copy data from HDP1 and HDP2 clusters to HDP2 clusters.

From To Source Configuration Destination Configuration DistCp Should be Run on… Result

HDP 1.3 HDP 2.x insecure + hdfs insecure + webhdfs HDP 1.3 (source) success

HDP 1.3 HDP 2.x secure + hdfs secure + webhdfs HDP 1.3 (source) success

HDP 1.3 HDP 2.x secure + hftp secure + hdfs HDP 2.x (destination) success

HDP 1.3 HDP 2.1 secure + hftp secure + swebhdfs HDP 2.1 (destination) success

HDP 1.3 HDP 2.x secure + hdfs insecure + webhdfs HDP 1.3 (source) Possible issues
are discussed
here.

HDP 2.0 HDP 2.x secure + hdfs insecure + hdfs secure HDP 2.0 (source) success

HDP 2.0 HDP 2.x secure + hdfs secure + hdfs either HDP 2.0 or HDP 2.x (source or
destination)

success

HDP 2.0 HDP 2.x secure + hdfs secure + webhdfs HDP 2.0 (source) success

HDP 2.0 HDP 2.x secure + hftp secure + hdfs HDP 2.x (destination) success

Note

For the above table:

• The term "secure" means that Kerberos security is set up.

https://issues.apache.org/jira/browse/HADOOP-10016

Hortonworks Data Platform May 26, 2015

45

• HDP 2.x means HDP 2.0 and HDP 2.1.

• hsftp is available in both HDP-1.x and HDP-2.x. It adds https support to hftp.

5.7. Copying Data from HDP-2.x to HDP-1.x
Clusters

Copying Data from HDP-1.x to HDP-2.x Clusters is also supported, however, HDP-1.x is not
aware of a new checksum introduced in HDP-2.x.

To copy data from HDP-2.x to HDP-1.x:

• Skip the checksum check during source 2.x --> 1.x.

-or-

• Ensure that the file to be copied is in CRC32 before distcp 2.x --> 1.x.

5.8. DistCp Architecture
DistCp is comprised of the following components:

• DistCp Driver

• Copy-listing Generator

• InputFormats and MapReduce Components

5.8.1. DistCp Driver

The DistCp Driver components are responsible for:

• Parsing the arguments passed to the DistCp command on the command-line, via:

• OptionsParser

• DistCpOptionsSwitch

• Assembling the command arguments into an appropriate DistCpOptions object, and
initializing DistCp. These arguments include:

• Source-paths

• Target location

• Copy options (e.g. whether to update-copy, overwrite, which file attributes to
preserve, etc.)

• Orchestrating the copy operation by:

• Invoking the copy-listing generator to create the list of files to be copied.

Hortonworks Data Platform May 26, 2015

46

• Setting up and launching the Hadoop MapReduce job to carry out the copy.

• Based on the options, either returning a handle to the Hadoop MapReduce job
immediately, or waiting until completion.

The parser elements are executed only from the command-line (or if DistCp::run() is
invoked). The DistCp class may also be used programmatically, by constructing the
DistCpOptions object and initializing a DistCp object appropriately.

5.8.2. Copy-listing Generator
The copy-listing generator classes are responsible for creating the list of files/directories to
be copied from source. They examine the contents of the source paths (files/directories,
including wildcards), and record all paths that need copying into a SequenceFile for
consumption by the DistCp Hadoop Job. The main classes in this module include:

1. CopyListing: The interface that should be implemented by any copy-listing generator
implementation. Also provides the factory method by which the concrete CopyListing
implementation is chosen.

2. SimpleCopyListing: An implementation of CopyListing that accepts multiple source
paths (files/directories), and recursively lists all of the individual files and directories
under each for copy.

3. GlobbedCopyListing: Another implementation of CopyListing that expands wildcards in
the source paths.

4. FileBasedCopyListing: An implementation of CopyListing that reads the source path list
from a specified file.

Based on whether a source file list is specified in the DistCpOptions, the source listing is
generated in one of the following ways:

1. If there is no source file list, the GlobbedCopyListing is used. All wildcards are expanded,
and all of the expansions are forwarded to the SimpleCopyListing, which in turn
constructs the listing (via recursive descent of each path).

2. If a source file list is specified, the FileBasedCopyListing is used. Source paths are read
from the specified file, and then forwarded to the GlobbedCopyListing. The listing is
then constructed as described above.

You can customize the method by which the copy-listing is constructed by providing a
custom implementation of the CopyListing interface. The behaviour of DistCp differs here
from the legacy DistCp, in how paths are considered for copy.

The legacy implementation only lists those paths that must definitely be copied on to the
target. E.g., if a file already exists at the target (and -overwrite isn’t specified), the file is
not even considered in the MapReduce copy job. Determining this during setup (i.e. before
the MapReduce Job) involves file size and checksum comparisons that are potentially time
consuming.

DistCp postpones such checks until the MapReduce job, thus reducing setup time.
Performance is enhanced further since these checks are parallelized across multiple maps.

Hortonworks Data Platform May 26, 2015

47

5.8.3. InputFormats and MapReduce Components
The InputFormats and MapReduce components are responsible for the actual copying of
files and directories from the source to the destination path. The listing file created during
copy-listing generation is consumed at this point, when the copy is carried out. The classes
of interest here include:

• UniformSizeInputFormat: This implementation of
org.apache.hadoop.mapreduce.InputFormat provides equivalence with Legacy DistCp
in balancing load across maps. The aim of the UniformSizeInputFormat is to make each
map copy roughly the same number of bytes. Therefore, the listing file is split into groups
of paths, such that the sum of file sizes in each InputSplit is nearly equal to every other
map. The splitting is not always perfect, but its trivial implementation keeps the setup
time low.

• DynamicInputFormat and DynamicRecordReader: The DynamicInputFormat implements
org.apache.hadoop.mapreduce.InputFormat, and is new to DistCp. The listing file is
split into several “chunk files”, the exact number of chunk files being a multiple of the
number of maps requested for in the Hadoop Job. Each map task is “assigned” one of
the chunk files (by renaming the chunk to the task’s id), before the Job is launched.
Paths are read from each chunk using the DynamicRecordReader, and processed in the
CopyMapper. After all of the paths in a chunk are processed, the current chunk is deleted
and a new chunk is acquired. The process continues until no more chunks are available.
This “dynamic” approach allows faster map tasks to consume more paths than slower
ones, thus speeding up the DistCp job overall.

• CopyMapper: This class implements the physical file copy. The input paths are checked
against the input options (specified in the job configuration), to determine whether a file
needs to be copied. A file will be copied only if at least one of the following is true:

• A file with the same name does not exist at target.

• A file with the same name exists at target, but has a different file size.

• A file with the same name exists at target, but has a different checksum, and -
skipcrccheck is not mentioned.

• A file with the same name exists at target, but -overwrite is specified.

• A file with the same name exists at target, but differs in block-size (and block-size
needs to be preserved).

• CopyCommitter: This class is responsible for the commit phase of the DistCp job,
including:

• Preservation of directory permissions (if specified in the options)

• Clean up of temporary files, work directories, etc.

5.9. DistCp Frequently Asked Questions
1. Why does -update not create the parent source directory under a pre-existing target

directory? The behavior of -update and -overwriteis described in detail in the Using

Hortonworks Data Platform May 26, 2015

48

DistCp section of this document. In short, if either option is used with a pre-existing
destination directory, the contents of each source directory are copied over, rather
than the source directory itself. This behavior is consistent with the legacy DistCp
implementation.

2. How does the new DistCp (version 2) differ in semantics from the legacy DistCp?

• Files that are skipped during copy previously also had their file-attributes (permissions,
owner/group info, etc.) unchanged, when copied with Legacy DistCp. These are now
updated, even if the file copy is skipped.

• In Legacy DistCp, empty root directories among the source path inputs were not
created at the target. These are now created.

3. Why does the new DistCp (version 2) use more maps than legacy DistCp? Legacy
DistCp works by figuring out what files need to be actually copied to target before
the copy job is launched, and then launching as many maps as required for copy. So
if a majority of the files need to be skipped (because they already exist, for example),
fewer maps will be needed. As a consequence, the time spent in setup (i.e. before the
MapReduce job) is higher. The new DistCp calculates only the contents of the source
paths. It doesn’t try to filter out what files can be skipped. That decision is put off until
the MapReduce job runs. This is much faster (vis-a-vis execution-time), but the number of
maps launched will be as specified in the -m option, or 20 (the default) if unspecified.

4. Why does DistCp not run faster when more maps are specified? At present, the
smallest unit of work for DistCp is a file. i.e., a file is processed by only one map.
Increasing the number of maps to a value exceeding the number of files would yield no
performance benefit. The number of maps launched would equal the number of files.

5. Why does DistCp run out of memory? If the number of individual files/directories being
copied from the source path(s) is extremely large (e.g. 1,000,000 paths), DistCp might
run out of memory while determining the list of paths for copy. This is not unique to the
new DistCp implementation. To get around this, consider changing the -Xmx JVM heap-
size parameters, as follows:

 bash$ export HADOOP_CLIENT_OPTS="-Xms64m -Xmx1024m"
 bash$ hadoop distcp /source /target

5.10. Appendix
In this section:

• Map Sizing

• Copying Between Versions of HDFS

• MapReduce and Other Side-Effects

• SSL Configurations for HSFTP Sources

5.10.1. Map Sizing
By default, DistCp makes an attempt to size each map comparably so that each copies
roughly the same number of bytes. Note that files are the finest level of granularity, so

Hortonworks Data Platform May 26, 2015

49

increasing the number of simultaneous copiers (i.e. maps) may not always increase the
number of simultaneous copies nor the overall throughput.

DistCp also provides a strategy to “dynamically” size maps, allowing faster DataNodes
to copy more bytes than slower nodes. Using the dynamic strategy (explained in the
Architecture), rather than assigning a fixed set of source files to each map task, files are
instead split into several sets. The number of sets exceeds the number of maps, usually by
a factor of 2-3. Each map picks up and copies all files listed in a chunk. When a chunk is
exhausted, a new chunk is acquired and processed, until no more chunks remain.

By not assigning a source path to a fixed map, faster map tasks (i.e. DataNodes) are able
to consume more chunks -- and thus copy more data -- than slower nodes. While this
distribution isn’t uniform, it is fair with regard to each mapper’s capacity.

The dynamic strategy is implemented by the DynamicInputFormat. It provides superior
performance under most conditions.

Tuning the number of maps to the size of the source and destination clusters, the size of
the copy, and the available bandwidth is recommended for long-running and regularly run
jobs.

5.10.2. Copying Between Versions of HDFS
For copying between two different versions of Hadoop, one will usually use HftpFileSystem.
This is a read-only FileSystem, so DistCp must be run on the destination cluster (more
specifically, on NodeManagers that can write to the destination cluster). Each source is
specified as hftp://<dfs.http.address>/<path> (the default dfs.http.address
is <namenode>:50070).

5.10.3. MapReduce and Other Side-Effects
As mentioned previously, should a map fail to copy one of its inputs, there will be several
side-effects.

• Unless -overwrite is specified, files successfully copied by a previous map will be
marked as “skipped” on a re-execution.

• If a map fails mapreduce.map.maxattempts times, the remaining map tasks will be killed
(unless -i is set).

• If mapreduce.map.speculative is set final and true, the result of the copy is undefined.

5.10.4. SSL Configurations for HSFTP Sources
To use an HSFTP source (i.e. using the HSFTP protocol), a SSL configuration file needs to be
specified (via the -mapredSslConf option). This must specify 3 parameters:

• ssl.client.truststore.location: The local file system location of the trust-store file,
containing the certificate for the NameNode.

• ssl.client.truststore.type: (Optional) The format of the trust-store file.

• ssl.client.truststore.password: (Optional) Password for the trust-store file.

Hortonworks Data Platform May 26, 2015

50

The following is an example of the contents of a SSL Configuration file:

<configuration>
 <property>
 <name>ssl.client.truststore.location</name>
 <value>/work/keystore.jks</value>
 <description>Truststore to be used by clients like distcp. Must be
 specified.</description>
 </property>

 <property>
 <name>ssl.client.truststore.password</name>
 <value>changeme</value>
 <description>Optional. Default value is "".</description>
 </property>

 <property>
 <name>ssl.client.truststore.type</name>
 <value>jks</value>
 <description>Optional. Default value is "jks".</description>
 </property>
</configuration>

The SSL configuration file must be in the classpath of the DistCp program.

Hortonworks Data Platform May 26, 2015

51

6. Decommissioning Slave Nodes
Hadoop provides the decommission feature to retire a set of existing slave nodes
(DataNodes, NodeManagers, or HBase RegionServers) in order to prevent data loss.

Slaves nodes are frequently decommissioned for maintainance. As a Hadoop administrator,
you will decommission the slave nodes periodically in order to either reduce the cluster size
or to gracefully remove dying nodes.

Use the following sections to decommission slave nodes in your cluster:

• Prerequisites

• Decommission DataNodes or NodeManagers

• Decommission HBase RegionServers

6.1. Prerequisites
• Ensure that the following property is defined in your hdfs-site.xml file.

<property>
 <name>dfs.hosts.exclude</name>
 <value>$HADOOP_CONF_DIR/dfs.exclude</value>
 <final>true</final>
</property>

where $HADOOP_CONF_DIR is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

• Ensure that the following property is defined in your yarn-site.xml file.

<property>
 <name>yarn.resourcemanager.nodes.exclude-path</name>
 <value>$HADOOP_CONF_DIR/yarn.exclude</value>
 <final>true</final>
</property>

where $HADOOP_CONF_DIR is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

6.2. Decommission DataNodes or NodeManagers
Nodes normally run both a DataNode and a NodeManager, and both are typically
commissioned or decommissioned together.

With the replication level set to three, HDFS is resilient to individual DataNodes failures.
However, there is a high chance of data loss when you terminate DataNodes without
decommissioning them first. Nodes must be decommissioned on a schedule that permits
replication of blocks being decommissioned.

On the other hand, if a NodeManager is shut down, the ResourceManager will reschedule
the tasks on other nodes in the cluster. However, decommissioning a NodeManager

Hortonworks Data Platform May 26, 2015

52

may be required in situations where you want a NodeManager to stop to accepting new
tasks, or when the tasks take time to execute but you still want to be agile in your cluster
management.

6.2.1. Decommission DataNodes

Use the following instructions to decommission DataNodes in your cluster:

1. On the NameNode host machine, edit the $HADOOP_CONF_DIR/dfs.exclude file
and add the list of DataNodes hostnames (separated by a newline character).

where $HADOOP_CONF_DIR is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

2. Update the NameNode with the new set of excluded DataNodes. On the NameNode
host machine, execute the following command:

su $HDFS_USER
% hdfs dfsadmin -refreshNodes

where $HDFS_USER is the user owning the HDFS services. For example, hdfs.

3. Open the NameNode web UI (http://$NameNode_FQDN:50070) and navigate to the
DataNodes page.

Check to see whether the state has changed to Decommission In Progress for the
DataNodes being decommissioned.

4. When all the DataNodes report their state as Decommissioned (on the DataNodes page,
or on the Decommissioned Nodes page at http://$NameNode_FQDN:8088/cluster/
nodes/decommissioned), all of the blocks have been replicated. You can then shut down
the decommissioned nodes.

5. If your cluster utilizes a dfs.include file, remove the decommissioned nodes from
the $HADOOP_CONF_DIR/dfs.include file on the NameNode host machine, then
execute the following command:

su $HDFS_USER
% hdfs dfsadmin -refreshNodes

Note

If no dfs.include file is specified, all DataNodes are considered to be
included in the cluster (unless excluded in the dfs.exclude file). The
dfs.hosts and dfs.hosts.exclude properties in hdfs-site.xml are
used to specify the dfs.include and dfs.exclude files.

6.2.2. Decommission NodeManagers

Use the following instructions to decommission NodeManagers in your cluster:

1. On the NameNode host machine, edit the $HADOOP_CONF_DIR/yarn.exclude file
and add the list of NodeManager hostnames (separated by a newline character).

Hortonworks Data Platform May 26, 2015

53

where $HADOOP_CONF_DIR is the directory for storing the Hadoop configuration files.
For example, /etc/hadoop/conf.

2. If your cluster utilizes a yarn.include file, remove the decommissioned nodes from
the $HADOOP_CONF_DIR/yarn.include file on the ResourceManager host machine.

Note

If no yarn.include file is specified, all NodeManagers are considered
to be included in the cluster (unless excluded in the yarn.exclude
file). The yarn.resourcemanager.nodes.include-path and
yarn.resourcemanager.nodes.exclude-path properties in yarn-
site.xml are used to specify the yarn.include and yarn.exclude
files.

3. Update the ResourceManager with the new set of NodeManagers. On the
ResourceManager host machine, execute the following command:

su $YARN_USER
% yarn rmadmin -refreshNodes

where $YARN_USER is the user owning the YARN services. For example, yarn.

6.3. Decommission HBase RegionServers
Use the following instructions to decommission HBase RegionServers in your cluster:

1. Decommission RegionServers.

The preferred method of decommissioning RegionServers is to use the
graceful_stop.sh script (Option I). This option gradually unloads Regions from the
RegionServer, allowing the node to be terminated without impacting data availability.
You can also terminate the RegionServer without first unloading its Regions (Option II).
This will result in a short window of data unavailability as HBase's natural data recovery
operations execute.

• Option I: Perform graceful stop

You can also use the following command to gracefully decommission a loaded
RegionServer.

Execute the following command from any host machine with HBase configuration
installed:

su - $HBASE_USER
/usr/lib/hbase/bin/graceful_stop.sh $RegionServer.Hostname

where $HBASE_USER is the user owning the HBase Services. For example, hbase.

Important

The value of $RegionServer.Hostname argument must match the
hostname that HBase uses to identify RegionServers.

Hortonworks Data Platform May 26, 2015

54

To find the hostname for a particular RegionServer, go to the HBase web
UI and check the list of RegionServers in the HBase master UI. Typically,
HBase Master uses hostnames but occassionally it can be the FQDN of a
RegionServer.

• Option II: Use hbase-daemon.sh

Execute the following command on the RegionServer that you want to decommission:

Important

It is important to execute the hbase-daemon.sh script on the
RegionServer that you want to decommission.

su - $HBASE_USER
/usr/lib/hbase/bin/hbase-daemon.sh stop regionserver

where $HBASE_USER is the user owning the HBase Services. For example, hbase.

Note that Option II causes the RegionServer to close all the regions before shutting
down.

2. Enable the load balancer.

If you used the graceful_stop.sh script earlier, you may need to re-enable the
Region Balancer. Do so using the balance_switch command from the shell. Pass
the command true to enable the balancer, false to disable it. The command's return
value is the state of the balancer before running the command. If graceful_stop.sh
disabled the balancer earlier, enable it again like this:

su - $HBASE_USER

hbase shell

hbase(main):001:0> balance_switch true
false
0 row(s) in 0.3590 seconds

where $HBASE_USER is the user owning the HBase services. For example, hbase

Hortonworks Data Platform May 26, 2015

55

7. Manually Add Slave Nodes to a HDP
Cluster

Use the following instructions to manually add slave nodes to a HDP cluster:

1. Prerequisites

2. Add Slave Nodes

3. Add HBase RegionServer

7.1. Prerequisites
Ensure that the new slave nodes meet the following prerequisites:

• The following operating systems are supported:

• 64-bit Red Hat Enterprise Linux (RHEL) 5 or 6

• 64-bit CentOS 5 or 6

• 64-bit SUSE Linux Enterprise Server (SLES) 11, SP1

• On each of your hosts:

• yum (RHEL)

• zypper (SLES)

• rpm

• scp

• curl

• wget

• unzip

• tar

• pdsh

• Ensure that all of the ports listed here are available.

• To install Hive metastore or to use an external database for Oozie metastore, ensure that
you deploy either a MySQL or an Oracle database in your cluster. For instructions, refer
to this topic.

• Your system must have the correct JDK installed on all of the nodes in the cluster. For
more information, see JDK Requirements.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap2.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-chap1-2.html#rpm-chap1-2-4
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-chap1-2.html#rpm-chap1-2-4

Hortonworks Data Platform May 26, 2015

56

7.2. Add Slave Nodes
Use the following instructions to manually add a slave node:

1. On each new slave node, configure the remote repository as described here.

2. On each new slave node, install HDFS as described here.

3. On each new slave node, install compression libraries as described here.

4. On each new slave node, create the DataNode and YARN NodeManager local directories
as described in section 4.3 on this page.

5. Copy the Hadoop configurations to the new slave nodes and set appropriate
permissions.

• Option I: Copy Hadoop config files from an existing slave node.

a. On an existing slave node, make a copy of the current configurations:

tar zcvf hadoop_conf.tgz /etc/hadoop/conf

b. Copy this file to each of the new nodes:

rm -rf /etc/hadoop/conf
cd /
tar zxvf $location_of_copied_conf_tar_file/hadoop_conf.tgz
chmod -R 755 /etc/hadoop/conf

• Option II: Manually set up the Hadoop configuration files as described here.

6. On each of the new slave nodes, start the DataNode:

su -l hdfs -c "/usr/lib/hadoop/sbin/hadoop-daemon.sh --config /etc/hadoop/
conf start datanode"

7. On each of the new slave nodes, start the NodeManager:

su - yarn -c "export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec && /usr/lib/
hadoop-yarn/sbin/yarn-daemon.sh --config /etc/hadoop/conf start nodemanager"

8. Optional - If you use a HDFS or YARN/ResourceManager .include file in your cluster,
add the new slave nodes to the .include file, then run the applicable refreshNodes
command.

• To add new DataNodes to the dfs.include file:

a. On the NameNode host machine, edit the /etc/hadoop/conf/dfs.include
file and add the list of the new slave node hostnames (separated by newline
character).

Note

If no dfs.include file is specified, all DataNodes are considered to be
included in the cluster (unless excluded in the dfs.exclude file). The

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-chap1-3.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-chap2-2.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-chap2-3.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-chap2-4.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm_chap3.html

Hortonworks Data Platform May 26, 2015

57

dfs.hosts and dfs.hosts.exlude properties in hdfs-site.xml
are used to specify the dfs.include and dfs.exclude files.

b. On the NameNode host machine, execute the following command:

su -l hdfs -c "hdfs dfsadmin -refreshNodes"

• To add new NodeManagers to the yarn.include file:

a. On the ResourceManager host machine, edit the /etc/hadoop/conf/
yarn.include file and add the list of the slave node hostnames (separated by
newline character).

Note

If no yarn.include file is specified, all NodeManagers are considered
to be included in the cluster (unless excluded in the yarn.exclude
file). The yarn.resourcemanager.nodes.include-path and
yarn.resourcemanager.nodes.exclude-path properties
in yarn-site.xml are used to specify the yarn.include and
yarn.exclude files.

b. On the ResourceManager host machine, execute the following command:

su -l yarn -c "yarn rmadmin -refreshNodes"

7.3. Add HBase RegionServer
Use the following instructions to manually add HBase RegionServer hosts:

1. On each of the new slave nodes, install HBase and ZooKeeper.

• For RHEL/CentOS/Oracle Linux:

yum install zookeeper hbase

• For SLES:

zypper install zookeeper hbase

• For Ubuntu:

apt-get install zookeeper hbase

2. On each of the new slave nodes, add the HDP repository to yum:

• For RHEL/CentOS 5:

wget -nv http://public-repo-1.hortonworks.com/HDP/centos5/2.x/GA/2.1-
latest/hdp.repo -O /etc/yum.repos.d/hdp.repo

• For RHEL/CentOS 6:

wget -nv http://public-repo-1.hortonworks.com/HDP/centos6/2.x/GA/2.1-
latest/hdp.repo -O /etc/yum.repos.d/hdp.repo

Hortonworks Data Platform May 26, 2015

58

• For SLES:

wget -nv http://public-repo-1.hortonworks.com/HDP/suse11/2.x/GA/2.1-
latest/hdp.repo -O /etc/zypp.repos.d/hdp.repo

• For Ubuntu:

wget http://public-repo-1.hortonworks.com/HDP/ubuntu12/2.x/hdp.list -O /
etc/apt/sources.list.d/hdp.list

3. Copy the HBase configurations to the new slave nodes and set appropriate permissions.

• Option I: Copy HBase config files from an existing slave node.

a. On any existing slave node, make a copy of the current configurations:

tar zcvf hbase_conf.tgz /etc/hbase/conf
tar zcvf zookeeper_conf.tgz /etc/zookeeper/conf

b. Copy this file to each of the new nodes:

rm -rf /etc/hbase/conf
mkdir -p /etc/hbase/conf
cd /
tar zxvf $location_of_copied_conf_tar_file/hbase_conf.tgz
chmod -R 755 /etc/hbase/conf

rm -rf /etc/zookeeper/conf
mkdir -p /etc/zookeeper/conf
cd /
tar zxvf $location_of_copied_conf_tar_file/zookeeper_conf.tgz
chmod -R 755 /etc/zookeeper/conf

• Option II: Manually add Hadoop configuration files as described here.

4. On all of the new slave nodes, create the config directory, copy all the config files, and
set the permissions:

rm -r $HBASE_CONF_DIR ;
mkdir -p $HBASE_CONF_DIR ;

copy all the config files to $HBASE_CONF_DIR

chmod a+x $HBASE_CONF_DIR/;
chown -R $HBASE_USER:$HADOOP_GROUP $HBASE_CONF_DIR/../ ;
chmod -R 755 $HBASE_CONF_DIR/../

rm -r $ZOOKEEPER_CONF_DIR ;
mkdir -p $ZOOKEEPER_CONF_DIR ;

copy all the config files to $ZOOKEEPER_CONF_DIR

chmod a+x $ZOOKEEPER_CONF_DIR/;
chown -R $ZOOKEEPER_USER:$HADOOP_GROUP $ZOOKEEPER_CONF_DIR/../ ;
chmod -R 755 $ZOOKEEPER_CONF_DIR/../

where:

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-hbase-3.html

Hortonworks Data Platform May 26, 2015

59

• $HBASE_CONF_DIR is the directory to store the HBase configuration files. For
example, /etc/hbase/conf.

• $HBASE_USER is the user owning the HBase services. For example, hbase.

• $HADOOP_GROUP is a common group shared by services. For example, hadoop.

• $ZOOKEEPER_CONF_DIR is the directory to store the ZooKeeper configuration files.
For example, /etc/zookeeper/conf

• $ZOOKEEPER_USER is the user owning the ZooKeeper services. For example,
zookeeper.

5. Start HBase RegionServer node:

<login as $HBASE_USER>
/usr/lib/hbase/bin/hbase-daemon.sh --config $HBASE_CONF_DIR start
 regionserver

6. On the HBase Master host machine, edit the /usr/lib/hbase/conf file and add the
list of slave nodes' hostnames. The hostnames must be separated by a newline character.

Hortonworks Data Platform May 26, 2015

60

8. NameNode High Availability for
Hadoop

The HDFS NameNode High Availability feature enables you to run redundant NameNodes
in the same cluster in an Active/Passive configuration with a hot standby. This eliminates
the NameNode as a potential single point of failure (SPOF) in an HDFS cluster.

Formerly, if a cluster had a single NameNode, and that machine or process became
unavailable, the entire cluster would be unavailable until the NameNode was either
restarted or started on a separate machine. This situation impacted the total availability of
the HDFS cluster in two major ways:

• In the case of an unplanned event such as a machine crash, the cluster would be
unavailable until an operator restarted the NameNode.

• Planned maintenance events such as software or hardware upgrades on the NameNode
machine would result in periods of cluster downtime.

HDFS NameNode HA avoids this by facilitating either a fast failover to the new NameNode
during machine crash, or a graceful administrator-initiated failover during planned
maintenance.

This guide provides an overview of the HDFS NameNode High Availability (HA) feature,
instructions on how to deploy Hue with an HA cluster, and instructions on how to enable
HA on top of an existing HDP cluster using the Quorum Journal Manager (QJM) and
Zookeeper Failover Controller for configuration and management. Using the QJM and
Zookeeper Failover Controller enables the sharing of edit logs between the Active and
Standby NameNodes.

Note

This guide assumes that an existing HDP cluster has been manually installed
and deployed. If your existing HDP cluster was installed using Ambari,
configure NameNode HA using the Ambari wizard, as described in the Ambari
documentation.

This document includes the following sections:

• Architecture

• Hardware Resources

• Deploy NameNode HA Cluster

• Operating a Namenode HA Cluster

• Configure and Deploy Automatic Failover

• Appendix: Administrative Commands

Hortonworks Data Platform May 26, 2015

61

8.1. Architecture
In a typical HA cluster, two separate machines are configured as NameNodes. In a working
cluster, one of the NameNode machine is in the Active state, and the other is in the
Standby state.

The Active NameNode is responsible for all client operations in the cluster, while the
Standby acts as a slave. The Standby machine maintains enough state to provide a fast
failover (if required).

In order for the Standby node to keep its state synchronized with the Active node, both
nodes communicate with a group of separate daemons called JournalNodes (JNs). When
the Active node performs any namespace modification, the Active node durably logs a
modification record to a majority of these JNs. The Standby node reads the edits from
the JNs and continuously watches the JNs for changes to the edit log. Once the Standby
Node observes the edits, it applies these edits to its own namespace. When using QJM,
JournalNodes acts the shared editlog storage. In a failover event, the Standby ensures that
it has read all of the edits from the JounalNodes before promoting itself to the Active state.
(This mechanism ensures that the namespace state is fully synchronized before a failover
completes.)

Note

Secondary NameNode is not required in HA configuration because the Standby
node also performs the tasks of the Secondary NameNode.

In order to provide a fast failover, it is also necessary that the Standby node have up-to-
date information on the location of blocks in your cluster. To get accurate information
about the block locations, DataNodes are configured with the location of both of the
NameNodes, and send block location information and heartbeats to both NameNode
machines.

Hortonworks Data Platform May 26, 2015

62

It is vital for the correct operation of an HA cluster that only one of the NameNodes should
be Active at a time. Failure to do so, would cause the namespace state to quickly diverge
between the two NameNode machines thus causing potential data loss. (This situation is
called as split-brain scenario.)

To prevent the split-brain scenario, the JournalNodes allow only one NameNode to be a
writer at a time. During failover, the NameNode, that is to chosen to become active, takes
over the role of writing to the JournalNodes. This process prevents the other NameNode
from continuing in the Active state and thus lets the new Active node proceed with the
failover safely.

8.2. Hardware Resources
Ensure that you prepare the following hardware resources:

• NameNode machines: The machines where you run Active and Standby NameNodes,
should have exactly the same hardware. For recommended hardware for Hadoop, see
Hardware recommendations for Apache Hadoop.

• JournalNode machines: The machines where you run the JournalNodes. The
JournalNode daemon is relatively lightweight, so these daemons may reasonably be co-
located on machines with other Hadoop daemons, for example the NameNodes or the
YARN ResourceManager.

Note

There must be at least three JournalNode daemons, because edit log
modifications must be written to a majority of JNs. This lets the system
tolerate failure of a single machine. You may also run more than three
JournalNodes, but in order to increase the number of failures that the system
can tolerate, you must run an odd number of JNs, (i.e. 3, 5, 7, etc.).

Note that when running with N JournalNodes, the system can tolerate at
most (N - 1) / 2 failures and continue to function normally.

• Zookeeper machines: For automated failover functionality, there must be an existing
Zookeeper cluster available. The Zookeeper service nodes can be co-located with other
Hadoop daemons.

In an HA cluster, the Standby NameNode also performs checkpoints of the namespace
state. Therefore, do not deploy a Secondary NameNode, CheckpointNode, or BackupNode
in an HA cluster.

8.3. Deploy NameNode HA Cluster
HA configuration is backward compatible and works with your existing single NameNode
configuration. The following instructions describe how to set up NameName HA on a
manually-installed cluster. If you installed with Ambari and manage HDP on Ambari 1.4.1 or
later, instead of these instructions use the Ambari documentation for the NameNode HA
wizard.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_cluster-planning-guide/content/ch_hardware-recommendations.html
http://docs.hortonworks.com/HDPDocuments/Ambari-1.6.0.0/bk_ambari_reference/content/install-ha_2x.html
http://docs.hortonworks.com/HDPDocuments/Ambari-1.6.0.0/bk_ambari_reference/content/install-ha_2x.html

Hortonworks Data Platform May 26, 2015

63

Note

HA cannot accept HDFS cluster names that include an underscore (_).

To deploy a NameNode HA cluster:

1. Configure HA cluster

2. Deploy NameNode HA Cluster

3. OPTIONAL: Deploy Hue with HA Cluster

8.3.1. Configure NameNode HA Cluster

Add High Availability configurations to your HDFS configuration files. Start by taking the
HDFS configuration files from the original NameNode in your HDP cluster, and use that as
the base, adding the properties mentioned below to those files.

After you have added the configurations below, ensure that the same set of HDFS
configuration files are propogated to all nodes in the HDP cluster. This ensures that all the
nodes and services are able to interact with the highly available NameNode.

Add the following configuration options to your hdfs-site.xml file:

• dfs.nameservices:

Choose an arbitrary but logical name (for example mycluster) as the value for
dfs.nameservices option. This name will be used for both configuration and
authority component of absolute HDFS paths in the cluster.

<property>
 <name>dfs.nameservices</name>
 <value>mycluster</value>
 <description>Logical name for this new nameservice</description>
</property>

If you are also using HDFS Federation, this configuration setting should also include the
list of other nameservices, HA or otherwise, as a comma-separated list.

• dfs.ha.namenodes.[$nameservice ID]:

Provide a list of comma-separated NameNode IDs. DataNodes use this this property to
determine all the NameNodes in the cluster.

For example, for the nameservice ID mycluster and individual NameNode IDs nn1 and
nn2, the value of this property will be:

<property>
 <name>dfs.ha.namenodes.mycluster</name>
 <value>nn1,nn2</value>
 <description>Unique identifiers for each NameNode in the nameservice</
description>
</property>

Hortonworks Data Platform May 26, 2015

64

Note

Currently, a maximum of two NameNodes may be configured per
nameservice.

• dfs.namenode.rpc-address.[$nameservice ID].[$name node ID]:

Use this property to specify the fully-qualified RPC address for each NameNode to listen
on.

Continuning with the previous example, set the full address and IPC port of the
NameNode process for the above two NameNode IDs - nn1 and nn2 .

Note that there will be two separate configuration options.

<property>
 <name>dfs.namenode.rpc-address.mycluster.nn1</name>
 <value>machine1.example.com:8020</value>
</property>
<property>
 <name>dfs.namenode.rpc-address.mycluster.nn2</name>
 <value>machine2.example.com:8020</value>
</property>

• dfs.namenode.http-address.[$nameservice ID].[$name node ID]:

Use this property to specify the fully-qualified HTTP address for each NameNode to listen
on.

Set the addresses for both NameNodes HTTP servers to listen on. For example:

<property>
<name>dfs.namenode.http-address.mycluster.nn1</name>
<value>machine1.example.com:50070</value>
</property>
<property>
<name>dfs.namenode.http-address.mycluster.nn2</name>
<value>machine2.example.com:50070</value>
</property>

Note

If you have Hadoop security features enabled, set the https-address for each
NameNode.

• dfs.namenode.shared.edits.dir:

Use this property to specify the URI that identifies a group of JournalNodes (JNs) where
the NameNode will write/read edits.

Configure the addresses of the JNs that provide the shared edits storage. The Active
nameNode writes to this shared storage and the Standby NameNode reads from this
location to stay up-to-date with all the file system changes.

Hortonworks Data Platform May 26, 2015

65

Although you must specify several JournalNode addresses, you must configure only one
of these URIs for your cluster.

The URI should be of the form:

qjournal://host1:port1;host2:port2;host3:port3/journalId

The Journal ID is a unique identifier for this nameservice, which allows a single set of
JournalNodes to provide storage for multiple federated namesystems. You can reuse the
nameservice ID for the journal identifier.

For example, if the JournalNodes for a cluster were running on the
node1.example.com, node2.example.com, and node3.example.com machines
and the nameservice ID were mycluster, you would use the following as the value for
this setting:

<property>
 <name>dfs.namenode.shared.edits.dir</name>
 <value>qjournal://node1.example.com:8485;node2.example.com:8485;node3.
example.com:8485/mycluster</value>
</property>

Note

Note that the default port for the JournalNode is 8485.

• dfs.client.failover.proxy.provider.[$nameservice ID]:

This property specifies the Java class that HDFS clients use to contact the Active
NameNode. DFS Client uses this Java class to determine which NameNode is the current
Active and therefore which NameNode is currently serving client requests.

Use the ConfiguredFailoverProxyProvider implementation if you are not using a custom
implementation.

For example:

<property>
 <name>dfs.client.failover.proxy.provider.mycluster</name>
 <value>org.apache.hadoop.hdfs.server.namenode.ha.
ConfiguredFailoverProxyProvider</value>
</property>

• dfs.ha.fencing.methods:

This property specifies a list of scripts or Java classes that will be used to fence the Active
NameNode during a failover.

It is important for maintaining correctness of the system that only one NameNode be in
the Active state at any given time. Especially, when using the Quorum Journal Manager,
only one NameNode will ever be allowed to write to the JournalNodes, so there is no
potential for corrupting the file system metadata from a split-brain scenario. However,
when a failover occurs, it is still possible that the previous Active NameNode could serve
read requests to clients, which may be out of date until that NameNode shuts down
when trying to write to the JournalNodes. For this reason, it is still recommended to

Hortonworks Data Platform May 26, 2015

66

configure some fencing methods even when using the Quorum Journal Manager. To
improve the availability of the system in the event the fencing mechanisms fail, it is
advisable to configure a fencing method which is guaranteed to return success as the last
fencing method in the list. Note that if you choose to use no actual fencing methods, you
must set some value for this setting, for example shell(/bin/true).

The fencing methods used during a failover are configured as a carriage-return-
separated list, which will be attempted in order until one indicates that fencing
has succeeded. The following two methods are packaged with Hadoop: shell
and sshfence. For information on implementing custom fencing method, see the
org.apache.hadoop.ha.NodeFencer class.

• sshfence: SSH to the Active NameNode and kill the process.

The sshfence option SSHes to the target node and uses fuser to kill the process
listening on the service's TCP port. In order for this fencing option to work, it must
be able to SSH to the target node without providing a passphrase. Ensure that you
configure the dfs.ha.fencing.ssh.private-key-files option, which is a comma-separated
list of SSH private key files.

For example:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>sshfence</value>
</property>

<property>
 <name>dfs.ha.fencing.ssh.private-key-files</name>
 <value>/home/exampleuser/.ssh/id_rsa</value>
</property>

Optionally, you can also configure a non-standard username or port to perform the
SSH. You can also configure a timeout, in milliseconds, for the SSH, after which this
fencing method will be considered to have failed. To configure non-standard username
or port and timeout, see the properties given below:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>sshfence([[username][:port]])</value>
</property>
<property>
 <name>dfs.ha.fencing.ssh.connect-timeout</name>
 <value>30000</value>
</property>

• shell: Run an arbitrary shell command to fence the Active NameNode.

The shell fencing method runs an arbitrary shell command:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>shell(/path/to/my/script.sh arg1 arg2 ...)</value>
</property>

Hortonworks Data Platform May 26, 2015

67

The string between '(' and ')' is passed directly to a bash shell and may not include any
closing parentheses.

The shell command will be run with an environment set up to contain all of the
current Hadoop configuration variables, with the '_' character replacing any '.'
characters in the configuration keys. The configuration used has already had any
namenode-specific configurations promoted to their generic forms -- for example
dfs_namenode_rpc-address will contain the RPC address of the target node,
even though the configuration may specify that variable as dfs.namenode.rpc-
address.ns1.nn1.

Additionally, the following variables (referring to the target node to be fenced) are
also available:

• $target_host: Hostname of the node to be fenced

• $target_port: IPC port of the node to be fenced

• $target_address: The combination of $target_host and $target_port as
host:port

• $target_nameserviceid: The nameservice ID of the NN to be fenced

• $target_namenodeid: The namenode ID of the NN to be fenced

These environment variables may also be used as substitutions in the shell command.
For example:

<property>
 <name>dfs.ha.fencing.methods</name>
 <value>shell(/path/to/my/script.sh --nameservice=$target_nameserviceid
 $target_host:$target_port)</value>
</property>

If the shell command returns an exit code of 0, the fencing is successful.

Note

This fencing method does not implement any timeout. If timeouts are
necessary, they should be implemented in the shell script itself (for
example, by forking a subshell to kill its parent in some number of
seconds).

• fs.defaultFS:

The default path prefix used by the Hadoop FS client. Optionally, you may now
configure the default path for Hadoop clients to use the new HA-enabled logical URI.
For example, for mycluster nameservice ID, this will be the value of the authority
portion of all of your HDFS paths.

Configure this property in the core-site.xml file:

Hortonworks Data Platform May 26, 2015

68

<property>
 <name>fs.defaultFS</name>
 <value>hdfs://mycluster</value>
</property>

• dfs.journalnode.edits.dir:

This is the absolute path on the JournalNode machines where the edits and other
local state (used by the JNs) will be stored. You may only use a single path for this
configuration. Redundancy for this data is provided by either running multiple
separate JournalNodes or by configuring this directory on a locally-attached RAID
array. For example:

<property>
 <name>dfs.journalnode.edits.dir</name>
 <value>/path/to/journal/node/local/data</value>
</property>

Note

See Creating Service Principals and Keytab files for HDP for instructions on
configuring Kerberos-based security for Highly Available clusters.

8.3.2. Deploy NameNode HA Cluster

In this section, we use NN1 to denote the original NameNode in the non-HA setup, and
NN2 to denote the other NameNode that is to be added in the HA setup.

Note

HA clusters reuse the nameservice ID to identify a single HDFS instance
(that may consist of multiple HA NameNodes).

A new abstraction called NameNode ID is added with HA. Each NameNode in
the cluster has a distinct NameNode ID to distinguish it.

To support a single configuration file for all of the NameNodes, the relevant
configuration parameters are suffixed with both the nameservice ID and the
NameNode ID.

1. Start the JournalNode daemons on those set of machines where the JNs are deployed.
On each machine, execute the following command:

su –l hdfs –c "/usr/lib/hadoop/sbin/hadoop-daemon.sh start journalnode"

2. Wait for the daemon to start on each of the JN machines.

3. Initialize JournalNodes.

• At the NN1 host machine, execute the following command:

 su –l hdfs –c "namenode -initializeSharedEdits -force"

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-chap14-1-4.html

Hortonworks Data Platform May 26, 2015

69

This command formats all the JournalNodes. This by default happens in an interactive
way: the command prompts users for “Y/N” input to confirm the format. You can skip
the prompt by using option -force or -nonInteractive.

It also copies all the edits data after the most recent checkpoint from the edits
directories of the local NameNode (NN1) to JournalNodes.

• At the host with the journal node (if it is separated from the primary host), execute
the following command:

su –l hdfs –c "namenode -initializeSharedEdits -force"

• Initialize HA state in ZooKeeper.

Execute the following command on NN1:

hdfs zkfc -formatZK -force

This command creates a znode in ZooKeeper. The failover system stores uses this
znode for data storage.

• Check to see if Zookeeper is running. If not, start Zookeeper by executing the
following command on the ZooKeeper host machine(s).

su - zookeeper -c "export ZOOCFGDIR=/etc/zookeeper/conf ; export ZOOCFG=
zoo.cfg ; source /etc/zookeeper/conf/zookeeper-env.sh ; /usr/lib/
zookeeper/bin/zkServer.sh start"

• At the standby namenode host, execute the following command:

su -l hdfs -c "namenode -bootstrapStandby -force"

4. Start NN1. At the NN1 host machine, execute the following command:

su -l hdfs -c "/usr/lib/hadoop/sbin/hadoop-daemon.sh --config /etc/hadoop/
conf start namenode"

Ensure that NN1 is running correctly.

5. Format NN2 and copy the latest checkpoint (FSImage) from NN1 to NN2 by executing
the following command:

su -l hdfs -c "namenode -bootstrapStandby -force"

This command connects with HH1 to get the namespace metadata and the
checkpointed fsimage. This command also ensures that NN2 receives sufficient
editlogs from the JournalNodes (corresponding to the fsimage). This command fails if
JournalNodes are not correctly initialized and cannot provide the required editlogs.

6. Start NN2. Execute the following command on the NN2 host machine:

su -l hdfs -c "/usr/lib/hadoop/sbin/hadoop-daemon.sh --config /etc/hadoop/
conf start namenode"

Ensure that NN2 is running correctly.

7. Start DataNodes. Execute the following command on all the DataNodes:

Hortonworks Data Platform May 26, 2015

70

su -l hdfs -c "/usr/lib/hadoop/sbin/hadoop-daemon.sh --config /etc/hadoop/
conf start datanode"

8. Validate the HA configuration.

Go to the NameNodes' web pages separately by browsing to their configured HTTP
addresses.

Under the configured address label, you should see that HA state of the NameNode. The
NameNode can be either in "standby" or "active" state.

Note

The HA NameNode is initially in the Standby state after it is bootstrapped.

You can also use either JMX (tag.HAState) to query the HA state of a
NameNode.

The following command can also be used query HA state for NameNode:

hdfs haadmin -getServiceState

9. Transition one of the HA NameNode to Active state.

Initially, both NN1 and NN2 are in Standby state. Therefore you must transition one
of the NameNode to Active state. This transition can be performed using one of the
following options:

• Option I - Using CLI

Use the command line interface (CLI) to transition one of the NameNode to Active
State. Execute the following command on that NameNode host machine:

hdfs haadmin -failover --forcefence --forceactive <serviceId> <namenodeId>

For more information on the haadmin command, see Appendix - Administrative
Commands section in this document.

• Option II - Deploying Automatic Failover

You can configure and deploy automatic failover using the instructions provided here.

Hortonworks Data Platform May 26, 2015

71

8.3.3. Deploy Hue with an HA Cluster

If you are going to use Hue with an HA Cluster, make the following changes to /etc/hue/
conf/hue.ini:

1. Install the Hadoop HttpFS component on the Hue server.

For RHEL/CentOS/Oracle Linux:

 yum install hadoop-httpfs

For SLES:

zypper install hadoop-httpfs

2. Modify /etc/hadoop-httpfs/conf/httpfs-site.xml to configure HttpFS to talk
to the cluster by confirming the following properties are correct:

<property>
 <name>httpfs.proxyuser.hue.hosts</name>
 <value>*</value>
</property>
<property>
 <name>httpfs.proxyuser.hue.groups</name>
 <value>*</value>
</property>

3. Start the HttpFS service.

service hadoop-httpfs start

4. Modify the core-site.xml file. On the NameNodes and all the DataNodes, add
the following properties to the $HADOOP_CONF_DIR /core-site.xml file. Where
$HADOOP_CONF_DIR is the directory for storing the Hadoop configuration files. For
example, /etc/hadoop/conf.

<property>
 <name>hadoop.proxyuser.httpfs.groups</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.httpfs.hosts</name>
 <value>*</value>
</property>

5. In the hue.ini file, under the [hadoop][[hdfs_clusters]][[[default]]] sub-
section, use the following variables to configure the cluster:

Table 8.1. Hue Configuration Properties

Property Description Example

fs_defaultfs NameNode URL using the
logical name for the new name
service. For reference, this is
the dfs.nameservices property
in hdfs-site.xml in your Hadoop
configuration.

hdfs://mycluster

Hortonworks Data Platform May 26, 2015

72

Property Description Example

webhdfs_url URL to the HttpFS server. http://c6401.apache.org:14000/
webhdfs/v1/

6. Restart Hue for the changes to take effect.

service hue restart

8.3.4. Deploy Oozie with HA Cluster

You can configure multiple Oozie servers against the same database to provide High
Availability (HA) of the Oozie service. You need the following prerequisites:

• A database that supports multiple concurrent connections. In order to have full HA, the
database should also have HA support, or it becomes a single point of failure.

Note

The default derby database does not support this.

• A ZooKeeper ensemble. Apache ZooKeeper is a distributed, open-source coordination
service for distributed applications; the Oozie servers use it for coordinating access to the
database and communicating with each other. In order to have full HA, there should be
at least 3 ZooKeeper servers. Find more information about Zookeeper here.

• Multiple Oozie servers.

Important

While not strictly required, you should configure all ZooKeeper servers to
have identical properties.

• A Loadbalancer, Virtual IP, or Round-Robin DNS. This is used to provide a single entry-
point for users and for callbacks from the JobTracker. The load balancer should be
configured for round-robin between the Oozie servers to distribute the requests. Users
(using either the Oozie client, a web browser, or the REST API) should connect through
the load balancer. In order to have full HA, the load balancer should also have HA
support, or it becomes a single point of failure.

For information about how to set up your Oozie servers to handle failover, see
Configuring Oozie Failover.

8.4. Operating a NameNode HA cluster
• While operating an HA cluster, the Active NameNode cannot commit a transaction if it

cannot write successfully to a quorum of the JournalNodes.

• When restarting an HA cluster, the steps for initializing JournalNodes and NN2 can be
skipped.

• Start the services in the following order:

http://zookeeper.apache.org/

Hortonworks Data Platform May 26, 2015

73

1. JournalNodes

2. NameNodes

Note

Verify that the ZKFailoverController (ZKFC) process on each node is
running so that one of the NameNodes can be converted to active state.

3. DataNodes

• In a NameNode HA cluster, the following dfs admin command option will run only on
the active NameNode:

-rollEdits

The following dfs admin command options will run on both the active and standby
NameNodes:

-safemode enter
-saveNamespace

The -saveNamespace option requires safemode.

8.5. Configure and Deploy NameNode Automatic
Failover

The preceding sections describe how to configure manual failover. In that mode, the
system will not automatically trigger a failover from the active to the standby NameNode,
even if the active node has failed. This section describes how to configure and deploy
automatic failover.

Automatic failover adds following components to an HDFS deployment:

• ZooKeeper quorum

• ZKFailoverController process (abbreviated as ZKFC).

The ZKFailoverController (ZKFC) is a ZooKeeper client that monitors and manages the state
of the NameNode. Each of the machines which run NameNode service also runs a ZKFC.
ZKFC is responsible for:

• Health monitoring: ZKFC periodically pings its local NameNode with a health-check
command.

• ZooKeeper session management: When the local NameNode is healthy, the ZKFC holds
a session open in ZooKeeper. If the local NameNode is active, it also holds a special "lock"
znode. This lock uses ZooKeeper's support for "ephemeral" nodes; if the session expires,
the lock node will be automatically deleted.

• ZooKeeper-based election: If the local NameNode is healthy and no other node currently
holds the lock znode, ZKFC will try to acquire the lock. If ZKFC succeeds, then it has "won
the election" and will be responsible for running a failover to make its local NameNode

Hortonworks Data Platform May 26, 2015

74

active. The failover process is similar to the manual failover described above: first, the
previous active is fenced if necessary and then the local NameNode transitions to active
state.

Use the following instructions to configure and deploy automatic failover:

• Prerequisites

• Instructions

8.5.1. Prerequisites

Complete the following prerequisites:

• Ensure you have a working Zookeeper service. If you had an Ambari deployed HDP
cluser with Zookeeper, you can use that. If not, deploy ZooKeeper using the instructions
provided here.

Note

In a typical deployment, ZooKeeper daemons are configured to run on
three or five nodes. It is however acceptable to co-locate the ZooKeeper
nodes on the same hardware as the HDFS NameNode and Standby Node.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-zookeeper.html

Hortonworks Data Platform May 26, 2015

75

Many operators choose to deploy the third ZooKeeper process on the same
node as the YARN ResourceManager. To achieve performance and improve
isolation, Hortonworks recommends configuring the ZooKeeper nodes such
that the ZooKeeper data and HDFS metadata is stored on separate disk
drives.

• Shut down your HA cluster (configured for manual failover) using the instructions
provided here.

Currently, you cannot transition from a manual failover setup to an automatic failover
setup while the cluster is running.

8.5.2. Instructions

Complete the following instructions:

1. Configure automatic failover.

a. Set up your cluster for automatic failover.

Add the following property to the the hdfs-site.xml file for both the NameNode
machines:

<property>
 <name>dfs.ha.automatic-failover.enabled</name>
 <value>true</value>
 </property>

b. List the host-port pairs running the ZooKeeper service.

Add the following property to the the core-site.xml file for both the NameNode
machines:

<property>
 <name>ha.zookeeper.quorum</name>
 <value>zk1.example.com:2181,zk2.example.com:2181,zk3.example.
com:2181</value>
 </property>

Note

Suffix the configuration key with the nameservice ID to configure the above
settings on a per-nameservice basis. For example, in a cluster with federation
enabled, you can explicitly enable automatic failover for only one of the
nameservices by setting dfs.ha.automatic-failover.enabled.$my-
nameservice-id.

2. Initialize HA state in ZooKeeper.

Execute the following command on NN1:

hdfs zkfc -formatZK -force

This command creates a znode in ZooKeeper. The automatic failover system stores uses
this znode for data storage.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap3_2.html

Hortonworks Data Platform May 26, 2015

76

3. Check to see if Zookeeper is running. If not, start Zookeeper by executing the following
command on the ZooKeeper host machine(s).

su - zookeeper -c "export ZOOCFGDIR=/etc/zookeeper/conf ; export ZOOCFG=
zoo.cfg ; source /etc/zookeeper/conf/zookeeper-env.sh ; /usr/lib/zookeeper/
bin/zkServer.sh start"

4. Start the JournalNodes, NameNodes, and DataNodes using the instructions provided
here.

5. Start ZKFC.

Manually start the zkfc daemon on each of the NameNode host machines using the
following command:

/usr/lib/hadoop/sbin/hadoop-daemon.sh start zkfc

The sequence of starting ZKFC determines which NameNode will become Active. For
example, if ZKFC is started on NN1 first, it will cause NN1 to become Active.

Note

To convert a non-HA cluster to an HA cluster, Hortonworks recommends
that you run the bootstrapStandby command (this command is used to
initialize NN2) before you start ZKFC on any of the NameNode machines.

6. Verify automatic failover.

a. Locate the Active NameNode.

Use the NameNode web UI to check the status for each NameNode host machine.

b. Cause a failure on the Active NameNode host machine.

For example, you can use the following command to simulate a JVM crash:

kill -9 $PID_of_Active_NameNode

Or, you could power cycle the machine or unplug its network interface to simulate
outage.

c. The Standby NameNode should now automatically become Active within several
seconds.

Note

The amount of time required to detect a failure and trigger a failover
depends on the configuration of ha.zookeeper.session-
timeout.ms property (default value is 5 seconds).

d. If the test fails, your HA settings might be incorrectly configured.

Check the logs for the zkfc daemons and the NameNode daemons to diagnose the
issue.

Hortonworks Data Platform May 26, 2015

77

8.5.3. Configuring Oozie Failover

1. Set up your database for High Availability (see the database documentation for details).

Oozie database configuration properties may need special configuration (see the JDBC
driver documentation for details).

2. Configure Oozie identically on two or more servers.

3. Set the OOZIE_HTTP_HOSTNAME variable in oozie-env.sh to the Load Balancer or
Virtual IP address.

4. Start all Oozie servers.

5. Use either a Virtual IP Address or Load Balancer to direct traffic to Oozie servers.

6. Access Oozie via the Virtual IP or Load Balancer address.

8.6. Appendix: Administrative Commands
The subcommands of hdfs haadmin are extensively used for administering an HA cluster.

Running the hdfs haadmin command without any additional arguments will display the
following usage information:

Usage: DFSHAAdmin [-ns <nameserviceId>]
 [-transitionToActive <serviceId>]
 [-transitionToStandby <serviceId>]
 [-failover [--forcefence] [--forceactive] <serviceId> <serviceId>]
 [-getServiceState <serviceId>]
 [-checkHealth <serviceId>]
 [-help <command>

This section provides high-level uses of each of these subcommands.

• transitionToActive and transitionToStandby: Transition the state of the given
NameNode to Active or Standby.

These subcommands cause a given NameNode to transition to the Active or Standby
state, respectively. These commands do not attempt to perform any fencing, and
thus should be used rarely. Instead, Hortonworks recommends using the following
subcommand:

hdfs haadmin -failover

• failover: Initiate a failover between two NameNodes.

This subcommand causes a failover from the first provided NameNode to the second.

• If the first NameNode is in the Standby state, this command transitions the second to
the Active state without error.

• If the first NameNode is in the Active state, an attempt will be made to gracefully
transition it to the Standby state. If this fails, the fencing methods (as configured by

Hortonworks Data Platform May 26, 2015

78

dfs.ha.fencing.methods) will be attempted in order until one succeeds. Only after this
process will the second NameNode be transitioned to the Active state. If the fencing
methods fail, the second NameNode is not transitioned to Active state and an error is
returned.

• getServiceState: Determine whether the given NameNode is Active or Standby.

This subcommand connects to the provided NameNode, determines its current state, and
prints either "standby" or "active" to STDOUT appropriately. This subcommand might be
used by cron jobs or monitoring scripts.

• checkHealth: Check the health of the given NameNode.

This subcommand connects to the NameNode to check its health. The NameNode is
capable of performing some diagnostics that include checking if internal services are
running as expected. This command will return 0 if the NameNode is healthy else it will
return a non-zero code.

Note

This subcommand is in implementation phase and currently always returns
success unless the given NameNode is down.

Hortonworks Data Platform May 26, 2015

79

9. ResourceManager High Availability for
Hadoop

This guide provides instructions on setting up the ResourceManager (RM) High Availability
(HA) feature in a HDFS cluster. The Active and Standby ResourceManagers embed the
Zookeeper-based ActiveStandbyElector to determine which ResourceManager should be
active.

Note

ResourceManager HA is currently only supported for non-Ambari clusters. This
guide assumes that an existing HDP cluster has been manually installed and
deployed. It provides instructions on how to manually enable ResourceManager
HA on top of the existing cluster.

The ResourceManager was a single point of failure (SPOF) in an HDFS cluster. Each cluster
had a single ResourceManager, and if that machine or process became unavailable, the
entire cluster would be unavailable until the ResourceManager was either restarted or
started on a separate machine. This situation impacted the total availability of the HDFS
cluster in two major ways:

• In the case of an unplanned event such as a machine crash, the cluster would be
unavailable until an operator restarted the ResourceManager.

• Planned maintenance events such as software or hardware upgrades on the
ResourceManager machine would result in windows of cluster downtime.

The ResourceManager HA feature addresses these problems. This feature enables you to
run redundant ResourceManagers in the same cluster in an Active/Passive configuration
with a hot standby. This mechanism thus facilitates either a fast failover to the standby
ResourceManager during machine crash, or a graceful administrator-initiated failover
during planned maintenance.

In this document:

• Hardware Resources

• Deploy HA Cluster

9.1. Hardware Resources
Ensure that you prepare the following hardware resources:

• ResourceManager machines: The machines where you run Active and Standby
ResourceManagers should have exactly the same hardware. For recommended hardware
for Hadoop, see Hardware recommendations for Apache Hadoop.

• Zookeeper machines: For automated failover functionality, there must be an existing
Zookeeper cluster available. The Zookeeper service nodes can be co-located with other
Hadoop daemons.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_cluster-planning-guide/content/ch_hardware-recommendations.html

Hortonworks Data Platform May 26, 2015

80

9.2. Deploy ResourceManager HA Cluster
HA configuration is backward-compatible and works with your existing single
ResourceManager configuration.

Note

These instructions describe how to manually configure and deploy
ResourceManager HA on a cluster. Currently, Ambari cannot be used to set up
ResourceManager HA.

First, configure manual or automatic ResourceManager failover. Then, deploy the
ResourceManager HA cluster.

• Configure Manual or Automatic ResourceManager Failover

• Deploy the ResourceManager HA Cluster

• Minimum Settings for ResourceManager Configuration

9.2.1. Configure Manual or Automatic ResourceManager
Failover

• Prerequisites

• Set Common ResourceManager HA Properties

• Configure Manual ResourceManager Failover

• Configure Automatic ResourceManager Failover

9.2.1.1. Prerequisites

Complete the following prerequisites:

• Ensure that you have a working Zookeeper service. If you had an Ambari deployed HDP
cluster with Zookeeper, you can use that Zookeeper service. If not, deploy ZooKeeper
using the instructions provided here.

Note

In a typical deployment, ZooKeeper daemons are configured to run on
three or five nodes. It is however acceptable to collocate the ZooKeeper
nodes on the same hardware as the HDFS NameNode and Standby Node.
Many operators choose to deploy the third ZooKeeper process on the same
node as the YARN ResourceManager. To achieve performance and improve
isolation, Hortonworks recommends configuring the ZooKeeper nodes such
that the ZooKeeper data and HDFS metadata is stored on separate disk
drives.

• Shut down the cluster using the instructions provided here.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_installing_manually_book/content/rpm-zookeeper.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap3_2.html

Hortonworks Data Platform May 26, 2015

81

9.2.1.2. Set Common ResourceManager HA Properties

The following properties are required for both manual and automatic ResourceManager
HA. Add these properties to the etc/hadoop/conf/yarn-site.xml file:

Property Name Recommended Value Description

yarn.resourcemanager.ha.enabled true Enable RM HA

yarn.resourcemanager.ha.rm-ids Cluster-specific, e.g., rm1,rm2 A comma-separated list of ResourceManager IDs in the cluster.

yarn.resourcemanager.hostname.<rm-id> Cluster-specific The host name of the ResourceManager. Must be set for all RMs.

yarn.resourcemanager.recovery.enabled true Enable job recovery on RM restart or failover.

yarn.resourcemanager.store.class org.apache.hadoop.yarn.server. resourcemanager.recovery.ZKRMStateStore The RMStateStore implementation to use to store the ResourceManager's internal state. The ZooKeeper- based store supports fencing implicitly, i.e.,
allows a single ResourceManager to make multiple changes at a time, and hence is recommended.

yarn.resourcemanager.zk-address Cluster- specific The ZooKeeper quorum to use to store the ResourceManager's internal state. For multiple ZK servers, use commas to separate multiple ZK servers.

yarn.client.failover-proxy-provider org.apache.hadoop.yarn.client. ConfiguredRMFailoverProxyProvider When HA is enabled, the class to be used by Clients, AMs and NMs to failover to the Active RM. It should extend
org.apache.hadoop.yarn.client.RMFailoverProxyProvider. This is an optional configuration. The default value is
“org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider”

Note

You can also set values for each of the following properties in yarn-
site.xml :

• yarn.resourcemanager.address.<rm#id>

• yarn.resourcemanager.scheduler.address.<rm#id>

• yarn.resourcemanager.admin.address.<rm#id>

• yarn.resourcemanager.resource#tracker.address.<rm#id>

• yarn.resourcemanager.webapp.address.<rm#id>

If these addresses are not explicitly set, each of these properties will use yarn.resourcemanager.hostname.<rm-
id>:default_port, such
as DEFAULT_RM_PORT, DEFAULT_RM_SCHEDULER_PORT, etc.

The following is a sample yarn-site.xml file with these common ResourceManager HA
properties configured:

<!-- RM HA Configurations-->

 <property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
 </property>

 <property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
 </property>

 <property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>${rm1 address}</value>
 </property>

Hortonworks Data Platform May 26, 2015

82

 <property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>${rm2 address}</value>
 </property>

 <property>
 <name>yarn.resourcemanager.webapp.address.rm1</name>
 <value>rm1_web_address:port_num</value>
 <description>We can set rm1_web_address separately. If not, it will use
 ${yarn.resourcemanager.hostname.rm1}:DEFAULT_RM_WEBAPP_PORT</description>
 </property>

 <property>
 <name>yarn.resourcemanager.webapp.address.rm2</name>
 <value>rm2_web_address:port_num</value>
 </property>

 <property>
 <name>yarn.resourcemanager.recovery.enabled</name>
 <value>true</value>
 </property>

 <property>
 <name>yarn.resourcemanager.store.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.
ZKRMStateStore</value>
 </property>

 <property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>${zk1.address,zk2.address}</value>
 </property>

 <property>
 <name>yarn.client.failover-proxy-provider</name>
 <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</
value>
 </property>

9.2.1.3. Configure Manual ResourceManager Failover

Automatic ResourceManager failover is enabled by default, so it must be disabled for
manual failover.

To configure manual failover for ResourceManager HA, add the
yarn.resourcemanager.ha.automatic-failover.enabled configuration
property to the etc/hadoop/conf/yarn-site.xml file, and set its value to "false":

<property>
 <name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
 <value>false</value>
 </property>

9.2.1.4. Configure Automatic ResourceManager Failover

The preceding section described how to configure manual failover. In that mode,
the system will not automatically trigger a failover from the active to the standby

Hortonworks Data Platform May 26, 2015

83

ResourceManager, even if the active node has failed. This section describes how to
configure automatic failover.

1. Add the following configuration options to the yarn-site.xml file:

Property Name Recommended Value Description

yarn.resourcemanager.ha.automatic-failover.zk-base-path /yarn-leader-election The base znode path to use for storing leader information,
when using ZooKeeper-based leader election. This is an optional
configuration. The default value is “/yarn-leader-election”.

yarn.resourcemanager.cluster-id yarn-cluster The name of the cluster. In a HA setting, this is used to ensure the RM
participates in leader election for this cluster, and ensures that it does
not affect other clusters.

Example:

<property>
 <name>yarn.resourcemanager.ha.automatic-failover.zk-base-path</name>
 <value>/yarn-leader-election</value>
<description>Optional setting. The default value is /yarn-leader-election</
description>
</property>

<property>
 <name>yarn.resourcemanager.cluster-id</name>
 <value>yarn-cluster</value>
</property>

2. Automatic ResourceManager failover is enabled by default.

If you previously configured manual ResourceManager failover by setting the value of
yarn.resourcemanager.ha.automatic-failover.enabled to "false", you must
delete this property to return automatic failover to its default enabled state.

9.2.2. Deploy the ResourceManager HA Cluster
1. Copy the etc/hadoop/conf/yarn-site.xml file from the primary

ResourceManager host to the standby ResourceManager host.

2. Make sure that the clientPort value set in etc/zookeeper/conf/zoo.cfg
matches the port set in the following yarn-site.xml property:

<property>
 <name>yarn.resourcemanager.zk-state-store.address</name>
 <value>localhost:2181</value>
 </property>

3. Start Zookeeper. Execute this command on the ZooKeeper host machine(s).

su - zookeeper -c "export ZOOCFGDIR=/etc/zookeeper/conf ; export ZOOCFG=
zoo.cfg ; source /etc/zookeeper/conf/zookeeper-env.sh ; /usr/lib/zookeeper/
bin/zkServer.sh start"

4. Start HDFS

a. Execute this command on the NameNode host machine:

su -l hdfs -c "/usr/lib/hadoop/sbin/hadoop-daemon.sh --config /etc/
hadoop/conf start namenode"

Hortonworks Data Platform May 26, 2015

84

b. Execute this command on the Secondary NameNode host machine:

su -l hdfs -c "/usr/lib/hadoop/sbin/hadoop-daemon.sh --config /etc/
hadoop/conf start secondarynamenode”

c. Execute this command on all DataNodes:

su -l hdfs -c "/usr/lib/hadoop/sbin/hadoop-daemon.sh --config /etc/
hadoop/conf start datanode"

5. Start YARN

a. Execute this command to start the primary ResourceManager:

su - yarn -c "export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec && /
usr/lib/hadoop-yarn/sbin/yarn-daemon.sh --config /etc/hadoop/conf start
 resourcemanager"

b. Execute this command to start the standby ResourceManager:

su - yarn -c "export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec && /usr/
lib/hadoop-yarn/sbin/yarn-daemon.sh --config /etc/hadoop/conf2 start
 resourcemanager"

c. Execute this command on the History Server host machine:

su - mapred -c "export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec &&
 /usr/lib/hadoop-mapreduce/sbin/mr-jobhistory-daemon.sh --config /etc/
hadoop/conf start historyserver"

d. Execute this command on all NodeManagers:

su - yarn -c "export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec && /
usr/lib/hadoop-yarn/sbin/yarn-daemon.sh --config /etc/hadoop/conf start
 nodemanager"

At this point, you should be able to see messages in the console that the
NodeManager is trying to connect to the active ResourceManager.

6. Set the active ResourceManager:

MANUAL FAILOVER ONLY: If you configured manual ResourceManager failover, you
must transition one of the ResourceManagers to Active mode. Execute the following CLI
command to transition ResourceManager "rm1" to Active:

yarn rmadmin -transitionToActive rm1

You can use the following CLI command to transition ResourceManager "rm1" to
Standby mode:

yarn rmadmin -transitionToStandby rm1

AUTOMATIC FAILOVER: If you configured automatic ResourceManager failover, no
action is required -- the Active ResourceManager will be chosen automatically.

7. Start all remaining unstarted cluster services using the instructions provided here.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap3_1.html

Hortonworks Data Platform May 26, 2015

85

9.2.3. Minimum Settings for Automatic ResourceManager
HA Configuration

The minimum yarn-site.xml configuration settings for ResourceManager HA with
automatic failover are as follows:

 <property>
 <name>yarn.resourcemanager.ha.enabled</name>
 <value>true</value>
 </property>

 <property>
 <name>yarn.resourcemanager.ha.rm-ids</name>
 <value>rm1,rm2</value>
 </property>

 <property>
 <name>yarn.resourcemanager.hostname.rm1</name>
 <value>192.168.1.9</value>
 </property>

 <property>
 <name>yarn.resourcemanager.hostname.rm2</name>
 <value>192.168.1.10</value>
 </property>

 <property>
 <name>yarn.resourcemanager.recovery.enabled</name>
 <value>true</value>
 </property>

 <property>
 <name>yarn.resourcemanager.store.class</name>
 <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.
ZKRMStateStore</value>
 </property>

 <property>
 <name>yarn.resourcemanager.zk-address</name>
 <value>192.168.1.9:2181,192.168.1.10:2181</value>
 <description>For multiple zk services, separate them with comma</
description>
 </property>

 <property>
 <name>yarn.resourcemanager.cluster-id</name>
 <value>yarn-cluster</value>
 </property>

Testing ResourceManager HA on a Single Node

If you would like to test ResourceManager HA on a single node (launch more than one
ResourceManager on a single node), you need to add the following settings in yarn-
site.xml:

To enable ResourceManager "rm1" to launch:

<property>

Hortonworks Data Platform May 26, 2015

86

 <name>yarn.resourcemanager.ha.id</name>
 <value>rm1</value>
 <description>If we want to launch more than one RM in single node, we
 need this configuration</description>
 </property>

To enable ResourceManager "rm2" to launch:

<property>
 <name>yarn.resourcemanager.ha.id</name>
 <value>rm2</value>
 <description>If we want to launch more than one RM in single node, we
 need this configuration</description>
 </property>

You should also explicitly set values specific to each ResourceManager for the following
properties:

• yarn.resourcemanager.address.<rm#id>

• yarn.resourcemanager.scheduler.address.<rm#id>

• yarn.resourcemanager.admin.address.<rm#id>

• yarn.resourcemanager.resource#tracker.address.<rm#id>

• yarn.resourcemanager.webapp.address.<rm#id> separately in yarn#
site.xml

For example:

 <!-- RM1 Configs -->
 <property>
 <name>yarn.resourcemanager.address.rm1</name>
 <value>localhost:23140</value>
 </property>
 <property>
 <name>yarn.resourcemanager.scheduler.address.rm1</name>
 <value>localhost:23130</value>
 </property>
 <property>
 <name>yarn.resourcemanager.webapp.address.rm1</name>
 <value>localhost:23188</value>
 </property>
 <property>
 <name>yarn.resourcemanager.resource-tracker.address.rm1</name>
 <value>localhost:23125</value>
 </property>
 <property>
 <name>yarn.resourcemanager.admin.address.rm1</name>
 <value>localhost:23141</value>
 </property>

 <!-- RM2 configs -->
 <property>
 <name>yarn.resourcemanager.address.rm2</name>
 <value>localhost:33140</value>
 </property>

Hortonworks Data Platform May 26, 2015

87

 <property>
 <name>yarn.resourcemanager.scheduler.address.rm2</name>
 <value>localhost:33130</value>
 </property>
 <property>
 <name>yarn.resourcemanager.webapp.address.rm2</name>
 <value>localhost:33188</value>
 </property>
 <property>
 <name>yarn.resourcemanager.resource-tracker.address.rm2</name>
 <value>localhost:33125</value>
 </property>
 <property>
 <name>yarn.resourcemanager.admin.address.rm2</name>
 <value>localhost:33141</value>
 </property>

Hortonworks Data Platform May 26, 2015

88

10. Hadoop Archives
The Hadoop Distributed File System (HDFS) is designed to store and process large data sets,
but HDFS can be less efficient when storing a large number of small files. When there are
many small files stored in HDFS, these small files occupy a large portion of the namespace.
As a result, disk space is underutilized because of the namespace limitation.

Hadoop Archives (HAR) can be used to address the namespace limitations associated
with storing many small files. A Hadoop Archive packs small files into HDFS blocks more
efficiently, thereby reducing NameNode memory usage while still allowing transparent
access to files. Hadoop Archives are also compatible with MapReduce, allowing transparent
access to the original files by MapReduce jobs.

In this section:

• Introduction

• Hadoop Archive Components

• Creating a Hadoop Archive

• Looking Up Files in Hadoop Archives

• Hadoop Archives and MapReduce

10.1. Introduction
The Hadoop Distributed File System (HDFS) is designed to store and process large
(terabytes) data sets. For example, a large production cluster may have 14 PB of disk space
and store 60 million files.

However, storing a large number of small files in HDFS is inefficient. A file is generally
considered to be "small" when its size is substantially less than the HDFS block size, which
is 256 MB by default in HDP. Files and blocks are name objects in HDFS, meaning that they
occupy namespace (space on the NameNode). The namespace capacity of the system is
therefore limited by the physical memory of the NameNode.

When there are many small files stored in the system, these small files occupy a large
portion of the namespace. As a consequence, the disk space is underutilized because of the
namespace limitation. In one real-world example, a production cluster had 57 million files
less than 256 MB in size, with each of these files taking up one block on the NameNode.
These small files used up 95% of the namespace but occupied only 30% of the cluster disk
space.

Hadoop Archives (HAR) can be used to address the namespace limitations associated
with storing many small files. HAR packs a number of small files into large files so that the
original files can be accessed transparently (without expanding the files).

HAR increases the scalability of the system by reducing the namespace usage and
decreasing the operation load in the NameNode. This improvement is orthogonal to

Hortonworks Data Platform May 26, 2015

89

memory optimization in the NameNode and distributing namespace management across
multiple NameNodes.

Hadoop Archive is also compatible with MapReduce — it allows parallel access to the
original files by MapReduce jobs.

10.2. Hadoop Archive Components
• HAR Format Data Model

The Hadoop Archive data format has the following layout:

foo.har/_masterindex //stores hashes and offsets
foo.har/_index //stores file statuses
foo.har/part-[1..n] //stores actual file data

The file data is stored in multi-part files, which are indexed in order to retain the original
separation of data. Moreover, the part files can be accessed in parallel by MapReduce
programs. The index files also record the original directory tree structures and file status.

• HAR File System

Most archival systems, such as tar, are tools for archiving and de-archiving. Generally,
they do not fit into the actual file system layer and hence are not transparent to the
application writer in that the user must de-archive (expand) the archive before use.

The Hadoop Archive is integrated with the Hadoop file system interface.
The HarFileSystem implements the FileSystem interface and provides access
via the har:// scheme. This exposes the archived files and directory tree structures
transparently to users. Files in a HAR can be accessed directly without expanding it.

For example, if we have the following command to copy a HDFS file to a local directory:

hdfs dfs –get hdfs://namenode/foo/file-1 localdir

Suppose a Hadoop Archive bar.har is created from the foo directory. With the HAR,
the command to copy the original file becomes:

hdfs dfs –get har://namenode/bar.har/foo/file-1 localdir

Users only need to change the URI paths. Alternatively, users may choose to create a
symbolic link (from hdfs://namenode/foo to har://namenode/bar.har/foo in
the example above), and then even the URIs do not need to be changed. In either case,
HarFileSystem will be invoked automatically to provide access to the files in the HAR.
Because of this transparent layer, HAR is compatible with the Hadoop APIs, MapReduce,
the FS shell command-line interface, and higher-level applications such as Pig, Zebra,
Streaming, Pipes, and DistCp.

• Hadoop Archiving Tool

Hadoop Archives can be created using the Hadoop archiving tool. The archiving tool uses
MapReduce to efficiently create Hadoop Archives in parallel. The tool can be invoked
using the command:

hadoop archive -archiveName name -p <parent> <src>* <dest>

Hortonworks Data Platform May 26, 2015

90

A list of files is generated by traversing the source directories recursively, and then the list
is split into map task inputs. Each map task creates a part file (about 2 GB, configurable)
from a subset of the source files and outputs the metadata. Finally, a reduce task collects
metadata and generates the index files.

The Hadoop archiving tool is discussed in further detail in the next section.

10.3. Creating a Hadoop Archive
The Hadoop archiving tool can be invoked using the following command format:

hadoop archive -archiveName name -p <parent> <src>* <dest>

Where -archiveName is the name of the archive you would like to create. The archive
name should be given a .har extension. The <parent> argument is used to specify the
relative path to the location where the files will be archived in the HAR.

Example

hadoop archive -archiveName foo.har -p /user/hadoop dir1 dir2 /user/zoo

This example creates an archive using /user/hadoop as the relative archive directory. The
directories /user/hadoop/dir1 and /user/hadoop/dir2 will be archived in the /
user/zoo/foo.har archive.

Archiving does not delete the source files. If you would like to delete the input files after
creating an archive (to reduce namespace), you must manually delete the source files.

Although the hadoop archive command can be run from the host file system, the
archive file is created in the HDFS file system -- from directories that exist in HDFS. If you
reference a directory on the host file system rather than in HDFS, you will get the following
error:

The resolved paths set is empty. Please check whether the srcPaths
exist, where srcPaths = [</directory/path>]

To create the HDFS directories used in the preceding example, you would use the following
series of commands:

hdfs dfs -mkdir /user/zoo
hdfs dfs -mkdir /user/hadoop
hdfs dfs -mkdir /user/hadoop/dir1
hdfs dfs -mkdir /user/hadoop/dir2

10.4. Looking Up Files in Hadoop Archives
The hdfs dfs -ls command can be used to look up files in Hadoop archives. Using the
example /user/zoo/foo.har archive created in the previous section, you would use the
following command to list the files in the archive:

hdfs dfs -ls har:///user/zoo/foo.har/

The output would be:

Hortonworks Data Platform May 26, 2015

91

har:///user/zoo/foo.har/dir1
har:///user/zoo/foo.har/dir2

As you may recall, these archives were created with the following command:

hadoop archive -archiveName foo.har -p /user/hadoop dir1 dir2 /user/zoo

If we were to change the command to:

hadoop archive -archiveName foo.har -p /user/ hadoop/dir1 hadoop/dir2 /user/
zoo

And then run the following command:

hdfs dfs -ls -R har:///user/zoo/foo.har

The output would be:

har:///user/zoo/foo.har/hadoop
har:///user/zoo/foo.har/hadoop/dir1
har:///user/zoo/foo.har/hadoop/dir2

Notice that with the modified parent argument, the files have been archived relative to /
user/ rather than /user/hadoop.

10.5. Hadoop Archives and MapReduce
To use Hadoop Archives with MapReduce, you need to reference files slightly differently
than with the default file system. If you have a Hadoop Archive stored in HDFS in /user/
zoo/foo.har, you would need to specify the input directory as har:///user/zoo/
foo.har to use it as a MapReduce input. Since Hadoop Archives are exposed as a file
system, MapReduce is able to use all of the logical input files in Hadoop Archives as input.

Hortonworks Data Platform May 26, 2015

92

11. High Availability for Hive Metastore
This document is intended for system administrators who need to configure the Hive
Metastore service for High Availability.

11.1. Use Cases and Fail Over Scenarios
This section provides information on the use cases and fail over scenarios for high
availability (HA) in the Hive metastore.

Use Cases

The metastore HA solution is designed to handle metastore service failures. Whenever
a deployed metastore service goes down, metastore service can remain unavailable for
a considerable time until service is brought back up. To avoid such outages, deploy the
metastore service in HA mode.

Deployment Scenarios

We recommend deploying the metastore service on multiple boxes concurrently. Each Hive
metastore client will read the configuration property hive.metastore.uris to get a list
of metastore servers with which it can try to communicate.

<property>
 <name> hive.metastore.uris </name>
 <value> thrift://$Hive_Metastore_Server_Host_Machine_FQDN </value>
 <description> A comma separated list of metastore uris on which metastore
 service is running </description>
 </property>

These metastore servers store their state in a MySQL HA cluster, which should be set up as
recommended in the whitepaper "MySQL Replication for Failover Protection."

In the case of a secure cluster, each of the metastore servers will additionally need to have
the following configuration property in its hive-site.xml file.

<property>
 <name> hive.cluster.delegation.token.store.class </name>
 <value> org.apache.hadoop.hive.thrift.DBTokenStore </value>
 </property>

Fail Over Scenario

A Hive metastore client always uses the first URI to connect with the metastore server. In
case the metastore server becomes unreachable, the client will randomly pick up a URI from
the list and try connecting with that.

11.2. Software Configuration
Complete the following tasks to configure Hive HA solution:

Hortonworks Data Platform May 26, 2015

93

• Install HDP

• Update the Hive Metastore

• Validate configuration

11.2.1. Install HDP

Use the following instructions to install HDP on your cluster hardware. Ensure that you
specify the virtual machine (configured in the previous section) as your NameNode.

1. Download Apache Ambari using the instructions provided here.

Note

Do not start the Ambari server until you have configured the relevant
templates as outlined in the following steps.

2. Edit the <master-install-machine-for-Hive-Metastore>/etc/hive/
conf.server/hive-site.xml configuration file to add the following properties:

a. Provide the URI for the client to contact Metastore server. The following property can
have a comma separated list when your cluster has multiple Hive Metastore servers.

<property>
 <name> hive.metastore.uris </name>
 <value> thrift://$Hive_Metastore_Server_Host_Machine_FQDN </value>
 <description> URI for client to contact metastore server </description>
</property>

b. Configure Hive cluster delegation token storage class.

<property>
 <name> hive.cluster.delegation.token.store.class </name>
 <value> org.apache.hadoop.hive.thrift.DBTokenStore </value>
 </property>

3. Complete HDP installation.

• Continue the Ambari installation process using the instructions provided here.

• Complete the Ambari installation. Ensure that the installation was successful.

11.2.2. Update the Hive Metastore

HDP components configured for HA must use a NameService rather than a NameNode.
Use the following instructions to update the Hive Metastore to reference the NameService
rather than a Name Node.

Note

Hadoop administrators also often use the following procedure to update the
Hive metastore with the new URI for a node in a Hadoop cluster. For example,
administrators sometimes rename an existing node as their cluster grows.

http://docs.hortonworks.com/HDPDocuments/Ambari-1.6.0.0/bk_using_Ambari_book/content/ambari-chap2-1.html
http://docs.hortonworks.com/HDPDocuments/Ambari-1.6.0.0/bk_using_Ambari_book/content/ambari-chap3_2x.html

Hortonworks Data Platform May 26, 2015

94

1. Open a command prompt on the machine hosting the Hive metastore.

2. Execute the following command to retrieve a list of URIs for the filesystem roots,
including the location of the NameService:

hive --service metatool -listFSRoot

3. Execute the following command with the -dryRun option to test your configuration
change before implementing it:

hive --service metatool -updateLocation <nameservice-uri> <namenode-uri> -
dryRun

4. Execute the command again, this time without the -dryRun option:

hive --service metatool -updateLocation <nameservice-uri> <namenode-uri>

11.2.3. Validate configuration

Test various fail over scenarios to validate your configuration.

Hortonworks Data Platform May 26, 2015

95

12. Highly Available Reads with HBase
Apache HBase 0.98.0 enables HBase administrators to configure their HBase clusters with
read-only High Availability, or HA. This feature greatly benefits HBase applications that
require low latency queries but can tolerate stale data, such as remote sensors, distributed
messaging, object stores, and user profile management. HBase provides read-only HA on a
per-table basis by replicating table regions with one or more secondary region servers. See
Understanding Regions and RegionServers for more information.

HA for HBase features the following functionality:

• Data safely protected in HDFS

• Failed nodes are automatically recovered

• No single point of failure

However, HBase administrators should carefully consider the the following costs associated
with using secondary region servers:

• Double or triple memstore usage

• Increased block cache usage

• Increased network traffic for log replication

• Extra backup RPCs for replicas

Important

This release of HA for HBase is not compatible with region
splits and merges. Do not execute region merges on tables with
region replicas. Rather, HBase administrators must split tables
before enabling HA for HBase and disable region splits with the
DisabledRegionSplitPolicy. This can be done with both the HBase API
and with the hbase.regionserver.region.split.policy property in
the region server's hbase-site.xml configuration file. This default value can
be overridden for individual HBase tables.

12.1. Understanding HBase Concepts
HBase administrators should understand the following concepts before configuring HA for
HBase:

• RegionServers and Secondary Mode

• TIMELINE and STRONG Data Consistency

12.1.1. Region Servers and Secondary Mode
HBase is a key-value store, which allows fast table scanning and data retrieval at petabyte
scale. Table keys are assigned to one or more Region Servers. In the following image, for

Hortonworks Data Platform May 26, 2015

96

example, Region Server 1 is responsible for responding to queries and scans for keys 10
through 40. If Region Server 1 crashes, keys 10-40 are unavailable.

HA provides a way to access keys 10-40 even if Region Server 1 is not available by assigning
other Region Servers as backups. In the following image, Region Server 2 is the secondary
region server for keys 10-20 and Region Server 3 is the secondary region server for keys
20-40. Region Server 2 is also the secondary region server for keys 80-100. Secondary
Region Servers are not separate processes. Rather, they are Region Servers acting in
secondary mode. When Region Server 2 services queries and scans for keys 10-20, it acts in
secondary mode.

Hortonworks Data Platform May 26, 2015

97

Note

Region Servers acting in secondary mode are also known as Secondary Region
Servers. However, there is no second server process.

A Region Server in secondary mode can read but not write data. In addition, the data it
returns may be stale, as described in the following section.

12.1.2. Timeline and Strong Data Consistency
HBase guarantees timeline consistency for all data served from Region Servers in secondary
mode, meaning all HBase clients see the same data in the same order, but that data may be
slightly stale. Only the primary Region Server is guaranteed to have the latest data. Timeline
consistency simplifies the programming logic for complex HBase queries and provides lower
latency than quorum-based consistency. By contrast, strong data consistency means that
the latest data is always served. However, strong data consistency can greatly increase
latency since only the primary region server is guarnateed to have the latest data. The
HBase API allows application developers to specify which data consistency is required for a
query. See Querying Replicas for more information.

Note

The HBase API contains a new method,Result.isStale(), to indicate
whether data returned in secondary mode does not contain the latest write
operation to the primary region server.

12.2. Enabling HA Reads for HBase
Use the following procedure to enable HA for HBase:

Hortonworks Data Platform May 26, 2015

98

1. Add the following configuration properties in the hbase-site.xml configuration file
to enable HA for HBase:

Table 12.1.

Configuration
Property

Description

hbase.regionserver.storefile.refresh.periodThe period, in
milliseconds,
for refreshing
the store
files for the
Secondary
Region Servers.
The default
value of 0
indicates that
the feature
is disabled.
Secondary
Region Servers
receive new
store files from
the Primary
Region Server
after the
Secondary
Region Server
refreshes the
list of files in
the region.
However,
too frequent
refreshes
can place an
additional
load on the
NameNode.
Read requests
are rejected
if these store
files cannot be
refreshed for
longer than
the HFILE TTL
period specifed
with the
hbase.master.loadbalancer.class
configuration
property.

hbase.master.loadbalancer.classThe Java
class used
for balancing
the load of
all HBase
clients. The
default value is
org.apache.hadoop.hbase.masgter.balancer.StochasticLoadBalancer,
the only load
balancer that
supports
reading data
from Region
Servers in

Hortonworks Data Platform May 26, 2015

99

Configuration
Property

Description

secondary
mode.

hbase.ipc.client.allowsInterruptWhether
to enable
interruption
of RPC threads
at the client.
The default
value of true
is required to
enable Primary
Region Servers
to access other
Region Servers
in secondary
mode.

hbase.client.primaryCallTimeout.getThe timeout
period, in
milliseconds,
before an
HBase client's
RPCs, or
remote
procedure calls,
are submitted
to a Secondary
Region
Server with
timeline data
consistency.
The default
value is 10.

hbase.client.primaryCallTimeout.multigetThe timeout
period, in
milliseconds,
before an
HBase client's
multi-get
request, such as
HTable.get(List<GET>)),
is submitted to
a Secondary
Region
Server with
timeline data
consistency.
The default
value is 10.
Lower values
increase the
number of
RPCs but will
also lower
latency.

2. Restart the HBase Master and Region Servers.

12.3. Creating Highly-Available HBase Tables
HBase tables are not highly available by default. Rather, administrators and developers
designate a table as HA during table creation.

Hortonworks Data Platform May 26, 2015

100

12.3.1. Creating HA Tables with the HBase Java API

HBase application developers create highly-available HBase tables programmaticaly using
the Java API, as shown in the following example:

HTableDescriptor htd = new HTableDesscriptor(TableName.valueOf("test_table"));
htd.setRegionReplication(2);
...
admin.createTable(htd);

This example creates a table named test_table that is replicated to one secondary
region server. To replicate test_table to two secondary region servers, pass 3 as a
parameter to the setRegionReplication() method.

12.3.2. Creating HA Tables with the HBase Shell

Create HA tables using the HBase shell using the REGION_REPLICATION keyword, as
shown in the following example:

CREATE 't1', 'f1', {REGION_REPLICATION => 2}

This example creates a table named t1 that is replicated to one secondary region server. To
replicate t1 to two secondary region servers, specify {REGION_REPLICATION => 3}.

12.4. Querying Secondary Region Servers
This section describes how to query HA-enabled HBase tables.

12.4.1. Querying HBase with the Java API

The HBase Java API allows application developers to specify the desired data consistency
for a query using the setConsistency() method, as shown in the following example.
A new enum, CONSISTENCY, specifies two levels of data consistency: TIMELINE and
STRONG.

Get get = new Get(row);
get.setConsistency(CONSISTENCY.TIMELINE);
...
Result result = table.get(get);

HBase application developers can also pass multiple gets:

Get get1 = new Get(row);
get1.setConsistency(Consistency.TIMELINE);
...
ArrayList<Get> gets = new ArrayList<Get>();
...
Result[] results = table.get(gets);

The setConsistency() method is also available for Scan objects:

Scan scan = new Scan();

Hortonworks Data Platform May 26, 2015

101

scan.setConsistency(CONSISTENCY.TIMELINE);
...
ResultScanner scanner = table.getScanner(scan);

In addition, use the Result.isStale() method to determine whether the query results
arrived from the primary or a secondary region server:

Result result = table.get(get);
if (result.isStale()) {
 ...
}

12.4.2. Querying HBase Interactively

The HBase shell allows administrators and developers to specify the desired data
consistency for each query:

hbase(main):001:0> get 't1', 'r6', {CONSISTENCY => "TIMELINE"}

Interactive scans also accept this syntax:

hbase(main):001:0> scan 't1', {CONSISTENCY => 'TIMELINE'}

Note

This release of HBase does not provide a mechanism to determine if the results
from an interactive query arrived from the primary or a secondary region
server.

12.5. Monitoring Secondary Region Servers
HBase provides highly-available tables by replicating table regions. All replicated regions
have a unique replica ID. The replica ID for a primary region server is always 0. The HBase
web-based interface displays the replica IDs for all defined table regions. In the following
example, the table t1 has two regions. The secondary region server is identified by a replica
ID of 1.

Hortonworks Data Platform May 26, 2015

102

Point your browser to port 60010 to access the HBase Master Server user interface.

Hortonworks Data Platform May 26, 2015

103

13. HBase Cluster Capacity and Region
Sizing

This chapter discusses the topics of planning the capacity of an HBase cluster and the size
of its region servers. There are several considerations when planning the capacity of an
Apache HBase cluster and performing the initial configuration:

• Node Count and JVM Configuration

• Region Count and Size

• Initial Configuration and Tuning

This chapter requires an understanding of the following HBase concepts:

Table 13.1. HBase Concepts

HBase
Concept

Description

RegionA group of
contiguous
HBase table
rows. Tables
start with one
region and
additional
regions are
dynamically
added as the
table grows.
Regions can be
spread across
multiple hosts
to provide load
balancing and
quick recovery
from failure.
There are two
types of region:
primary and
secondary.
A secondary
region is a
replicated
primary region
located on a
different region
server.

region
server

Serves data
requests for
one or more
regions. A
single region
is serviced
by only one
region server,
but a region
server may

Hortonworks Data Platform May 26, 2015

104

HBase
Concept

Description

serve multiple
regions.

Column
family

A group of
semantically
related
columns stored
together.

MemstoreIn-memory
storage for a
region server.
region servers
write files to
HDFS after
the memstore
reaches a
configurable
maximum
value specified
with the
hbase.hregion.memstore.flush.size
property in
the hbase-
site.xml
configuration
file.

Write
Ahead
Log
(WAL)

In-memory
log where
operations
are recorded
before they are
stored in the
memstore.

Compaction
storm

When the
operations
stored in the
memstore
are flushed to
disk, HBase
consolidates
and merges
many smaller
files into fewer
large files. This
consolidation
is called
compaction,
and it is usually
very fast.
However, if
many region
servers hit
the data limit
specified by
the memstore
at the same
time, HBase
performance
may degrade
from the large
number of
simultaneous
major
compactions.

Hortonworks Data Platform May 26, 2015

105

HBase
Concept

Description

Administrators
can avoid this
by manually
splitting tables
over time.

13.1. Node Count and JVM Configuration
The number of nodes in an HBase cluster is typically driven by the following considerations:

• Physical size of the data

• Read/Write Throughput

Physical Size of the Data

The physical size of data on disk is affected by the following factors:

Table 13.2. Factors Affecting Physical Size of Data

Factor
Affecting
Size
of
Physical
Data

Description

HBase
Overhead

The default
amount of disk
space required
for a single
HBase table
cell. Smaller
table cells
require less
overhead. The
minimum cell
size is 24 bytes
and the default
maximum
is 10485760
bytes.
Administrators
can customize
the maximum
cell size
with the
hbase.client.keyvalue.maxsize
property in
the hbase-
site.xml
configuration
file. HBase
table cells are
aggregated
into blocks,
and the block
size is also
configurable
for each
column family

Hortonworks Data Platform May 26, 2015

106

Factor
Affecting
Size
of
Physical
Data

Description

with the
hbase.mapreduce.hfileoutputformat.blocksize
property. The
default value
is 65536 bytes.
Administrators
may reduce this
value for tables
with highly
random data
access patterns
to improve
query latency.

CompressionChoose a data
compression
tool that makes
sense for
your data to
reduce the
physical size of
data on disk.
Unfortunately,
HBase cannot
ship with
LZO due to
licensing issues.
However,
HBase
administrators
may install LZO
after installing
HBase. GZIP
provides better
compression
than LZO but is
slower. HBase
also supports
Snappy.

HDFS
Replication

HBase uses
HDFS for
storage, so
replicating
HBase data
stored in HDFS
affects the
total physical
size of data.
A typical
replication
factor of 3 for
all HBase tables
in a cluster
would triple
the physical
size of the
stored data.

region
server
Write

The size of the
Write Ahead
Log, or WAL,

Hortonworks Data Platform May 26, 2015

107

Factor
Affecting
Size
of
Physical
Data

Description

Ahead
Log
(WAL)

for each region
server has
minimal impact
on the physical
size of data.
The size of the
WAL is typically
fixed at less
than half of the
memory for the
region server.
Although
this factor
is included
here for
completeness,
the impact of
the WAL on
data size is
negligible and
its size is usually
not configured.

Read/Write Throughput

The number of nodes in an HBase cluster may also be driven by required throughput
for disk reads and/or writes. The throughput per node greatly depends on table cell
size, data request patterns, as well as node and cluster configuration. Use YCSB tools to
test the throughput of a single node or a cluster to determine if read/write throughput
should drive your the number of nodes in your HBase cluster. A typical throughput for
write operations for one region server is 5-15 Mb/s. Unfortunately, there is no good
estimate for read throughput; it varies greatly depending on physical data size, request
patterns, and hit rate for the block cache.

13.2. Region Count and Size
In general, an HBase cluster runs smoother with fewer regions. However, administrators
cannot directly configure the number of regions for a region server. However,
administrators can indirectly increase the number of regions in the following ways: In
addition, administrators can indirectly affect the number of regions for a region server in
the following ways:

• Increase the size of the memstore for a region server

• Increase the size of a region

In addition, administrators can increase the number of regions for a region server by pre-
splitting large regions to spread data and the request load across the cluster. HBase allows
administrators to individually configure each HBase table, which is useful when tables have
different workloads and use cases. Most region settings can be set on a per-table basis with
HTableDescriptor class, as well as the HBase CLI. These methods override the properties in
the hbase-site.xml configuration file.

http://hbase.apache.org/book.html#ycsb
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html

Hortonworks Data Platform May 26, 2015

108

Note

The HDFS replication factor affects only disk usage and should not be
considered when planning the size of regions. The other factors described in
the table above are applicable.

13.2.1. Increase Memstore Size for region server
Usage of the region server's memstore largely determines the maximum number
of regions for the region server. Each region has its own memstores, one for each
column family, which grow to a configurable size, usually between 128 and 256 Mb.
Administrators specify this size with the hbase.hregion.memstore.flush.size
property in the hbase-site.xml configuration file. The region server dedicates
some fraction of total memory to region memstores based on the value of the
hbase.regionserver.global.memstore.size configuration property. If usage
exceeds this configurable size, HBase may become unresponsive or compaction storms
might occur.

Use the following formula to estimate the number of Regions for a region server:

(regionserver_memory_size) * (memstore_fraction) / ((memstore_size) *
 (num_column_families))

For example, assume the following configuration:

• region server with 16 Gb RAM (or 16384 Mb)

• Memstore fraction of .4

• Memstore with 128 Mb RAM

• 1 column family in table

The formula for this configuration would look as follows:

(16384 Mb * .4) / ((128 Mb * 1) = approximately 51 regions

The easiest way to decrease the number of regions for this example region server is
increase the RAM of the memstore to 256 Mb. The reconfigured region server would
then have approximately 25 regions, and the HBase cluster will run more smoothly if the
reconfiguration is applied to all region servers in the cluster. The formula can be used for
multiple tables with the same configuration by using the total number of column families in
all the tables.

Note

The formula assumes all regions are filled at approximately the same rate. If a
fraction of the cluster's regions are written to, divide the result by this fraction.

Tip

If the data request pattern is dominated by write operations rather than read
operations, increase the memstore fraction. However, this increase negatively
impacts the block cache.

Hortonworks Data Platform May 26, 2015

109

13.2.2. Increase Size of the Region

The other way to indirectly increase the number of regions for a region server is to increase
the size of the region with the hbase.hregion.max.filesize property in the hbase-
site.xml configuration file. Administrators increase the number of regions for a region
server by increasing the specified size at which new regions are dynamically allocated.
Maximum region size is primarily limited by compactions. Very large compactions can
degrade cluster performance. The recommended maximum region size is 10 - 20 Gb. For
HBase clusters running version 0.90.x, the maximum recommended region size is 4 Gb
and the default is 256 Mb. If you are unable to estimate the size of your tables, retain the
default value. Increase the region size only if your table cells tend to be 100 Kb or larger.

Note

HBase 0.98 introduces stripe compactions as an experimental feature that also
allows administrators to increase the size of regions. See Experimental: Stripe
Compactions at the Apache HBase site for more information.

13.3. Initial Configuration and Tuning
HBase administrators typically use the following methods to initially configure the cluster:

• Increase the request handler thread count

• Configure the size and number of WAL files

• Configure compactions

• Pre-split tables

• Tune JVM garbage collection

Increase the Request Handler Thread Count

Administrators who expect their HBase cluster to experience a high volume request
pattern should increase the number of listeners generated by the region servers. Use
the hbase.regionserver.handler.count property in the hbase-site.xml
configuration file to set the number higher than the default value of 30.

Configure the Size and Number of WAL Files

HBase uses the Write Ahead Log, or WAL, to recover memstore data not yet flushed
to disk if a region server crashes. Administrators should configure these WAL files to be
slightly smaller than the HDFS block size. By default, an HDFS block is 64 Mb and a WAL is
approximately 60 Mb. Hortonworks recommends that administrators ensure that enough
WAL files are allocated to contain the total capacity of the memstores. Use the following
formula to determine the number of WAL files needed:

(regionserver_heap_size * memstore fraction) / (default_WAL_size)

For example, assume the following HBase cluster configuration:

• 16 GB RegionServer heap

http://hbase.apache.org/book.html#ops.stripe
http://hbase.apache.org/book.html#ops.stripe

Hortonworks Data Platform May 26, 2015

110

• 0.4 memstore fraction

• 60 MB default WAL size

The formula for this configuration looks as follows:

(16384 MB * 0.4 / 60 MB = approximately 109 WAL files

Use the following properties in the hbase-site.xml configuration file to configure the
size and number of WAL files:

Table 13.3. Authentication Schemes in TCP Transport Mode

Configuration Property Description Default

hbase.regionserver.maxlogs Sets the maximum number of WAL
files.

32

hbase.regionserver.logroll.multiplierMultiplier of HDFS block size. 0.95

hbase.regionserver.hlog.blocksizeOptional override of HDFS block size. Value assigned to actual HDFS block
size.

Tip

If recovery from failure takes longer than expected, try reducing the number of
WAL files to improve performance.

Configure Compactions

Administrators who expect their HBase clusters to host large amounts of data should
consider the affect that compactions have on write throughput. For write-intensive data
request patterns, administrators should consider less frequent compactions and more store
files per region. Use the hbase.hstore.compaction.min property in the hbase-
site.xml configuration file to increase the minimum number of files required to trigger
a compaction. Administrators opting to increase this value should also increase the value
assigned to the hbase.hstore.blockingStoreFiles property since more files will
accumulate.

Pre-split Tables

Administrators can pre-split tables during table creation based on the target number of
regions per region server to avoid costly dynamic splitting as the table starts to fill up. In
addition, it ensures that the regions in the pre-split table are distributed across many host
machines. Pre-splitting a table avoids the cost of compactions required to rewrite the data
into separate physical files during automatic splitting. If a table is expected to grow very
large, administrators should create at least one region per region server. However, do not
immediately split the table into the total number of desired regions. Rather, choose a low
to intermediate value. For multiple tables, do not create more than one region per region
server, especially if you are uncertain how large the table will grow. Creating too many
regions for a table that will never exceed 100 Mb in size isn't useful; a single region can
adequately services a table of this size.

Configure the JVM Garbage Collector

A region server cannot utilize a very large heap due to the cost of garbage collection.
Administrators should specify no more than 24 GB for one region server.

Hortonworks Data Platform May 26, 2015

111

14. Short-Circuit Local Reads on HDFS
In HDFS, reads normally go through the DataNode. Thus, when a client asks the DataNode
to read a file, the DataNode reads that file off of the disk and sends the data to the client
over a TCP socket. So-called "short-circuit" reads bypass the DataNode, allowing the client
to read the file directly. Obviously, this is only possible in cases where the client is co-
located with the data. Short-circuit reads provide a substantial performance boost to many
applications.

• Prerequisites

• Configuring Short-Circuit Local Reads on HDFS

14.1. Prerequisites
To configure short-circuit local reads, you must enable libhadoop.so. See Native
Libraries for details on enabling this library.

14.2. Configuring Short-Circuit Local Reads on
HDFS

To configure short-circuit local reads, add the following properties to the hdfs-site.xml
file. Short-circuit local reads need to be configured on both the DataNode and the client.

Table 14.1. Short-Circuit Local Read Properties in hdfs-site.xml

Property Name Property Value Description

dfs.client.read.shortcircuit true Set this to true to enable short-circuit
local reads.

dfs.domain.socket.path /var/lib/hadoop-hdfs/
dn_socket

The path to the domain socket. Short-
circuit reads make use of a UNIX
domain socket. This is a special path
in the file system that allows the client
and the DataNodes to communicate.
You will need to set a path to this
socket. The DataNode needs to be able
to create this path. On the other hand,
it should not be possible for any user
except the hdfs user or root to create
this path. For this reason, paths under
 /var/run or /var/lib are often used.

dfs.client.domain.socket.data.trafficfalse This property controls whether or
not normal data traffic will be passed
through the UNIX domain socket. This
feature has not been certified with
HDP releases, so it is recommended
that you set the value of this property
to false.

dfs.client.use.legacy.blockreader.localfalse Setting this value to false specifies
that the new version (based on
HDFS-347) of the short-circuit reader
is used. This new new short-circuit
reader implementation is supported
and recommended for use with HDP.
Setting this value to true would mean

http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/NativeLibraries.html
http://hadoop.apache.org/docs/r2.3.0/hadoop-project-dist/hadoop-common/NativeLibraries.html

Hortonworks Data Platform May 26, 2015

112

Property Name Property Value Description

that the legacy short-circuit reader
would be used.

dfs.datanode.hdfs-blocks-
metadata.enabled

true Boolean which enables
back-end DataNode-side
support for the experimental
DistributedFileSystem#getFileVBlockStorageLocations
API.

dfs.client.file-block-
storage-locations.timeout

60 Timeout (in seconds) for
the parallel RPCs made in
DistributedFileSystem#getFileBlockStorageLocations().
This property is deprecated but is still
supported for backward compatibility.

dfs.client.file-
block-storage-
locations.timeout.millis

60000 Timeout (in milliseconds) for
the parallel RPCs made in
DistributedFileSystem#getFileBlockStorageLocations().
This property replaces
dfs.client.file-block-
storage-locations.timeout, and
offers a finer level of granularity.

dfs.client.read.shortcircuit.skip.checksumfalse If this configuration parameter is
set, short-circuit local reads will skip
checksums. This is normally not
recommended, but it may be useful
for special setups. You might consider
using this if you are doing your own
checksumming outside of HDFS.

dfs.client.read.shortcircuit.streams.cache.size256 The DFSClient maintains a cache of
recently opened file descriptors. This
parameter controls the size of that
cache. Setting this higher will use more
file descriptors, but potentially provide
better performance on workloads
involving lots of seeks.

dfs.client.read.shortcircuit.streams.cache.expiry.ms300000 This controls the minimum amount of
time (in milliseconds) file descriptors
need to sit in the client cache context
before they can be closed for being
inactive for too long.

The XML for these entries:

<configuration>
 <property>
 <name>dfs.client.read.shortcircuit</name>
 <value>true</value>
 </property>

 <property>
 <name>dfs.domain.socket.path</name>
 <value>/var/lib/hadoop-hdfs/dn_socket</value>
 </property>

 <property>
 <name>dfs.client.domain.socket.data.traffic</name>
 <value>false</value>
 </property>

 <property>
 <name>dfs.client.use.legacy.blockreader.local</name>
 <value>false</value>

Hortonworks Data Platform May 26, 2015

113

 </property>

 <property>
 <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
 <value>true</value>
 </property>

 <property>
 <name>dfs.client.file-block-storage-locations.timeout.millis</name>
 <value>60000</value>
 </property>

 <property>
 <name>dfs.client.read.shortcircuit.skip.checksum</name>
 <value>false</value>
 </property>

 <property>
 <name>dfs.client.read.shortcircuit.streams.cache.size</name>
 <value>256</value>
 </property>

 <property>
 <name>dfs.client.read.shortcircuit.streams.cache.expiry.ms</name>
 <value>300000</value>
 </property>
</configuration>

Hortonworks Data Platform May 26, 2015

114

15. Timeline Server
This guide describes how to configure and run the Timeline Server, which enables you to
collect generic and per-framework information about YARN applications.

In this section:

• Introduction

• Configuring the Timeline Server

• Configuring Generic Data Collection

• Configuring Per-Framework Data Collection

• Running the Timeline Server

• Accessing Generic Data from the Command-Line

• Publishing Per-Framework Data in Applications

15.1. Introduction
The Timeline Server maintains historical state and provides metrics visibility for YARN
applications, similar to the functionality the Job History Server provides for MapReduce.

The Timeline Server provides the following information:

• Generic Information about Completed Applications

Generic information includes application-level data such as queue name, user
information, information about application attempts, a list of Containers that were run
under each application attempt, and information about each Container. Generic data is
stored by the ResourceManager in a history store (the default implementation on a file
system), and is used by the web UI to display information about completed applications.

• Per-Framework Information for Running and Completed Applications

Per-framework information is specific to an application or framework. For example,
the Hadoop MapReduce framework can include pieces of information such as the
number of map tasks, reduce tasks, counters, etc. Application developers can publish
this information to the Timeline Server via the TimelineClient (from within a client), the
ApplicationMaster, or the application's Containers. This information can then be queried
via REST APIs that enable rendering by application/framework-specific UIs.

The Timeline Server is a stand-alone server daemon that is deployed to a cluster node. It
may or may not be co-located with the ResourceManager.

15.2. Configuring the Timeline Server
Required Properties

Hortonworks Data Platform May 26, 2015

115

Only one property needs to be specified in the etc/hadoop/conf/yarn-site.xml file
in order to enable the Timeline Server:

• yarn.timeline-service.hostname

The host name of the Timeline Server web application.

Example:

<property>
 <description>The hostname of the timeline server web application.</
description>
 <name>yarn.timeline-service.hostname</name>
 <value>0.0.0.0</value>
</property>

Advanced Properties

In addition to the host name, administrators can also configure the ports of the RPC and
the web interfaces, as well as the number of RPC handler threads.

• yarn.timeline-service.address

The default address for the Timeline Server to start the RPC server.

Example:

<property>
 <description>This is default address for the timeline server to start
 the RPC server.</description>
 <name>yarn.timeline-service.address</name>
 <value>${yarn.timeline-service.hostname}:10200</value>
</property>

• yarn.timeline-service.webapp.address

The HTTP address of the Timeline Server web application.

Example:

<property>
 <description>The http address of the timeline server web application.</
description>
 <name>yarn.timeline-service.webapp.address</name>
 <value>${yarn.timeline-service.hostname}:8188</value>
</property>

• yarn.timeline-service.webapp.https.address

The HTTPS address of the Timeline Server web application.

Example:

<property>
 <description>The https adddress of the timeline server web application.
</description>
 <name>yarn.timeline-service.webapp.https.address</name>
 <value>${yarn.timeline-service.hostname}:8190</value>

Hortonworks Data Platform May 26, 2015

116

 </property>

• yarn.timeline-service.handler-thread-count

The handler thread count to serve the client RPC requests.

Example:

<property>
 <description>Handler thread count to serve the client RPC requests.</
description>
 <name>yarn.timeline-service.handler-thread-count</name>
 <value>10</value>
</property>

15.3. Configuring Generic Data Collection
Enabling the Collection of Generic Data

• yarn.timeline-service.generic-application-history.enabled

This property indicates to the ResourceManager, as well as to clients, whether or not the
Generic History Service (GHS) is enabled. If the GHS is enabled, the ResourceManager
begins recording historical data that the GHS can consume, and clients can redirect to the
GHS when applications finish running.

Example:

<property>
 <description>Enable or disable the GHS</description>
 <name>yarn.timeline-service.generic-application-history.enabled</name>
 <value>true</value>
</property>

Configuring the Store for Generic Data

• yarn.timeline-service.generic-application-history.store-class

The store class name for the history store. Defaults to the file system store.

Example:

<property>
 <description>Store class name for history store, defaulting to file
 system store</description>
 <name>yarn.timeline-service.generic-application-history.store-class</
name>
 <value>org.apache.hadoop.yarn.server.applicationhistoryservice.
FileSystemApplicationHistoryStore</value>
</property>

• yarn.timeline-service.generic-application-history.fs-history-
store.uri

The URI pointing to the FileSystem path location where the
history will be persisted. This must be supplied when using

Hortonworks Data Platform May 26, 2015

117

org.apache.hadoop.yarn.server.applicationhistoryservice.FileSystemApplicationHistoryStore
as the value for yarn.timeline-service.generic-application-
history.store-class.

Example:

<property>
 <description>URI pointing to the location of the FileSystem path where
 the history will be persisted.</description>
 <name>yarn.timeline-service.generic-application-history.fs-history-
store.uri</name>
 <value>${hadoop.log.dir}/yarn/system/history</value>
</property>

• yarn.timeline-service.generic-application-history.fs-history-
store.compression-type

The T-file compression types used to compress history data. The available values are:

• "none" -- No compression

• "lzo" -- LZO compression

• "gz" -- GZIP compression

Example:

<property>
 <description>T-file compression types used to compress history data.</
description>
 <name>yarn.timeline-service.generic-application-history.fs-history-
store.compression-type</name>
 <value>none</value>
</property>

15.4. Configuring Per-Framework Data Collection
Configuration for Per-framework Data

• yarn.timeline-service.enabled

Indicates to clients whether or not the Timeline Server is enabled. If it is enabled, the
TimelineClient library used by end-users will post entities and events to the Timeline
Server.

Example:

<property>
 <description>Enable or disable the Timeline Server.</description>
 <name>yarn.timeline-service.enabled</name>
 <value>true</value>
</property>

• yarn.timeline-service.store-class

The class name for the Timeline store.

Hortonworks Data Platform May 26, 2015

118

Example:

<property>
 <description>Store class name for timeline store</description>
 <name>yarn.timeline-service.store-class</name>
 <value>org.apache.hadoop.yarn.server.timeline.LeveldbTimelineStore</
value>
</property>

• yarn.timeline-service.leveldb-timeline-store.path

The store file path and name for the Timeline Server LevelDB store (if the LevelDB store is
used).

Example:

<property>
 <description>Store file name for leveldb timeline store</description>
 <name>yarn.timeline-service.leveldb-timeline-store.path</name>
 <value>${yarn.log.dir}/timeline</value>
</property>

• yarn.timeline-service.ttl-enable

Enable age-off of timeline store data.

Example:

<property>
 <description>Enable age off of timeline store data.</description>
 <name>yarn.timeline-service.ttl-enable</name>
 <value>true</value>
</property>

• yarn.timeline-service.ttl-ms

The Time-to-live for timeline store data (in milliseconds).

Example:

<property>
 <description>Time to live for timeline store data in milliseconds.</
description>
 <name>yarn.timeline-service.ttl-ms</name>
 <value>604800000</value>
</property>

15.5. Running the Timeline Server
To start the Timeline Server, run the following command:

$ yarn historyserver

To start the Timeline Server as a daemon, run the following command:

$ sbin/yarn-daemon.sh start historyserver

Hortonworks Data Platform May 26, 2015

119

15.6. Accessing Generic Data from the Command-
Line

You can use the following commands to access application generic history data from the
command-line. Note that these same commands can be used to obtain corresponding
information about running applications.

 $ yarn application -status <Application ID>
 $ yarn applicationattempt -list <Application ID>
 $ yarn applicationattempt -status <Application Attempt ID>
 $ yarn container -list <Application Attempt ID>
 $ yarn container -status <Container ID>

15.7. Publishing Per-Framework Data in
Applications

Developers can define the information they would like to record for their applications by
composing TimelineEntity and TimelineEvent objects, and then putting the entities
and events to the Timeline server via TimelineClient. For example:

 // Create and start the Timeline client
 TimelineClient client = TimelineClient.createTimelineClient();
 client.init(conf);
 client.start();

 TimelineEntity entity = null;
 // Compose the entity
 try {
 TimelinePutResponse response = client.putEntities(entity);
 } catch (IOException e) {
 // Handle the exception
 } catch (YarnException e) {
 // Handle the exception
 }

 // Stop the Timeline client
 client.stop();

Hortonworks Data Platform May 26, 2015

120

16. WebHDFS Administrator Guide
Use the following instructions to set upo WebHDFS:

1. Set up WebHDFS.

Add the following property to the hdfs-site.xml file:

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>

2. [Optional] - If running a secure cluster, follow the steps listed below.

a. Create an HTTP service user principal using the command given below:

kadmin: addprinc -randkey HTTP/$<Fully_Qualified_Domain_Name>@
$<Realm_Name>.COM

where:

• Fully_Qualified_Domain_Name: Host where NameNode is deployed

• Realm_Name: Name of your Kerberos realm

b. Create keytab files for the HTTP principals.

kadmin: xst -norandkey -k /etc/security/spnego.service.keytab HTTP/
$<Fully_Qualified_Domain_Name>

c. Verify that the keytab file and the principal are associated with the correct service.

klist –k -t /etc/security/spnego.service.keytab

d. Add the following properties to the hdfs-site.xml file.

<property>
 <name>dfs.web.authentication.kerberos.principal</name>
 <value>HTTP/$<Fully_Qualified_Domain_Name>@$<Realm_Name>.COM</value>
</property>

<property>
 <name>dfs.web.authentication.kerberos.keytab</name>
 <value>/etc/security/spnego.service.keytab</value>
</property>

where:

• Fully_Qualified_Domain_Name: Host where NameNode is deployed

• Realm_Name: Name of your Kerberos realm

Hortonworks Data Platform May 26, 2015

121

3. Restart the NameNode and DataNode services using the instructions provided here.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap3_1.html

Hortonworks Data Platform May 26, 2015

122

17. Configuring HDFS Compression
This document is intended for system administrators who need to configure HDFS
compression on Linux.

Linux supports GzipCodec, DefaultCodec, BZip2Codec, LzoCodec, and
SnappyCodec. Typically, GzipCodec is used for HDFS compression.

Use the following instructions to use GZipCodec

• Option I: To use GzipCodec with a one-time only job:

1. On the NameNode host machine, execute the following commands as hdfs user:

hadoop jar hadoop-examples-1.1.0-SNAPSHOT.jar sort "-Dmapred.compress.map.
output=true" "-Dmapred.map.output.compression.codec=org.apache.hadoop.
io.compress.GzipCodec" "-Dmapred.output.compress=true" "-Dmapred.output.
compression.codec=org.apache.hadoop.io.compress.GzipCodec" -outKey org.
apache.hadoop.io.Text -outValue org.apache.hadoop.io.Text input output

• Option II: To enable GzipCodec as the default compression:

1. Edit the core-site.xml file on the NameNode host machine:

 <property>
 <name>io.compression.codecs</name>
 <value>org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.
io.compress.DefaultCodec,com.hadoop.compression.lzo.LzoCodec,org.apache.
hadoop.io.compress.SnappyCodec</value>
 <description>A list of the compression codec classes that can be used
 for compression/decompression.</description>
 </property>

2. Edit mapred-site.xml file on the JobTracker host machine:

<property>
 <name>mapred.compress.map.output</name>
 <value>true</value>
</property>

<property>
 <name>mapred.map.output.compression.codec</name>
 <value>org.apache.hadoop.io.compress.GzipCodec</value>
</property>

<property>
 <name>mapred.output.compression.type</name>
 <value>BLOCK</value>
</property>

3. [Optional] - Enable the following two configuration parameters to enable job output
compression.

Edit mapred-site.xml file on the Resource Manager host machine:

Hortonworks Data Platform May 26, 2015

123

<property>
 <name>mapred.output.compress</name>
 <value>true</value>
</property>

<property>
 <name>mapred.output.compression.codec</name>
 <value>org.apache.hadoop.io.compress.GzipCodec</value>
</property>

4. Restart the cluster using the instructions provided on this page.

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.1.15/bk_reference/content/reference_chap3_1.html

	Hortonworks Data Platform
	Table of Contents
	1. ACLs on HDFS
	1.1. Configuring ACLs on HDFS
	1.2. Using CLI Commands to Create and List ACLs
	1.3. ACLs Examples
	1.3.1. Introduction: ACLs Versus Permission Bits
	1.3.2. Example 1: Granting Access to Another Named Group
	1.3.3. Example 2: Using a Default ACL for Automatic Application to New Children
	1.3.4. Example 3: Blocking Access to a Sub-Tree for a Specific User

	1.4. ACLS on HDFS Features
	1.5. Use Cases for ACLs on HDFS
	1.5.1. Multiple Users
	1.5.2. Multiple Groups
	1.5.3. Hive Partitioned Tables
	1.5.4. Default ACLs
	1.5.5. Minimal ACL/Permissions Only
	1.5.6. Block Access to a Sub-Tree for a Specific User
	1.5.7. ACLs with Sticky Bit

	2. Capacity Scheduler
	2.1. Introduction
	2.2. Enabling Capacity Scheduler
	2.3. Setting up Queues
	2.4. Controlling Access to Queues with ACLs
	2.5. Managing Cluster Capacity with Queues
	2.6. Setting User Limits
	2.7. Application Reservations
	2.8. Starting and Stopping Queues
	2.9. Setting Application Limits
	2.10. Preemption
	2.11. Scheduler User Interface

	3. Centralized Cache Management in HDFS
	3.1. Overview
	3.2. Caching Use Cases
	3.3. Caching Architecture
	3.4. Caching Terminology
	3.5. Configuring Centralized Caching
	3.5.1. Native Libraries
	3.5.2. Configuration Properties
	3.5.3. OS Limits

	3.6. Using Cache Pools and Directives
	3.6.1. Cache Pool Commands
	3.6.2. Cache Directive Commands

	4. Configuring Rack Awareness on HDP
	4.1. Create a Rack Topology Script
	4.2. Add the Topology Script Property to core-site.xml
	4.3. Restart HDFS and MapReduce
	4.4. Verify Rack Awareness

	5. Using DistCp to Copy Files
	5.1. Using DistCp
	5.2. Command Line Options
	5.3. Update and Overwrite
	5.4. DistCp and Security Settings
	5.5. DistCp and HDP Version
	5.6. DistCp Data Copy Matrix: HDP1/HDP2 to HDP2
	5.7. Copying Data from HDP-2.x to HDP-1.x Clusters
	5.8. DistCp Architecture
	5.8.1. DistCp Driver
	5.8.2. Copy-listing Generator
	5.8.3. InputFormats and MapReduce Components

	5.9. DistCp Frequently Asked Questions
	5.10. Appendix
	5.10.1. Map Sizing
	5.10.2. Copying Between Versions of HDFS
	5.10.3. MapReduce and Other Side-Effects
	5.10.4. SSL Configurations for HSFTP Sources

	6. Decommissioning Slave Nodes
	6.1. Prerequisites
	6.2. Decommission DataNodes or NodeManagers
	6.2.1. Decommission DataNodes
	6.2.2. Decommission NodeManagers

	6.3. Decommission HBase RegionServers

	7. Manually Add Slave Nodes to a HDP Cluster
	7.1. Prerequisites
	7.2. Add Slave Nodes
	7.3. Add HBase RegionServer

	8. NameNode High Availability for Hadoop
	8.1. Architecture
	8.2. Hardware Resources
	8.3. Deploy NameNode HA Cluster
	8.3.1. Configure NameNode HA Cluster
	8.3.2. Deploy NameNode HA Cluster
	8.3.3. Deploy Hue with an HA Cluster
	8.3.4. Deploy Oozie with HA Cluster

	8.4. Operating a NameNode HA cluster
	8.5. Configure and Deploy NameNode Automatic Failover
	8.5.1. Prerequisites
	8.5.2. Instructions
	8.5.3. Configuring Oozie Failover

	8.6. Appendix: Administrative Commands

	9. ResourceManager High Availability for Hadoop
	9.1. Hardware Resources
	9.2. Deploy ResourceManager HA Cluster
	9.2.1. Configure Manual or Automatic ResourceManager Failover
	9.2.1.1. Prerequisites
	9.2.1.2. Set Common ResourceManager HA Properties
	9.2.1.3. Configure Manual ResourceManager Failover
	9.2.1.4. Configure Automatic ResourceManager Failover

	9.2.2. Deploy the ResourceManager HA Cluster
	9.2.3. Minimum Settings for Automatic ResourceManager HA Configuration

	10. Hadoop Archives
	10.1. Introduction
	10.2. Hadoop Archive Components
	10.3. Creating a Hadoop Archive
	10.4. Looking Up Files in Hadoop Archives
	10.5. Hadoop Archives and MapReduce

	11. High Availability for Hive Metastore
	11.1. Use Cases and Fail Over Scenarios
	11.2. Software Configuration
	11.2.1. Install HDP
	11.2.2. Update the Hive Metastore
	11.2.3. Validate configuration

	12. Highly Available Reads with HBase
	12.1. Understanding HBase Concepts
	12.1.1. Region Servers and Secondary Mode
	12.1.2. Timeline and Strong Data Consistency

	12.2. Enabling HA Reads for HBase
	12.3. Creating Highly-Available HBase Tables
	12.3.1. Creating HA Tables with the HBase Java API
	12.3.2. Creating HA Tables with the HBase Shell

	12.4. Querying Secondary Region Servers
	12.4.1. Querying HBase with the Java API
	12.4.2. Querying HBase Interactively

	12.5. Monitoring Secondary Region Servers

	13. HBase Cluster Capacity and Region Sizing
	13.1. Node Count and JVM Configuration
	13.2. Region Count and Size
	13.2.1. Increase Memstore Size for region server
	13.2.2. Increase Size of the Region

	13.3. Initial Configuration and Tuning

	14. Short-Circuit Local Reads on HDFS
	14.1. Prerequisites
	14.2. Configuring Short-Circuit Local Reads on HDFS

	15. Timeline Server
	15.1. Introduction
	15.2. Configuring the Timeline Server
	15.3. Configuring Generic Data Collection
	15.4. Configuring Per-Framework Data Collection
	15.5. Running the Timeline Server
	15.6. Accessing Generic Data from the Command-Line
	15.7. Publishing Per-Framework Data in Applications

	16. WebHDFS Administrator Guide
	17. Configuring HDFS Compression

