
Copyright © 2012 The Apache Software Foundation. All rights reserved.

Zebra Reference Guide

Table of contents

1 Zebra Types..2

2 Store Schema..3

3 Storage Specification..6

4 Load Schema.. 7

Zebra Reference Guide

Page 2Copyright © 2012 The Apache Software Foundation. All rights reserved.

1 Zebra Types

Zebra supports simple types (int, long, float, double, string, bytes), complex types (record,
collection, map) and Booleans.

Zebra Type Description

int signed 32-bit integer

long signed 64-bit integer

float 32-bit floating point

double 64-bit floating point

string character array (string) in Unicode UTF-8 format

bytes byte array (blob)

record An ordered set of fields. A field can be any Zebra
type.

collection A set of records.

map A set of key/value pairs. The key is type string; the
value can be any Zebra type.

bool Boolean {0,1} false/true

Zebra type names are chosen to be as “technology neutral” as possible and are in
resemblance to native types in modern programming languages.

Zebra Pig Avro SQL

int int int integer

long long long long

float float float float,real

double double double double precision

string chararray string varchar

bytes bytearray bytes raw

record tuple record hash

collection bag array list

map map map hasp

Zebra Reference Guide

Page 3Copyright © 2012 The Apache Software Foundation. All rights reserved.

Zebra Pig Avro SQL

bool boolean boolean bool

2 Store Schema

Use the Zebra store schema to write or store Zebra columns and to specify column types.
The schema supports data type compatibility and conversion between Zebra/Pig, Zebra/
MapReduce, and Zebra/Streaming. (In a future release, the schema will also support type
compatibility between Zebra/Pig-SQL and will guide the underlying serialization formats
provided by Avro for projection, filtering, and so on.)

The basic format for the store schema is shown here. The type name is optional; if not
specified, the column defaults to type bytes.

column_name[:type_name] [, column_name[:type_name] ...]

2.1 Schemas for Simple Data Types

Simple data types include int, long, float, double, string, and bytes. The following syntax also
applies to Booleans.

2.1.1 Syntax

field_alias[:type] [, field_alias[:type] …]

2.1.2 Terms

field_alias The name assigned to the field column.

:type (Optional) The simple data type assigned to the field.
The alias and type are separated by a colon (:).
If the type is omitted, the field defaults to type bytes.

, Multiple fields are separated by commas.

2.1.3 Examples

In this example the schema specifies names and types for 3 columns.

ZebraSchema.createZebraSchema(JobContext, “s1:string, f1:float, i1:int”);

In this example the schema specifies names for 3 columns; all 3 columns default to type
bytes.

Zebra Reference Guide

Page 4Copyright © 2012 The Apache Software Foundation. All rights reserved.

ZebraSchema.createZebraSchema(JobContext, “f1, f2, f3”);

2.2 Schemas for Records

A record is an ordered set of fields. A field can be any Zebra type.

2.2.1 Syntax

record_alias:record (field_alias[:type]) [,(field_alias[:type]) …])

2.2.2 Terms

record_alias The name assigned to the record column.

:record The record designator.

() The record notation, a set of parentheses.

field_alias The name assigned to the field.

:type (Optional) The type assigned to a field (can be any
Zebra type).

, Multiple fields are separated by commas.

2.2.3 Examples

In this example the schema specifies a record with two fields.

ZebraSchema.createZebraSchema(JobContext, “r1:record(f1:int,f2:long)”);

In this example the schema specifies a record with two fields. Note that f2 will default to type
bytes.

ZebraSchema.createZebraSchema(JobContext, “r1:record(r2:record(f1:int,f2)”);

2.3 Schemas for Collections

A collection is a set of records.

2.3.1 Syntax

collection_alias:collection ([record_alias:]record(...))

Zebra Reference Guide

Page 5Copyright © 2012 The Apache Software Foundation. All rights reserved.

2.3.2 Terms

collection_alias The name assigned to the collection.

:collection The collection designator.

() The collection notation, a set of parentheses.

record_alias The name assigned to the record.

record The record designator. The record can be specified
with or without the record alias:
• c1:collection(r1:record(f1:int,f2:long));
• c1:collection(record(f1:int,f2:long));

2.3.3 Examples

In this example the schema specifies a collection of records, each consisting of two fields.

ZebraSchema.createZebraSchema(jobContext, “c1:collection(r1:record(f1:int,f2:long))”);

2.4 Schemas for Maps

A map is a set of key/value pairs.

2.4.1 Syntax

map_alias:map (type)

2.4.2 Terms

map_alias The name assigned to the map column.

:map The map designator.

() The map notation, a set of parentheses.

type The type assigned to the map’s value (can be any
Zebra type).
Note that the map’s key is always type string and is
not specified.

2.4.3 Examples

In this example the schema specifies a map with value of type string.

ZebraSchema.createZebraSchema(jJobContext, “m1:map(string)”);

zebra_reference.html#Schemas+for+Records

Zebra Reference Guide

Page 6Copyright © 2012 The Apache Software Foundation. All rights reserved.

In this example the schema specifies a map with value of type map (with a value of type int).

ZebraSchema.createZebraSchema(JobContext, “m2:map(map(int))”);

3 Storage Specification

Use the Zebra storage specification to define Zebra column groups. The storage specification,
when combined with a STORE statement, describes the physical structure of a Zebra table.
Suppose we have the following statement:

STORE A INTO '$PATH/mytable' USING org.apache.hadoop.zebra.pig.TableStorer('[a1, a2] AS
 cg1; [a3, a4, a5] AS cg2');

The statement describes a table that has two column groups; the first column group has two
columns, the second column group has three columns. The statement can be interpreted as
follows:

• $PATH/mytable - the table, a file path to a directory named mytable
• $PATH/mytable/cg1 - the first column group, a subdirectory named cg1 under directory

mytable
• $PATH/mytable/cg1/part00001 - a file consisting, conceptually, of columns a1 and a2
• $PATH/mytable/cg2 - the second column group, a subdirectory named cg2 under

directory mytable
• $PATH/mytable/cg2/part00001 - a file consisting, conceptually, of columns a3, a4, and

a5

3.1 Specification

The basic format for the Zebra storage specification is shown here. For this specification,
note that the straight brackets [] designate a column group and the curly brackets { }
designate an optional syntax component.

3.1.1 Syntax

[column_name {, column_name ...}] {AS column_group_name} {COMPRESS BY
compressor_name} {SERIALIZE BY serializer_name}
{; [column_name {, column_name ...}] {AS column_group_name} {COMPRESS BY
compressor_name} {SERIALIZE BY serializer_name} ... }

3.1.2 Terms

[] Brackets designate a column group. Multiple column
groups are separated by semi-colons.

Zebra Reference Guide

Page 7Copyright © 2012 The Apache Software Foundation. All rights reserved.

AS column_group_name Optional. The name of the column group. Column
group names are unique within one table and are
case sensitive: c1 and C1 are different. Column
group names are used as the physical column group
directory path names.
If specified, the AS clause must immediately follow
the column group [].
If not specified, Zebra will assign unique default
names for the table: CG0, CG1, CG2 ... (If CGx is
specified by the programmer, then it cannot be used
by Zebra.)

COMPRESS BY compressor_name Optional. Valid values for compressor_name include
gz (default) and lzo.
If not specified, gz is used.

SERIALIZE BY serializer_name Optional. Valid values for serializer_name include
pig (default). (In a future release, Avro will be
available.)
If not specified, pig is used.

column_name The name of one or more columns that form the
column group.

3.1.3 Examples

In this example, one column group is specified; the two statements are equivalent.

STORE A INTO '$PATH' USING org.apache.hadoop.zebra.pig.TableStorer('[c1]');

STORE A INTO '$PATH' USING org.apache.hadoop.zebra.pig.TableStorer('[c1] AS CG0 COMPRESS BY
 gz SERIALIZE BY pig;');

In this example, two column groups are specified. The first column group, C1, has two
columns. The second column group, C2, has three columns.

STORE A INTO '$PATH' USING org.apache.hadoop.zebra.pig.TableStorer('[a1, a2] AS C1; [a3,
 a4, a5] AS C2');

4 Load Schema

Use the Zebra load schema to load or read table columns.

4.1 Schema

The basic format for the Zebra load (read) schema is shown here. The column name can be
any valid Zebra type. If no columns are specified, the entire Zebra table is loaded.

Zebra Reference Guide

Page 8Copyright © 2012 The Apache Software Foundation. All rights reserved.

column_name [, column_name ...]

4.1.1 Terms

column_name The column name. Multiple columns are separated by
commas.

4.1.2 Example

Three Pig examples are shown here.

-- All columns are loaded
A = LOAD '$PATH/tbl1' USING org.apache.hadoop.pig.zebra.pig.TableLoader();

-- Two columns are projected
B = LOAD '$PATH/tbl2' USING org.apache.hadoop.zebra.pig.TableLoader('c1,c2');

-- Three columns are projected: a simple field, a map, and a record
C = LOAD '$PATH/tbl3' USING org.apache.hadoop.zebra.pig.TableLoader('c1,c2#{key1},col4.
{f1}')

	Table of contents
	1 Zebra Types
	2 Store Schema
	2.1 Schemas for Simple Data Types
	2.1.1 Syntax
	2.1.2 Terms
	2.1.3 Examples

	2.2 Schemas for Records
	2.2.1 Syntax
	2.2.2 Terms
	2.2.3 Examples

	2.3 Schemas for Collections
	2.3.1 Syntax
	2.3.2 Terms
	2.3.3 Examples

	2.4 Schemas for Maps
	2.4.1 Syntax
	2.4.2 Terms
	2.4.3 Examples

	3 Storage Specification
	3.1 Specification
	3.1.1 Syntax
	3.1.2 Terms
	3.1.3 Examples

	4 Load Schema
	4.1 Schema
	4.1.1 Terms
	4.1.2 Example

