
Copyright © 2012 The Apache Software Foundation. All rights reserved.

User Defined Functions

Table of contents

1 Introduction.. 2

2 Writing Java UDFs.. 2

3 Writing Python UDFs.. 31

4 Writing JavaScript UDFs... 34

5 Piggy Bank... 36

User Defined Functions

Page 2Copyright © 2012 The Apache Software Foundation. All rights reserved.

1 Introduction

Pig provides extensive support for user defined functions (UDFs) as a way to specify custom
processing. Pig UDFs can currently be implemented in three languages: Java, Python, and
JavaScript.

The most extensive support is provided for Java functions. You can customize all parts
of the processing including data load/store, column transformation, and aggregation. Java
functions are also more efficient because they are implemented in the same language as
Pig and because additional interfaces are supported such as the Algebraic Interface and the
Accumulator Interface.

Limited support is provided for Python and JavaScript functions. These functions are new,
still evolving, additions to the system. Currently only the basic interface is supported; load/
store functions are not supported. Furthermore, JavaScript is provided as an experimental
feature because it did not go through the same amount of testing as Java or Python. At
runtime note that Pig will automatically detect the usage of a scripting UDF in the Pig script
and will automatically ship the corresponding scripting jar, either Jython or Rhino, to the
backend.

Pig also provides support for Piggy Bank, a repository for JAVA UDFs. Through Piggy Bank
you can access Java UDFs written by other users and contribute Java UDFs that you have
written.

2 Writing Java UDFs

2.1 Eval Functions

2.1.1 How to Use a Simple Eval Function

Eval is the most common type of function. It can be used in FOREACH statements as shown
in this script:

-- myscript.pig
REGISTER myudfs.jar;
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = FOREACH A GENERATE myudfs.UPPER(name);
DUMP B;

The command below can be used to run the script. Note that all examples in this document
run in local mode for simplicity but the examples can also run in Hadoop mode. For more
information on how to run Pig, please see the PigTutorial.

java -cp pig.jar org.apache.pig.Main -x local myscript.pig

User Defined Functions

Page 3Copyright © 2012 The Apache Software Foundation. All rights reserved.

The first line of the script provides the location of the jar file that contains the UDF.
(Note that there are no quotes around the jar file. Having quotes would result in a syntax
error.) To locate the jar file, Pig first checks the classpath. If the jar file can't be found in
the classpath, Pig assumes that the location is either an absolute path or a path relative to the
location from which Pig was invoked. If the jar file can't be found, an error will be printed:
java.io.IOException: Can't read jar file: myudfs.jar.

Multiple register commands can be used in the same script. If the same fully-qualified
function is present in multiple jars, the first occurrence will be used consistently with Java
semantics.

The name of the UDF has to be fully qualified with the package name or an error will be
reported: java.io.IOException: Cannot instantiate:UPPER. Also, the
function name is case sensitive (UPPER and upper are not the same). A UDF can take one or
more parameters. The exact signature of the function should clear from its documentation.

The function provided in this example takes an ASCII string and produces its uppercase
version. If you are familiar with column transformation functions in SQL, you will recognize
that UPPER fits this concept. However, as we will see later in the document, eval functions
in Pig go beyond column transformation functions and include aggregate and filter functions.

If you are just a user of UDFs, this is most of what you need to know about UDFs to use
them in your code.

2.1.2 How to Write a Simple Eval Function

Let's now look at the implementation of the UPPER UDF.

1 package myudfs;
2 import java.io.IOException;
3 import org.apache.pig.EvalFunc;
4 import org.apache.pig.data.Tuple;
5
6 public class UPPER extends EvalFunc<String>
7 {
8 public String exec(Tuple input) throws IOException {
9 if (input == null || input.size() == 0)
10 return null;
11 try{
12 String str = (String)input.get(0);
13 return str.toUpperCase();
14 }catch(Exception e){
15 throw new IOException("Caught exception processing input row ", e);
16 }
17 }
18 }

Line 1 indicates that the function is part of the myudfs package. The UDF class extends
the EvalFunc class which is the base class for all eval functions. It is parameterized with

User Defined Functions

Page 4Copyright © 2012 The Apache Software Foundation. All rights reserved.

the return type of the UDF which is a Java String in this case. We will look into the
EvalFunc class in more detail later, but for now all we need to do is to implement the
exec function. This function is invoked on every input tuple. The input into the function is
a tuple with input parameters in the order they are passed to the function in the Pig script. In
our example, it will contain a single string field corresponding to the student name.

The first thing to decide is what to do with invalid data. This depends on the format of the
data. If the data is of type bytearray it means that it has not yet been converted to its
proper type. In this case, if the format of the data does not match the expected type, a NULL
value should be returned. If, on the other hand, the input data is of another type, this means
that the conversion has already happened and the data should be in the correct format. This is
the case with our example and that's why it throws an error (line 15.)

Also, note that lines 9-10 check if the input data is null or empty and if so returns null.

The actual function implementation is on lines 12-13 and is self-explanatory.

Now that we have the function implemented, it needs to be compiled and included in a jar.
You will need to build pig.jar to compile your UDF. You can use the following set of
commands to checkout the code from SVN repository and create pig.jar:

svn co http://svn.apache.org/repos/asf/pig/trunk
cd trunk
ant

You should see pig.jar in your current working directory. The set of commands below
first compiles the function and then creates a jar file that contains it.

cd myudfs
javac -cp pig.jar UPPER.java
cd ..
jar -cf myudfs.jar myudfs

You should now see myudfs.jar in your current working directory. You can use this jar
with the script described in the previous section.

2.1.3 Aggregate Functions

Aggregate functions are another common type of eval function. Aggregate functions are
usually applied to grouped data, as shown in this script:

-- myscript2.pig
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = GROUP A BY name;
C = FOREACH B GENERATE group, COUNT(A);
DUMP C;

User Defined Functions

Page 5Copyright © 2012 The Apache Software Foundation. All rights reserved.

The script above uses the COUNT function to count the number of students with the same
name. There are a couple of things to note about this script. First, even though we are using
a function, there is no register command. Second, the function is not qualified with the
package name. The reason for both is that COUNT is a builtin function meaning that it
comes with the Pig distribution. These are the only two differences between builtins and
UDFs. Builtins are discussed in more detail later in this document.

2.1.4 Algebraic Interface

An aggregate function is an eval function that takes a bag and returns a scalar value. One
interesting and useful property of many aggregate functions is that they can be computed
incrementally in a distributed fashion. We call these functions algebraic. COUNT is an
example of an algebraic function because we can count the number of elements in a subset of
the data and then sum the counts to produce a final output. In the Hadoop world, this means
that the partial computations can be done by the map and combiner, and the final result can
be computed by the reducer.

It is very important for performance to make sure that aggregate functions that are algebraic
are implemented as such. Let's look at the implementation of the COUNT function to see
what this means. (Error handling and some other code is omitted to save space. The full code
can be accessed here.)

public class COUNT extends EvalFunc<Long> implements Algebraic{
 public Long exec(Tuple input) throws IOException {return count(input);}
 public String getInitial() {return Initial.class.getName();}
 public String getIntermed() {return Intermed.class.getName();}
 public String getFinal() {return Final.class.getName();}
 static public class Initial extends EvalFunc<Tuple> {
 public Tuple exec(Tuple input) throws IOException {return
 TupleFactory.getInstance().newTuple(count(input));}
 }
 static public class Intermed extends EvalFunc<Tuple> {
 public Tuple exec(Tuple input) throws IOException {return
 TupleFactory.getInstance().newTuple(sum(input));}
 }
 static public class Final extends EvalFunc<Long> {
 public Tuple exec(Tuple input) throws IOException {return sum(input);}
 }
 static protected Long count(Tuple input) throws ExecException {
 Object values = input.get(0);
 if (values instanceof DataBag) return ((DataBag)values).size();
 else if (values instanceof Map) return new Long(((Map)values).size());
 }
 static protected Long sum(Tuple input) throws ExecException, NumberFormatException {
 DataBag values = (DataBag)input.get(0);
 long sum = 0;
 for (Iterator (Tuple) it = values.iterator(); it.hasNext();) {
 Tuple t = it.next();
 sum += (Long)t.get(0);
 }

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/builtin/COUNT.java?view=markup

User Defined Functions

Page 6Copyright © 2012 The Apache Software Foundation. All rights reserved.

 return sum;
 }
}

COUNT implements Algebraic interface which looks like this:

public interface Algebraic{
 public String getInitial();
 public String getIntermed();
 public String getFinal();
}

For a function to be algebraic, it needs to implement Algebraic interface that consist of
definition of three classes derived from EvalFunc. The contract is that the exec function
of the Initial class is called once and is passed the original input tuple. Its output is a
tuple that contains partial results. The exec function of the Intermed class can be called
zero or more times and takes as its input a tuple that contains partial results produced by the
Initial class or by prior invocations of the Intermed class and produces a tuple with
another partial result. Finally, the exec function of the Final class is called and produces
the final result as a scalar type.

Here's the way to think about this in the Hadoop world. The exec function of the Initial
class is invoked once for each input tuple by the map process and produces partial results.
The exec function of the Intermed class is invoked once by each combiner invocation
(which can happen zero or more times) and also produces partial results. The exec function
of the Final class is invoked once by the reducer and produces the final result.

Take a look at the COUNT implementation to see how this is done. Note that the exec
function of the Initial and Intermed classes is parameterized with Tuple and the
exec of the Final class is parameterized with the real type of the function, which in the
case of the COUNT is Long. Also, note that the fully-qualified name of the class needs to be
returned from getInitial, getIntermed, and getFinal methods.

2.1.5 Accumulator Interface

In Pig, problems with memory usage can occur when data, which results from a group or
cogroup operation, needs to be placed in a bag and passed in its entirety to a UDF.

This problem is partially addressed by Algebraic UDFs that use the combiner and can deal
with data being passed to them incrementally during different processing phases (map,
combiner, and reduce). However, there are a number of UDFs that are not Algebraic, don't
use the combiner, but still don’t need to be given all data at once.

The new Accumulator interface is designed to decrease memory usage by targeting such
UDFs. For the functions that implement this interface, Pig guarantees that the data for the

User Defined Functions

Page 7Copyright © 2012 The Apache Software Foundation. All rights reserved.

same key is passed continuously but in small increments. To work with incremental data,
here is the interface a UDF needs to implement:

public interface Accumulator <T> {
 /**
 * Process tuples. Each DataBag may contain 0 to many tuples for current key
 */
 public void accumulate(Tuple b) throws IOException;
 /**
 * Called when all tuples from current key have been passed to the accumulator.
 * @return the value for the UDF for this key.
 */
 public T getValue();
 /**
 * Called after getValue() to prepare processing for next key.
 */
 public void cleanup();
}

There are several things to note here:
1. Each UDF must extend the EvalFunc class and implement all necessary functions there.
2. If a function is algebraic but can be used in a FOREACH statement with accumulator

functions, it needs to implement the Accumulator interface in addition to the Algebraic
interface.

3. The interface is parameterized with the return type of the function.
4. The accumulate function is guaranteed to be called one or more times, passing one or

more tuples in a bag, to the UDF. (Note that the tuple that is passed to the accumulator
has the same content as the one passed to exec – all the parameters passed to the UDF –
one of which should be a bag.)

5. The getValue function is called after all the tuples for a particular key have been
processed to retrieve the final value.

6. The cleanup function is called after getValue but before the next value is processed.

Here us a code snippet of the integer version of the MAX function that implements the
interface:

public class IntMax extends EvalFunc<Integer> implements Algebraic, Accumulator<Integer> {
 …….
 /* Accumulator interface */

 private Integer intermediateMax = null;

 @Override
 public void accumulate(Tuple b) throws IOException {
 try {
 Integer curMax = max(b);
 if (curMax == null) {
 return;
 }

User Defined Functions

Page 8Copyright © 2012 The Apache Software Foundation. All rights reserved.

 /* if bag is not null, initialize intermediateMax to negative infinity */
 if (intermediateMax == null) {
 intermediateMax = Integer.MIN_VALUE;
 }
 intermediateMax = java.lang.Math.max(intermediateMax, curMax);
 } catch (ExecException ee) {
 throw ee;
 } catch (Exception e) {
 int errCode = 2106;
 String msg = "Error while computing max in " + this.getClass().getSimpleName();
 throw new ExecException(msg, errCode, PigException.BUG, e);
 }
 }

 @Override
 public void cleanup() {
 intermediateMax = null;
 }

 @Override
 public Integer getValue() {
 return intermediateMax;
 }
}

2.1.6 Filter Functions

Filter functions are eval functions that return a boolean value. Filter functions can be used
anywhere a Boolean expression is appropriate, including the FILTER operator or bincond
expression.

The example below uses the IsEmpy builtin filter function to implement joins.

-- inner join
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = LOAD 'voter_data' AS (name: chararray, age: int, registration: chararay, contributions:
 float);
C = COGROUP A BY name, B BY name;
D = FILTER C BY not IsEmpty(A);
E = FILTER D BY not IsEmpty(B);
F = FOREACH E GENERATE flatten(A), flatten(B);
DUMP F;

Note that, even if filtering is omitted, the same results will be produced because the
foreach results is a cross product and cross products get rid of empty bags. However,
doing up-front filtering is more efficient since it reduces the input of the cross product.

-- full outer join
A = LOAD 'student_data' AS (name: chararray, age: int, gpa: float);
B = LOAD 'voter_data' AS (name: chararray, age: int, registration: chararay, contributions:
 float);
C = COGROUP A BY name, B BY name;
D = FOREACH C GENERATE group, flatten((IsEmpty(A) ? null : A)), flatten((IsEmpty(B) ?
 null : B));

User Defined Functions

Page 9Copyright © 2012 The Apache Software Foundation. All rights reserved.

dump D;

The implementation of the IsEmpty function looks like this:

import java.io.IOException;
import java.util.Map;

import org.apache.pig.FilterFunc;
import org.apache.pig.PigException;
import org.apache.pig.backend.executionengine.ExecException;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.DataType;

/**
 * Determine whether a bag or map is empty.
 */
public class IsEmpty extends FilterFunc {

 @Override
 public Boolean exec(Tuple input) throws IOException {
 try {
 Object values = input.get(0);
 if (values instanceof DataBag)
 return ((DataBag)values).size() == 0;
 else if (values instanceof Map)
 return ((Map)values).size() == 0;
 else {
 int errCode = 2102;
 String msg = "Cannot test a " +
 DataType.findTypeName(values) + " for emptiness.";
 throw new ExecException(msg, errCode, PigException.BUG);
 }
 } catch (ExecException ee) {
 throw ee;
 }
 }
}

2.1.7 Pig Types and Native Java Types

The main thing to know about Pig's type system is that Pig uses native Java types for almost
all of its types, as shown in this table.

Pig Type Java Class

bytearray DataByteArray

chararray String

int Integer

long Long

User Defined Functions

Page 10Copyright © 2012 The Apache Software Foundation. All rights reserved.

Pig Type Java Class

float Float

double Double

tuple Tuple

bag DataBag

map Map<Object, Object>

All Pig-specific classes are available here.

Tuple and DataBag are different in that they are not concrete classes but rather interfaces.
This enables users to extend Pig with their own versions of tuples and bags. As a result,
UDFs cannot directly instantiate bags or tuples; they need to go through factory classes:
TupleFactory and BagFactory.

The builtin TOKENIZE function shows how bags and tuples are created. A function takes
a text string as input and returns a bag of words from the text. (Note that currently Pig bags
always contain tuples.)

package org.apache.pig.builtin;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.BagFactory;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;

public class TOKENIZE extends EvalFunc<DataBag> {
 TupleFactory mTupleFactory = TupleFactory.getInstance();
 BagFactory mBagFactory = BagFactory.getInstance();

 public DataBag exec(Tuple input) throws IOException
 try {
 DataBag output = mBagFactory.newDefaultBag();
 Object o = input.get(0);
 if ((o instanceof String)) {
 throw new IOException("Expected input to be chararray, but got " +
 o.getClass().getName());
 }
 StringTokenizer tok = new StringTokenizer((String)o, " \",()*", false);
 while (tok.hasMoreTokens())
 output.add(mTupleFactory.newTuple(tok.nextToken()));
 return output;
 } catch (ExecException ee) {
 // error handling goes here
 }
 }

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/data/

User Defined Functions

Page 11Copyright © 2012 The Apache Software Foundation. All rights reserved.

}

2.1.8 Schemas and Java UDFs

Pig uses type information for validation and performance. It is important for UDFs to
participate in type propagation. Our UDFs generally make no effort to communicate their
output schema to Pig. This is because Pig can usually figure out this information by using
Java's Reflection. If your UDF returns a scalar or a map, no work is required. However, if
your UDF returns a tuple or a bag (of tuples), it needs to help Pig figure out the structure of
the tuple.

If a UDF returns a tuple or a bag and schema information is not provided, Pig assumes that
the tuple contains a single field of type bytearray. If this is not the case, then not specifying
the schema can cause failures. We look at this next.

Let's assume that we have UDF Swap that, given a tuple with two fields, swaps their order.
Let's assume that the UDF does not specify a schema and look at the scripts below:

register myudfs.jar;
A = load 'student_data' as (name: chararray, age: int, gpa: float);
B = foreach A generate flatten(myudfs.Swap(name, age)), gpa;
C = foreach B generate $2;
D = limit B 20;
dump D;

This script will result in the following error cause by line 4 (C = foreach B
generate $2;).

java.io.IOException: Out of bound access. Trying to access non-existent column: 2. Schema
 {bytearray,gpa: float} has 2 column(s).

This is because Pig is only aware of two columns in B while line 4 is requesting the third
column of the tuple. (Column indexing in Pig starts with 0.)

The function, including the schema, looks like this:

package myudfs;
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;
import org.apache.pig.impl.logicalLayer.schema.Schema;
import org.apache.pig.data.DataType;

public class Swap extends EvalFunc<Tuple> {
 public Tuple exec(Tuple input) throws IOException {
 if (input == null || input.size() 2
 return null;
 try{

http://java.sun.com/developer/technicalArticles/ALT/Reflection/

User Defined Functions

Page 12Copyright © 2012 The Apache Software Foundation. All rights reserved.

 Tuple output = TupleFactory.getInstance().newTuple(2);
 output.set(0, input.get(1));
 output.set(1, input.get(0));
 return output;
 } catch(Exception e){
 System.err.println("Failed to process input; error - " + e.getMessage());
 return null;
 }
 }
 public Schema outputSchema(Schema input) {
 try{
 Schema tupleSchema = new Schema();
 tupleSchema.add(input.getField(1));
 tupleSchema.add(input.getField(0));
 return new Schema(new
 Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(),
 input),tupleSchema, DataType.TUPLE));
 }catch (Exception e){
 return null;
 }
 }
}

The function creates a schema with a single field (of type FieldSchema) of type
tuple. The name of the field is constructed using the getSchemaName function of the
EvalFunc class. The name consists of the name of the UDF function, the first parameter
passed to it, and a sequence number to guarantee uniqueness. In the previous script, if you
replace dump D; with describe B; , you will see the following output:

B: {myudfs.swap_age_3::age: int,myudfs.swap_age_3::name: chararray,gpa: float}

The second parameter to the FieldSchema constructor is the schema representing this
field, which in this case is a tuple with two fields. The third parameter represents the type
of the schema, which in this case is a TUPLE. All supported schema types are defined in the
org.apache.pig.data.DataType class.

public class DataType {
 public static final byte UNKNOWN = 0;
 public static final byte NULL = 1;
 public static final byte BOOLEAN = 5; // internal use only
 public static final byte BYTE = 6; // internal use only
 public static final byte INTEGER = 10;
 public static final byte LONG = 15;
 public static final byte FLOAT = 20;
 public static final byte DOUBLE = 25;
 public static final byte BYTEARRAY = 50;
 public static final byte CHARARRAY = 55;
 public static final byte MAP = 100;
 public static final byte TUPLE = 110;
 public static final byte BAG = 120;
 public static final byte ERROR = -1;
 // more code here

User Defined Functions

Page 13Copyright © 2012 The Apache Software Foundation. All rights reserved.

}

You need to import the org.apache.pig.data.DataType class
into your code to define schemas. You also need to import the schema class
org.apache.pig.impl.logicalLayer.schema.Schema.

The example above shows how to create an output schema for a tuple. Doing this for a bag is
very similar. Let's extend the TOKENIZE function to do that.

As you can see in the example below, this is very similar to the output schema definition in
the Swap function. One difference is that instead of reusing input schema, we create a brand
new field schema to represent the tokens stored in the bag. The other difference is that the
type of the schema created is BAG (not TUPLE).

package org.apache.pig.builtin;

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.BagFactory;
import org.apache.pig.data.DataBag;
import org.apache.pig.data.Tuple;
import org.apache.pig.data.TupleFactory;
import org.apache.pig.impl.logicalLayer.schema.Schema;
import org.apache.pig.data.DataType;

public class TOKENIZE extends EvalFunc<DataBag> {
 TupleFactory mTupleFactory = TupleFactory.getInstance();
 BagFactory mBagFactory = BagFactory.getInstance();
 public DataBag exec(Tuple input) throws IOException {
 try {
 DataBag output = mBagFactory.newDefaultBag();
 Object o = input.get(0);
 if ((o instanceof String)) {
 throw new IOException("Expected input to be chararray, but got " +
 o.getClass().getName());
 }
 StringTokenizer tok = new StringTokenizer((String)o, " \",()*", false);
 while (tok.hasMoreTokens())
 output.add(mTupleFactory.newTuple(tok.nextToken()));
 return output;
 } catch (ExecException ee) {
 // error handling goes here
 }
 }
 public Schema outputSchema(Schema input) {
 try{
 Schema bagSchema = new Schema();
 bagSchema.add(new Schema.FieldSchema("token", DataType.CHARARRAY));

 return new Schema(new
 Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(), input),
 bagSchema, DataType.BAG));
 }catch (Exception e){
 return null;

User Defined Functions

Page 14Copyright © 2012 The Apache Software Foundation. All rights reserved.

 }
 }
}

One more note about schemas and UDFs. Users have requested the ability to examine the
input schema of the data before processing the data via a UDF. For example, they would like
to know how to convert an input tuple to a map such that the keys in the map are the names
of the input columns. Currently there is no way to do this. This is a feature we would like to
support in the future.

2.1.9 Error Handling

There are several types of errors that can occur in a UDF:
1. An error that affects a particular row but is not likely to impact other rows. An example

of such an error would be a malformed input value or divide by zero problem. A
reasonable handling of this situation would be to emit a warning and return a null value.
ABS function in the next section demonstrates this approach. The current approach is to
write the warning to stderr. Eventually we would like to pass a logger to the UDFs.
Note that returning a NULL value only makes sense if the malformed value is of type
bytearray. Otherwise the proper type has been already created and should have an
appropriate value. If this is not the case, it is an internal error and should cause the system
to fail. Both cases can be seen in the implementation of the ABS function in the next
section.

2. An error that affects the entire processing but can succeed on retry. An example of such
a failure is the inability to open a lookup file because the file could not be found. This
could be a temporary environmental issue that can go away on retry. A UDF can signal
this to Pig by throwing an IOException as with the case of the ABS function below.

3. An error that affects the entire processing and is not likely to succeed on retry. An
example of such a failure is the inability to open a lookup file because of file permission
problems. Pig currently does not have a way to handle this case. Hadoop does not have a
way to handle this case either. It will be handled the same way as 2 above.

2.1.10 Function Overloading

Before the type system was available in Pig, all values for the purpose of arithmetic
calculations were assumed to be doubles as the safest choice. However, this is not very
efficient if the data is actually of type integer or long. (We saw about a 2x slowdown of a
query when using double where integer could be used.) Now that Pig supports types we can
take advantage of the type information and choose the function that is most efficient for the
provided operands.

UDF writers are encouraged to provide type-specific versions of a function if this can
result in better performance. On the other hand, we don't want the users of the functions to

User Defined Functions

Page 15Copyright © 2012 The Apache Software Foundation. All rights reserved.

worry about different functions - the right thing should just happen. Pig allows for this via a
function table mechanism as shown in the next example.

This example shows the implementation of the ABS function that returns the absolute value
of a numeric value passed to it as input.

import java.io.IOException;
import java.util.List;
import java.util.ArrayList;
import org.apache.pig.EvalFunc;
import org.apache.pig.FuncSpec;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.logicalLayer.FrontendException;
import org.apache.pig.impl.logicalLayer.schema.Schema;
import org.apache.pig.data.DataType;

public class ABS extends EvalFunc<Double> {
 public Double exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;
 Double d;
 try{
 d = DataType.toDouble(input.get(0));
 } catch (NumberFormatException nfe){
 System.err.println("Failed to process input; error - " + nfe.getMessage());
 return null;
 } catch (Exception e){
 throw IOException("Caught exception processing input row ", e);
 }
 return Math.abs(d);
 }
 public List (FuncSpec) getArgToFuncMapping() throws FrontendException {
 List (FuncSpec) funcList = new ArrayList (FuncSpec) ();
 funcList.add(new FuncSpec(this.getClass().getName(), new Schema(new
 Schema.FieldSchema(null, DataType.BYTEARRAY))));
 funcList.add(new FuncSpec(DoubleAbs.class.getName(), new Schema(new
 Schema.FieldSchema(null, DataType.DOUBLE))));
 funcList.add(new FuncSpec(FloatAbs.class.getName(), new Schema(new
 Schema.FieldSchema(null, DataType.FLOAT))));
 funcList.add(new FuncSpec(IntAbs.class.getName(), new Schema(new
 Schema.FieldSchema(null, DataType.INTEGER))));
 funcList.add(new FuncSpec(LongAbs.class.getName(), new Schema(new
 Schema.FieldSchema(null, DataType.LONG))));
 return funcList;
 }
}

The main thing to notice in this example is the getArgToFuncMapping() method.
This method returns a list that contains a mapping from the input schema to the class that
should be used to handle it. In this example the main class handles the bytearray input
and outsources the rest of the work to other classes implemented in separate files in the same
package. The example of one such class is below. This class handles integer input values.

User Defined Functions

Page 16Copyright © 2012 The Apache Software Foundation. All rights reserved.

import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

public class IntAbs extends EvalFunc<Integer> {
 public Integer exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;
 Integer d;
 try{
 d = (Integer)input.get(0);
 } catch (Exception e){
 throw newIOException("Caught exception processing input row ", e);
 }
 return Math.abs(d);
 }
}

A note on error handling. The ABS class covers the case of the bytearray which means
the data has not been converted yet to its actual type. This is why a null value is returned
when NumberFormatException is encountered. However, the IntAbs function is only
called if the data is already of type Integer which means it has already been converted to
the real type and bad format has been dealt with. This is why an exception is thrown if the
input can't be cast to Integer.

The example above covers a reasonably simple case where the UDF only takes one
parameter and there is a separate function for each parameter type. However, this will not
always be the case. If Pig can't find an exact match it tries to do a best match.
The rule for the best match is to find the most efficient function that can be used safely.
This means that Pig must find the function that, for each input parameter, provides the
smallest type that is equal to or greater than the input type. The type progression rules are:
int>long>float>double.

For instance, let's consider function MAX which is part of the piggybank described later in
this document. Given two values, the function returns the larger value. The function table for
MAX looks like this:

public List (FuncSpec) getArgToFuncMapping() throws FrontendException {
 List (FuncSpec) funcList = new ArrayList (FuncSpec) ();
 Util.addToFunctionList(funcList, IntMax.class.getName(), DataType.INTEGER);
 Util.addToFunctionList(funcList, DoubleMax.class.getName(), DataType.DOUBLE);
 Util.addToFunctionList(funcList, FloatMax.class.getName(), DataType.FLOAT);
 Util.addToFunctionList(funcList, LongMax.class.getName(), DataType.LONG);

 return funcList;
}

The Util.addToFunctionList function is a helper function that adds an entry to the
list as the first argument, with the key of the class name passed as the second argument, and
the schema containing two fields of the same type as the third argument.

User Defined Functions

Page 17Copyright © 2012 The Apache Software Foundation. All rights reserved.

Let's now see how this function can be used in a Pig script:

REGISTER piggybank.jar
A = LOAD 'student_data' AS (name: chararray, gpa1: float, gpa2: double);
B = FOREACH A GENERATE name, org.apache.pig.piggybank.evaluation.math.MAX(gpa1, gpa2);
DUMP B;

In this example, the function gets one parameter of type float and another of type
double. The best fit will be the function that takes two double values. Pig makes this choice
on the user's behalf by inserting implicit casts for the parameters. Running the script above is
equivalent to running the script below:

A = LOAD 'student_data' AS (name: chararray, gpa1: float, gpa2: double);
B = FOREACH A GENERATE name, org.apache.pig.piggybank.evaluation.math.MAX((double)gpa1,
 gpa2);
DUMP B;

A special case of the best fit approach is handling data without a schema specified.
The type for this data is interpreted as bytearray. Since the type of the data is not
known, there is no way to choose a best fit version. The only time a cast is performed is
when the function table contains only a single entry. This works well to maintain backward
compatibility.

Let's revisit the UPPER function from our first example. As it is written now, it would only
work if the data passed to it is of type chararray. To make it work with data whose type is
not explicitly set, a function table with a single entry needs to be added:

package myudfs;
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

public class UPPER extends EvalFunc<String>
{
 public String exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;
 try{
 String str = (String)input.get(0);
 return str.toUpperCase();
 }catch(Exception e){
 System.err.println("WARN: UPPER: failed to process input; error - " +
 e.getMessage());
 return null;
 }
 }
 public List (FuncSpec) getArgToFuncMapping() throws FrontendException {
 List (FuncSpec) funcList = new ArrayList (FuncSpec) ();
 funcList.add(new FuncSpec(this.getClass().getName(), new Schema(new
 Schema.FieldSchema(null, DataType.CHARARRAY))));

User Defined Functions

Page 18Copyright © 2012 The Apache Software Foundation. All rights reserved.

 return funcList;
 }
}

Now the following script will ran:

-- this is myscript.pig
REGISTER myudfs.jar;
A = LOAD 'student_data' AS (name, age, gpa);
B = FOREACH A GENERATE myudfs.UPPER(name);
DUMP B;

2.1.11 Reporting Progress

A challenge of running a large shared system is to make sure system resources are used
efficiently. One aspect of this challenge is detecting runaway processes that are no longer
making progress. Pig uses a heartbeat mechanism for this purpose. If any of the tasks stops
sending a heartbeat, the system assumes that it is dead and kills it.

Most of the time, single-tuple processing within a UDF is very short and does not require
a UDF to heartbeat. The same is true for aggregate functions that operate on large bags
because bag iteration code takes care of it. However, if you have a function that performs a
complex computation that can take an order of minutes to execute, you should add a progress
indicator to your code. This is very easy to accomplish. The EvalFunc function provides a
progress function that you need to call in your exec method.

For instance, the UPPER function would now look as follows:

public class UPPER extends EvalFunc<String>
{
 public String exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;
 try{
 reporter.progress();
 String str = (String)input.get(0);
 return str.toUpperCase();
 }catch(Exception e){
 throw new OException("Caught exception processing input row ", e);
 }
 }
}

2.1.12 Using Distributed Cache

Use getCacheFiles, an EvalFunc method, to return a list of HDFS files that need to be
shipped to distributed cache. Inside EvalFunc, you can assume that these files already exist in
distributed cache. For example:

User Defined Functions

Page 19Copyright © 2012 The Apache Software Foundation. All rights reserved.

public class Udfcachetest extends EvalFunc<String> {

 public String exec(Tuple input) throws IOException {
 FileReader fr = new FileReader("./smallfile");
 BufferedReader d = new BufferedReader(fr);
 return d.readLine();
 }

 public List<String> getCacheFiles() {
 List<String> list = new ArrayList<String>(1);
 list.add("/user/pig/tests/data/small#smallfile");
 return list;
 }
}

a = load '1.txt';
b = foreach a generate Udfcachetest(*);
dump b;

2.1.13 Import Lists

An import list allows you to specify the package to which a UDF or a group of UDFs belong,
eliminating the need to qualify the UDF on every call. An import list can be specified via the
udf.import.list Java property on the Pig command line:

pig -Dudf.import.list=com.yahoo.yst.sds.ULT

You can supply multiple locations as well:

pig -Dudf.import.list=com.yahoo.yst.sds.ULT:org.apache.pig.piggybank.evaluation

To make use of import scripts, do the following:

myscript.pig:
A = load '/data/SDS/data/searcg_US/20090820' using ULTLoader as (s, m, l);
....

command:
pig -cp sds.jar -Dudf.import.list=com.yahoo.yst.sds.ULT myscript.pig

2.2 Load/Store Functions

The load/store UDFs control how data goes into Pig and comes out of Pig. Often, the same
function handles both input and output but that does not have to be the case.

The Pig load/store API is aligned with Hadoop's InputFormat and OutputFormat classes.
This enables you to create new LoadFunc and StoreFunc implementations based on existing
Hadoop InputFormat and OutputFormat classes with minimal code. The complexity of

User Defined Functions

Page 20Copyright © 2012 The Apache Software Foundation. All rights reserved.

reading the data and creating a record lies in the InputFormat while the complexity of writing
the data lies in the OutputFormat. This enables Pig to easily read/write data in new storage
formats as and when an Hadoop InputFormat and OutputFormat is available for them.

Note: Both the LoadFunc and StoreFunc implementations should use the Hadoop 20
API based classes (InputFormat/OutputFormat and related classes) under the new
org.apache.hadoop.mapreduce package instead of the old org.apache.hadoop.mapred
package.

2.2.1 Load Functions

LoadFunc abstract class has three main methods for loading data and for most use cases
it would suffice to extend it. There are three other optional interfaces which can be
implemented to achieve extended functionality:

• LoadMetadata has methods to deal with metadata - most implementation of loaders
don't need to implement this unless they interact with some metadata system. The
getSchema() method in this interface provides a way for loader implementations to
communicate the schema of the data back to pig. If a loader implementation returns data
comprised of fields of real types (rather than DataByteArray fields), it should provide
the schema describing the data returned through the getSchema() method. The other
methods are concerned with other types of metadata like partition keys and statistics.
Implementations can return null return values for these methods if they are not applicable
for that implementation.

• LoadPushDown has methods to push operations from Pig runtime into loader
implementations. Currently only the pushProjection() method is called by Pig to
communicate to the loader the exact fields that are required in the Pig script. The loader
implementation can choose to honor the request (return only those fields required by Pig
script) or not honor the request (return all fields in the data). If the loader implementation
can efficiently honor the request, it should implement LoadPushDown to improve query
performance. (Irrespective of whether the implementation can or cannot honor the
request, if the implementation also implements getSchema(), the schema returned in
getSchema() should describe the entire tuple of data.)
• pushProjection(): This method tells LoadFunc which fields are required in the Pig

script, thus enabling LoadFunc to optimize performance by loading only those fields
that are needed. pushProjection() takes a requiredFieldList. requiredFieldList is
read only and cannot be changed by LoadFunc. requiredFieldList includes a list
of requiredField: each requiredField indicates a field required by the Pig script;
each requiredField includes index, alias, type (which is reserved for future use),
and subFields. Pig will use the column index requiredField.index to communicate
with the LoadFunc about the fields required by the Pig script. If the required
field is a map, Pig will optionally pass requiredField.subFields which contains

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadFunc.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadMetadata.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadPushDown.java?view=markup

User Defined Functions

Page 21Copyright © 2012 The Apache Software Foundation. All rights reserved.

a list of keys that the Pig script needs for the map. For example, if the Pig script
needs two keys for the map, "key1" and "key2", the subFields for that map will
contain two requiredField; the alias field for the first RequiredField will be "key1"
and the alias for the second requiredField will be "key2". LoadFunc will use
requiredFieldResponse.requiredFieldRequestHonored to indicate whether the
pushProjection() request is honored.

• LoadCaster has methods to convert byte arrays to specific types. A loader
implementation should implement this if casts (implicit or explicit) from DataByteArray
fields to other types need to be supported.

The LoadFunc abstract class is the main class to extend for implementing a loader. The
methods which need to be overridden are explained below:

• getInputFormat(): This method is called by Pig to get the InputFormat used by the loader.
The methods in the InputFormat (and underlying RecordReader) are called by Pig in the
same manner (and in the same context) as by Hadoop in a MapReduce java program. If
the InputFormat is a Hadoop packaged one, the implementation should use the new API
based one under org.apache.hadoop.mapreduce. If it is a custom InputFormat, it should
be implemented using the new API in org.apache.hadoop.mapreduce.
If a custom loader using a text-based InputFormat or a file-based InputFormat would
like to read files in all subdirectories under a given input directory recursively, then
it should use the PigTextInputFormat and PigFileInputFormat classes provided
in org.apache.pig.backend.hadoop.executionengine.mapReduceLayer. The Pig
InputFormat classes work around a current limitation in the Hadoop TextInputFormat
and FileInputFormat classes which only read one level down from the provided input
directory. For example, if the input in the load statement is 'dir1' and there are subdirs
'dir2' and 'dir2/dir3' beneath dir1, the Hadoop TextInputFormat and FileInputFormat
classes read the files under 'dir1' only. Using PigTextInputFormat or PigFileInputFormat
(or by extending them), the files in all the directories can be read.

• setLocation(): This method is called by Pig to communicate the load location to the
loader. The loader should use this method to communicate the same information to the
underlying InputFormat. This method is called multiple times by pig - implementations
should bear this in mind and should ensure there are no inconsistent side effects due to
the multiple calls.

• prepareToRead(): Through this method the RecordReader associated with the
InputFormat provided by the LoadFunc is passed to the LoadFunc. The RecordReader
can then be used by the implementation in getNext() to return a tuple representing a
record of data back to pig.

• getNext(): The meaning of getNext() has not changed and is called by Pig runtime to get
the next tuple in the data - in this method the implementation should use the underlying
RecordReader and construct the tuple to return.

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/LoadCaster.java?view=markup

User Defined Functions

Page 22Copyright © 2012 The Apache Software Foundation. All rights reserved.

The following methods have default implementations in LoadFunc and should be overridden
only if needed:

• setUdfContextSignature(): This method will be called by Pig both in the front end
and back end to pass a unique signature to the Loader. The signature can be used to
store into the UDFContext any information which the Loader needs to store between
various method invocations in the front end and back end. A use case is to store
RequiredFieldList passed to it in LoadPushDown.pushProjection(RequiredFieldList) for
use in the back end before returning tuples in getNext(). The default implementation in
LoadFunc has an empty body. This method will be called before other methods.

• relativeToAbsolutePath(): Pig runtime will call this method to allow the Loader to
convert a relative load location to an absolute location. The default implementation
provided in LoadFunc handles this for FileSystem locations. If the load source is
something else, loader implementation may choose to override this.

Example Implementation

The loader implementation in the example is a loader for text data with line delimiter
as '\n' and '\t' as default field delimiter (which can be overridden by passing a different
field delimiter in the constructor) - this is similar to current PigStorage loader in Pig. The
implementation uses an existing Hadoop supported Inputformat - TextInputFormat - as the
underlying InputFormat.

public class SimpleTextLoader extends LoadFunc {
 protected RecordReader in = null;
 private byte fieldDel = '\t';
 private ArrayList<Object> mProtoTuple = null;
 private TupleFactory mTupleFactory = TupleFactory.getInstance();
 private static final int BUFFER_SIZE = 1024;

 public SimpleTextLoader() {
 }

 /**
 * Constructs a Pig loader that uses specified character as a field delimiter.
 *
 * @param delimiter
 * the single byte character that is used to separate fields.
 * ("\t" is the default.)
 */
 public SimpleTextLoader(String delimiter) {
 this();
 if (delimiter.length() == 1) {
 this.fieldDel = (byte)delimiter.charAt(0);
 } else if (delimiter.length() > 1 & & delimiter.charAt(0) == '\\') {
 switch (delimiter.charAt(1)) {
 case 't':
 this.fieldDel = (byte)'\t';
 break;

 case 'x':

User Defined Functions

Page 23Copyright © 2012 The Apache Software Foundation. All rights reserved.

 fieldDel =
 Integer.valueOf(delimiter.substring(2), 16).byteValue();
 break;

 case 'u':
 this.fieldDel =
 Integer.valueOf(delimiter.substring(2)).byteValue();
 break;

 default:
 throw new RuntimeException("Unknown delimiter " + delimiter);
 }
 } else {
 throw new RuntimeException("PigStorage delimeter must be a single character");
 }
 }

 @Override
 public Tuple getNext() throws IOException {
 try {
 boolean notDone = in.nextKeyValue();
 if (notDone) {
 return null;
 }
 Text value = (Text) in.getCurrentValue();
 byte[] buf = value.getBytes();
 int len = value.getLength();
 int start = 0;

 for (int i = 0; i < len; i++) {
 if (buf[i] == fieldDel) {
 readField(buf, start, i);
 start = i + 1;
 }
 }
 // pick up the last field
 readField(buf, start, len);

 Tuple t = mTupleFactory.newTupleNoCopy(mProtoTuple);
 mProtoTuple = null;
 return t;
 } catch (InterruptedException e) {
 int errCode = 6018;
 String errMsg = "Error while reading input";
 throw new ExecException(errMsg, errCode,
 PigException.REMOTE_ENVIRONMENT, e);
 }

 }

 private void readField(byte[] buf, int start, int end) {
 if (mProtoTuple == null) {
 mProtoTuple = new ArrayList<Object>();
 }

 if (start == end) {
 // NULL value
 mProtoTuple.add(null);
 } else {
 mProtoTuple.add(new DataByteArray(buf, start, end));

User Defined Functions

Page 24Copyright © 2012 The Apache Software Foundation. All rights reserved.

 }
 }

 @Override
 public InputFormat getInputFormat() {
 return new TextInputFormat();
 }

 @Override
 public void prepareToRead(RecordReader reader, PigSplit split) {
 in = reader;
 }

 @Override
 public void setLocation(String location, Job job)
 throws IOException {
 FileInputFormat.setInputPaths(job, location);
 }
}

2.2.2 Store Functions

StoreFunc abstract class has the main methods for storing data and for most use cases it
should suffice to extend it. There is an optional interface which can be implemented to
achieve extended functionality:

• StoreMetadata: This interface has methods to interact with metadata systems to store
schema and store statistics. This interface is optional and should only be implemented if
metadata needs to stored.

The methods which need to be overridden in StoreFunc are explained below:

• getOutputFormat(): This method will be called by Pig to get the OutputFormat
used by the storer. The methods in the OutputFormat (and underlying RecordWriter
and OutputCommitter) will be called by pig in the same manner (and in the same
context) as by Hadoop in a map-reduce java program. If the OutputFormat is a
hadoop packaged one, the implementation should use the new API based one under
org.apache.hadoop.mapreduce. If it is a custom OutputFormat, it should be implemented
using the new API under org.apache.hadoop.mapreduce. The checkOutputSpecs()
method of the OutputFormat will be called by pig to check the output location up-front.
This method will also be called as part of the Hadoop call sequence when the job is
launched. So implementations should ensure that this method can be called multiple
times without inconsistent side effects.

• setStoreLocation(): This method is called by Pig to communicate the store location to
the storer. The storer should use this method to communicate the same information to the
underlying OutputFormat. This method is called multiple times by pig - implementations
should bear in mind that this method is called multiple times and should ensure there are
no inconsistent side effects due to the multiple calls.

http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/StoreFunc.java?view=markup
http://svn.apache.org/viewvc/pig/trunk/src/org/apache/pig/StoreMetadata.java?view=markup

User Defined Functions

Page 25Copyright © 2012 The Apache Software Foundation. All rights reserved.

• prepareToWrite(): In the new API, writing of the data is through the OutputFormat
provided by the StoreFunc. In prepareToWrite() the RecordWriter associated with the
OutputFormat provided by the StoreFunc is passed to the StoreFunc. The RecordWriter
can then be used by the implementation in putNext() to write a tuple representing a
record of data in a manner expected by the RecordWriter.

• putNext(): The meaning of putNext() has not changed and is called by Pig runtime
to write the next tuple of data - in the new API, this is the method wherein the
implementation will use the underlying RecordWriter to write the Tuple out.

The following methods have default implementations in StoreFunc and should be overridden
only if necessary:

• setStoreFuncUDFContextSignature(): This method will be called by Pig both in the front
end and back end to pass a unique signature to the Storer. The signature can be used
to store into the UDFContext any information which the Storer needs to store between
various method invocations in the front end and back end. The default implementation in
StoreFunc has an empty body. This method will be called before other methods.

• relToAbsPathForStoreLocation(): Pig runtime will call this method to allow the Storer to
convert a relative store location to an absolute location. An implementation is provided in
StoreFunc which handles this for FileSystem based locations.

• checkSchema(): A Store function should implement this function to check that a given
schema describing the data to be written is acceptable to it. The default implementation
in StoreFunc has an empty body. This method will be called before any calls to
setStoreLocation().

Example Implementation

The storer implementation in the example is a storer for text data with line delimiter
as '\n' and '\t' as default field delimiter (which can be overridden by passing a different
field delimiter in the constructor) - this is similar to current PigStorage storer in Pig. The
implementation uses an existing Hadoop supported OutputFormat - TextOutputFormat as the
underlying OutputFormat.

public class SimpleTextStorer extends StoreFunc {
 protected RecordWriter writer = null;

 private byte fieldDel = '\t';
 private static final int BUFFER_SIZE = 1024;
 private static final String UTF8 = "UTF-8";
 public PigStorage() {
 }

 public PigStorage(String delimiter) {
 this();
 if (delimiter.length() == 1) {
 this.fieldDel = (byte)delimiter.charAt(0);

User Defined Functions

Page 26Copyright © 2012 The Apache Software Foundation. All rights reserved.

 } else if (delimiter.length() > 1delimiter.charAt(0) == '\\') {
 switch (delimiter.charAt(1)) {
 case 't':
 this.fieldDel = (byte)'\t';
 break;

 case 'x':
 fieldDel =
 Integer.valueOf(delimiter.substring(2), 16).byteValue();
 break;
 case 'u':
 this.fieldDel =
 Integer.valueOf(delimiter.substring(2)).byteValue();
 break;

 default:
 throw new RuntimeException("Unknown delimiter " + delimiter);
 }
 } else {
 throw new RuntimeException("PigStorage delimeter must be a single character");
 }
 }

 ByteArrayOutputStream mOut = new ByteArrayOutputStream(BUFFER_SIZE);

 @Override
 public void putNext(Tuple f) throws IOException {
 int sz = f.size();
 for (int i = 0; i < sz; i++) {
 Object field;
 try {
 field = f.get(i);
 } catch (ExecException ee) {
 throw ee;
 }

 putField(field);

 if (i != sz - 1) {
 mOut.write(fieldDel);
 }
 }
 Text text = new Text(mOut.toByteArray());
 try {
 writer.write(null, text);
 mOut.reset();
 } catch (InterruptedException e) {
 throw new IOException(e);
 }
 }

 @SuppressWarnings("unchecked")
 private void putField(Object field) throws IOException {
 //string constants for each delimiter
 String tupleBeginDelim = "(";
 String tupleEndDelim = ")";
 String bagBeginDelim = "{";
 String bagEndDelim = "}";
 String mapBeginDelim = "[";
 String mapEndDelim = "]";

User Defined Functions

Page 27Copyright © 2012 The Apache Software Foundation. All rights reserved.

 String fieldDelim = ",";
 String mapKeyValueDelim = "#";

 switch (DataType.findType(field)) {
 case DataType.NULL:
 break; // just leave it empty

 case DataType.BOOLEAN:
 mOut.write(((Boolean)field).toString().getBytes());
 break;

 case DataType.INTEGER:
 mOut.write(((Integer)field).toString().getBytes());
 break;

 case DataType.LONG:
 mOut.write(((Long)field).toString().getBytes());
 break;

 case DataType.FLOAT:
 mOut.write(((Float)field).toString().getBytes());
 break;

 case DataType.DOUBLE:
 mOut.write(((Double)field).toString().getBytes());
 break;

 case DataType.BYTEARRAY: {
 byte[] b = ((DataByteArray)field).get();
 mOut.write(b, 0, b.length);
 break;
 }

 case DataType.CHARARRAY:
 // oddly enough, writeBytes writes a string
 mOut.write(((String)field).getBytes(UTF8));
 break;

 case DataType.MAP:
 boolean mapHasNext = false;
 Map<String, Object> m = (Map<String, Object>)field;
 mOut.write(mapBeginDelim.getBytes(UTF8));
 for(Map.Entry<String, Object> e: m.entrySet()) {
 if(mapHasNext) {
 mOut.write(fieldDelim.getBytes(UTF8));
 } else {
 mapHasNext = true;
 }
 putField(e.getKey());
 mOut.write(mapKeyValueDelim.getBytes(UTF8));
 putField(e.getValue());
 }
 mOut.write(mapEndDelim.getBytes(UTF8));
 break;

 case DataType.TUPLE:
 boolean tupleHasNext = false;
 Tuple t = (Tuple)field;
 mOut.write(tupleBeginDelim.getBytes(UTF8));
 for(int i = 0; i < t.size(); ++i) {

User Defined Functions

Page 28Copyright © 2012 The Apache Software Foundation. All rights reserved.

 if(tupleHasNext) {
 mOut.write(fieldDelim.getBytes(UTF8));
 } else {
 tupleHasNext = true;
 }
 try {
 putField(t.get(i));
 } catch (ExecException ee) {
 throw ee;
 }
 }
 mOut.write(tupleEndDelim.getBytes(UTF8));
 break;

 case DataType.BAG:
 boolean bagHasNext = false;
 mOut.write(bagBeginDelim.getBytes(UTF8));
 Iterator<Tuple> tupleIter = ((DataBag)field).iterator();
 while(tupleIter.hasNext()) {
 if(bagHasNext) {
 mOut.write(fieldDelim.getBytes(UTF8));
 } else {
 bagHasNext = true;
 }
 putField((Object)tupleIter.next());
 }
 mOut.write(bagEndDelim.getBytes(UTF8));
 break;

 default: {
 int errCode = 2108;
 String msg = "Could not determine data type of field: " + field;
 throw new ExecException(msg, errCode, PigException.BUG);
 }

 }
 }

 @Override
 public OutputFormat getOutputFormat() {
 return new TextOutputFormat<WritableComparable, Text>();
 }

 @Override
 public void prepareToWrite(RecordWriter writer) {
 this.writer = writer;
 }

 @Override
 public void setStoreLocation(String location, Job job) throws IOException {
 job.getConfiguration().set("mapred.textoutputformat.separator", "");
 FileOutputFormat.setOutputPath(job, new Path(location));
 if (location.endsWith(".bz2")) {
 FileOutputFormat.setCompressOutput(job, true);
 FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);
 } else if (location.endsWith(".gz")) {
 FileOutputFormat.setCompressOutput(job, true);
 FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);
 }
 }

User Defined Functions

Page 29Copyright © 2012 The Apache Software Foundation. All rights reserved.

}

2.3 Advanced Topics

2.3.1 UDF Interfaces

Java UDFs can be invoked multiple ways. The simplest UDF can just extend EvalFunc,
which requires only the exec function to be implemented (see How to Write a Simple Eval
Function). Every eval UDF must implement this. Additionally, if a function is algebraic, it
can implement Algebraic interface to significantly improve query performance in the
cases when combiner can be used (see Algebraic Interface). Finally, a function that can
process tuples in an incremental fashion can also implement the Accumulator interface to
improve query memory consumption (see Accumulator Interface).

The optimizer selects the exact method by which a UDF is invoked based on the UDF type
and the query. Note that only a single interface is used at any given time. The optimizer tries
to find the most efficient way to execute the function. If a combiner is used and the function
implements the Algebraic interface then this interface will be used to invoke the function. If
the combiner is not invoked but the accumulator can be used and the function implements
Accumulator interface then that interface is used. If neither of the conditions is satisfied then
the exec function is used to invoke the UDF.

2.3.2 Function Instantiation

One problem that users run into is when they make assumption about how many times a
constructor for their UDF is called. For instance, they might be creating side files in the
store function and doing it in the constructor seems like a good idea. The problem with this
approach is that in most cases Pig instantiates functions on the client side to, for instance,
examine the schema of the data.

Users should not make assumptions about how many times a function is instantiated; instead,
they should make their code resilient to multiple instantiations. For instance, they could
check if the files exist before creating them.

2.3.3 Passing Configurations to UDFs

The singleton UDFContext class provides two features to UDF writers. First, on the backend,
it allows UDFs to get access to the JobConf object, by calling getJobConf. This is only
available on the backend (at run time) as the JobConf has not yet been constructed on the
front end (during planning time).

Second, it allows UDFs to pass configuration information between instantiations of the UDF
on the front and backends. UDFs can store information in a configuration object when they
are constructed on the front end, or during other front end calls such as describeSchema.

User Defined Functions

Page 30Copyright © 2012 The Apache Software Foundation. All rights reserved.

They can then read that information on the backend when exec (for EvalFunc) or getNext
(for LoadFunc) is called. Note that information will not be passed between instantiations of
the function on the backend. The communication channel only works from front end to back
end.

To store information, the UDF calls getUDFProperties. This returns a Properties object
which the UDF can record the information in or read the information from. To avoid name
space conflicts UDFs are required to provide a signature when obtaining a Properties object.
This can be done in two ways. The UDF can provide its Class object (via this.getClass()).
In this case, every instantiation of the UDF will be given the same Properties object. The
UDF can also provide its Class plus an array of Strings. The UDF can pass its constructor
arguments, or some other identifying strings. This allows each instantiation of the UDF to
have a different properties object thus avoiding name space collisions between instantiations
of the UDF.

2.3.4 Monitoring Long-Running UDFs

Sometimes one may discover that a UDF that executes very quickly in the vast majority
of cases turns out to run exceedingly slowly on occasion. This can happen, for example,
if a UDF uses complex regular expressions to parse free-form strings, or if a UDF uses
some external service to communicate with. As of version 0.8, Pig provides a facility for
monitoring the length of time a UDF is executing for every invocation, and terminating its
execution if it runs too long. This facility can be turned on using a simple Java annotation:

 import org.apache.pig.builtin.MonitoredUDF;

 @MonitoredUDF
 public class MyUDF extends EvalFunc<Integer> {
 /* implementation goes here */
 }

Simply annotating your UDF in this way will cause Pig to terminate the UDF's exec()
method if it runs for more than 10 seconds, and return the default value of null. The duration
of the timeout and the default value can be specified in the annotation, if desired:

 import org.apache.pig.builtin.MonitoredUDF;

 @MonitoredUDF(timeUnit = TimeUnit.MILLISECONDS, duration = 100, intDefault = 10)
 public class MyUDF extends EvalFunc<Integer> {
 /* implementation goes here */
 }

intDefault, longDefault, doubleDefault, floatDefault, and stringDefault can be specified
in the annotation; the correct default will be chosen based on the return type of the UDF.
Custom defaults for tuples and bags are not supported at this time.

User Defined Functions

Page 31Copyright © 2012 The Apache Software Foundation. All rights reserved.

If desired, custom logic can also be implemented for error handling by creating a subclass of
MonitoredUDFExecutor.ErrorCallback, and overriding its handleError and/or handleTimeout
methods. Both of those methods are static, and are passed in the instance of the EvalFunc
that produced an exception, as well as an exception, so you may use any state you have in the
UDF to process the errors as desired. The default behavior is to increment Hadoop counters
every time an error is encountered. Once you have an implementation of the ErrorCallback
that performs your custom logic, you can provide it in the annotation:

 import org.apache.pig.builtin.MonitoredUDF;

 @MonitoredUDF(errorCallback=MySpecialErrorCallback.class)
 public class MyUDF extends EvalFunc<Integer> {
 /* implementation goes here */
 }

Currently the MonitoredUDF annotation works with regular and Algebraic UDFs, but has no
effect on UDFs that run in the Accumulator mode.

3 Writing Python UDFs

3.1 Registering the UDF

You can register a Python script as shown here. This example uses
org.apache.pig.scripting.jython.JythonScriptEngine to interpret the Python script. You can
develop and use custom script engines to support multiple programming languages and
ways to interpret them. Currently, Pig identifies jython as a keyword and ships the required
scriptengine (jython) to interpret it.

Register 'test.py' using jython as myfuncs;

The following syntax is also supported, where myfuncs is the namespace created for all the
functions inside test.py.

register 'test.py' using org.apache.pig.scripting.jython.JythonScriptEngine as myfuncs;

A typical test.py looks like this:

@outputSchema("word:chararray")
def helloworld():
 return 'Hello, World'

@outputSchema("word:chararray,num:long")
def complex(word):
 return str(word),len(word)

@outputSchemaFunction("squareSchema")

User Defined Functions

Page 32Copyright © 2012 The Apache Software Foundation. All rights reserved.

def square(num):
 return ((num)*(num))

@schemaFunction("squareSchema")
def squareSchema(input):
 return input

No decorator - bytearray
def concat(str):
 return str+str

The register statement above registers the Python functions defined in test.py in Pig’s
runtime within the defined namespace (myfuncs here). They can then be referred later on
in the pig script as myfuncs.helloworld(), myfuncs.complex(), and myfuncs.square(). An
example usage is:

b = foreach a generate myfuncs.helloworld(), myfuncs.square(3);

3.2 Decorators and Schemas

To annotate a Python script so that Pig can identify return types, use Python decorators to
define output schema for the script UDF.

• outputSchema - Defines schema for a script UDF in a format that Pig understands and is
able to parse.

• outputFunctionSchema - Defines a script delegate function that defines schema for this
function depending upon the input type. This is needed for functions that can accept
generic types and perform generic operations on these types. A simple example is square
which can accept multiple types. SchemaFunction for this type is a simple identity
function (same schema as input).

• schemaFunction - Defines delegate function and is not registered to Pig.

When no decorator is specified, Pig assumes the output datatype as bytearray and converts
the output generated by script function to bytearray. This is consistent with Pig's behavior in
case of Java UDFs.

Sample Schema String - y:{t:(word:chararray,num:long)}, variable names inside a schema
string are not used anywhere, they just make the syntax identifiable to the parser.

3.3 Example Scripts

Simple tasks like string manipulation, mathematical computations, and reorganizing
data types can be easily done using Python scripts without having to develop long and
complex UDFs in Java. The overall overhead of using scripting language is much less and
development cost is almost negligible. The following UDFs, developed in Python, can be
used with Pig.

User Defined Functions

Page 33Copyright © 2012 The Apache Software Foundation. All rights reserved.

 mySampleLib.py

 #/usr/bin/python

 ##################
 # Math functions #
 ##################
 #Square - Square of a number of any data type
 @outputSchemaFunction("squareSchema")
 def square(num):
 return ((num)*(num))
 @schemaFunction("squareSchema")
 def squareSchema(input):
 return input

 #Percent- Percentage
 @outputSchema("percent:double")
 def percent(num, total):
 return num * 100 / total

 ####################
 # String Functions #
 ####################
 #commaFormat- format a number with commas, 12345-> 12,345
 @outputSchema("numformat:chararray")
 def commaFormat(num):
 return '{:,}'.format(num)

 #concatMultiple- concat multiple words
 @outputSchema("onestring:chararray")
 def concatMult4(word1, word2, word3, word4):
 return word1 word2 word3 word4

 #######################
 # Data Type Functions #
 #######################
 #collectBag- collect elements of a bag into other bag
 #This is useful UDF after group operation
 @outputSchema("y:bag{t:tuple(len:int,word:chararray)}")
 def collectBag(bag):
 outBag = []
 for word in bag:
 tup=(len(bag), word[1])
 outBag.append(tup)
 return outBag

 # Few comments-
 # Pig mandates that a bag should be a bag of tuples, Python UDFs should follow this
 pattern.
 # Tuples in Python are immutable, appending to a tuple is not possible.

3.4 Advanced Topics

UDFs and Pig scripts are generally stored in separate files. For testing purposes you can
combine the code in a single file - a "combined" script. Note, however, if you then decide to

User Defined Functions

Page 34Copyright © 2012 The Apache Software Foundation. All rights reserved.

embed this "combined" script in a host language, the language of the UDF must match the
host language.

This example combines Python and Pig. This "combined" script can only be embedded in
Python.

With Python you MUST use the if __name__ == '__main__': construct to
separate UDFs and control flow. Otherwise the script will result in an error.

 #!/usr/bin/jython
from org.apache.pig.scripting import *

@outputSchema("word:chararray")
def helloworld():
 return 'Hello, World'

if __name__ == '__main__':
 P = Pig.compile("""a = load '1.txt' as (a0, a1);
 b = foreach a generate helloworld();
 store b into 'myoutput'; """)

result = P.bind().runSingle();

4 Writing JavaScript UDFs

Note: JavaScript UDFs are an experimental feature.

4.1 Registering the UDF

You can register JavaScript as shown here. This example uses
org.apache.pig.scripting.js.JsScriptEngine to interpret JavaScript. You can develop and use
custom script engines to support multiple programming languages and ways to interpret
them. Currently, Pig identifies js as a keyword and ships the required scriptengine (js) to
interpret it.

 register 'test.js' using javascript as myfuncs;

The following syntax is also supported, where myfuncs is the namespace created for all the
functions inside test.js.

 register 'test.js' using org.apache.pig.scripting.js.JsScriptEngine as myfuncs;

The register statement above registers the js functions defined in test.js in Pig’s runtime
within the defined namespace (myfuncs here). They can then be referred later on in the pig

User Defined Functions

Page 35Copyright © 2012 The Apache Software Foundation. All rights reserved.

script as myfuncs.helloworld(), myfuncs.complex(), and myfuncs.square(). An example
usage is:

 b = foreach a generate myfuncs.helloworld(), myfuncs.complex($0);

4.2 Return Types and Schemas

Since JavaScript functions are first class objects, you can annotate them by adding attributes.
Add an outputSchema attribute to your function so that Pig can identify return types for the
script UDF.

• outputSchema - Defines schema for a script udf in a format that Pig understands and is
able to parse.

• Sample Schema String - y:{t:(word:chararray,num:long)}
Variable names inside a schema string are used for type conversion between Pig and
JavaScript. Tuples are converted to Objects using the names and vice versa

4.3 Example Scripts

A simple JavaScript UDF (udf.js) is shown here.

 helloworld.outputSchema = "word:chararray";
function helloworld() {
 return 'Hello, World';
}

complex.outputSchema = "word:chararray,num:long";
function complex(word){
 return {word:word, num:word.length};
}

This Pig script registers the JavaScript UDF (udf.js).

 register ‘udf.js’ using javascript as myfuncs;
A = load ‘data’ as (a0:chararray, a1:int);
B = foreach A generate myfuncs.helloworld(), myfuncs.complex(a0);
... ...

4.4 Advanced Topics

UDFs and Pig scripts are generally stored in separate files. For testing purposes you can
combine the code in a single file - a "combined" script. Note, however, if you then decide
to embed this "combined" script in a host language, the language of the UDF and the host
language must match.

User Defined Functions

Page 36Copyright © 2012 The Apache Software Foundation. All rights reserved.

This example combines JavaScript and Pig. This "combined" script can only be embedded in
JavaScript.

With JavaScript, the control flow MUST be defined in the main function. Otherwise the
script will result in an error.

importPackage(Packages.org.apache.pig.scripting.js)
pig = org.apache.pig.scripting.js.JSPig;

helloworld.outputSchema = "word:chararray"
function helloworld() {
 return 'Hello, World';
}

function main() {
 var P = pig.compile(" a = load '1.txt' as (a0, a1);”+
 “b = foreach a generate helloworld();”+
 “store b into 'myoutput';");

 var result = P.bind().runSingle();
}

5 Piggy Bank

Piggy Bank is a place for Pig users to share the Java UDFs they have written for use with
Pig. The functions are contributed "as-is." If you find a bug in a function, take the time to fix
it and contribute the fix to Piggy Bank. If you don't find the UDF you need, take the time to
write and contribute the function to Piggy Bank.

Note: Piggy Bank currently supports Java UDFs. Support for Python and JavaScript UDFs
will be added at a later date.

5.1 Accessing Functions

The Piggy Bank functions are currently distributed in source form. Users are required to
checkout the code and build the package themselves. No binary distributions or nightly
builds are available at this time.

To build a jar file that contains all available UDFs, follow these steps:

• Checkout UDF code: svn co http://svn.apache.org/repos/asf/pig/
trunk/contrib/piggybank

• Add pig.jar to your ClassPath: export CLASSPATH=$CLASSPATH:/path/to/
pig.jar

• Build the jar file: from directorytrunk/contrib/piggybank/java run ant. This
will generate piggybank.jar in the same directory.

User Defined Functions

Page 37Copyright © 2012 The Apache Software Foundation. All rights reserved.

To obtain javadoc description of the functions run ant javadoc from directory
trunk/contrib/piggybank/java. The documentation is generate in directory
trunk/contrib/piggybank/java/build/javadoc.

To use a function, you need to determine which package it belongs to. The top level packages
correspond to the function type and currently are:

• org.apache.pig.piggybank.comparison - for custom comparator used by ORDER operator
• org.apache.pig.piggybank.evaluation - for eval functions like aggregates and column

transformations
• org.apache.pig.piggybank.filtering - for functions used in FILTER operator
• org.apache.pig.piggybank.grouping - for grouping functions
• org.apache.pig.piggybank.storage - for load/store functions

(The exact package of the function can be seen in the javadocs or by navigating the source
tree.)

For example, to use the UPPER command:

REGISTER /public/share/pig/contrib/piggybank/java/piggybank.jar ;
TweetsInaug = FILTER Tweets BY org.apache.pig.piggybank.evaluation.string.UPPER(text)
 MATCHES '.*(INAUG|OBAMA|BIDEN|CHENEY|BUSH).*' ;
STORE TweetsInaug INTO 'meta/inaug/tweets_inaug' ;

5.2 Contributing Functions

To contribute a Java function that you have written, do the following:
1. Check the existing javadoc to make sure that the function does not already exist as

described in Accessing Functions.
2. Checkout the UDF code as described in Accessing Functions.
3. Place your java code in the directory that makes sense for your function. The directory

structure currently has two levels: (1) function type, as described in Accessing Functions,
and (2) function subtype, for some of the types (like math or string for eval functions). If
you think your function requires a new subtype, feel free to add one.

4. Make sure that your function is well documented and uses the javadoc style of
documentation.

5. Make sure that your code follows Pig coding conventions described in How to Contribute
to Pig.

6. Make sure that for each function, you add a corresponding test class in the test part of the
tree.

7. Submit your patch following the process described in How to Contribute to Pig.

http://download.oracle.com/javase/1.4.2/docs/tooldocs/solaris/javadoc.html
http://wiki.apache.org/pig/HowToContribute
http://wiki.apache.org/pig/HowToContribute
http://wiki.apache.org/pig/HowToContribute

	Table of contents
	1 Introduction
	2 Writing Java UDFs
	2.1 Eval Functions
	2.1.1 How to Use a Simple Eval Function
	2.1.2 How to Write a Simple Eval Function
	2.1.3 Aggregate Functions
	2.1.4 Algebraic Interface
	2.1.5 Accumulator Interface
	2.1.6 Filter Functions
	2.1.7 Pig Types and Native Java Types
	2.1.8 Schemas and Java UDFs
	2.1.9 Error Handling
	2.1.10 Function Overloading
	2.1.11 Reporting Progress
	2.1.12 Using Distributed Cache
	2.1.13 Import Lists

	2.2 Load/Store Functions
	2.2.1 Load Functions
	2.2.2 Store Functions

	2.3 Advanced Topics
	2.3.1 UDF Interfaces
	2.3.2 Function Instantiation
	2.3.3 Passing Configurations to UDFs
	2.3.4 Monitoring Long-Running UDFs

	3 Writing Python UDFs
	3.1 Registering the UDF
	3.2 Decorators and Schemas
	3.3 Example Scripts
	3.4 Advanced Topics

	4 Writing JavaScript UDFs
	4.1 Registering the UDF
	4.2 Return Types and Schemas
	4.3 Example Scripts
	4.4 Advanced Topics

	5 Piggy Bank
	5.1 Accessing Functions
	5.2 Contributing Functions

