
Hortonworks Cybersecurity Package

 (August 18, 2017)

Analytics

docs.cloudera.com

http://docs.cloudera.com

Hortonworks Cybersecurity
Package

August 18, 2017

ii

Hortonworks Cybersecurity Package: Analytics
Copyright © 2012-2017 Hortonworks, Inc. Some rights reserved.

Hortonworks Cybersecurity Package (HCP) is a modern data application based on Apache Metron,
powered by Apache Hadoop, Apache Storm, and related technologies.

HCP provides a framework and tools to enable greater efficiency in Security Operation Centers (SOCs)
along with better and faster threat detection in real-time at massive scale. It provides ingestion, parsing
and normalization of fully enriched, contextualized data, threat intelligence feeds, triage and machine
learning based detection. It also provides end user near real-time dashboards.

Based on a strong foundation in the Hortonworks Data Platform (HDP) and Hortonworks DataFlow (HDF)
stacks, HCP provides an integrated advanced platform for security analytics.

Please visit the Hortonworks Data Platform page for more information on Hortonworks technology. For
more information on Hortonworks services, please visit either the Support or Training page. Feel free to
Contact Us directly to discuss your specific needs.

Except where otherwise noted, this document is licensed under
Creative Commons Attribution ShareAlike 4.0 License.
http://creativecommons.org/licenses/by-sa/4.0/legalcode

https://hortonworks.com/technology/hortonworksdataplatform
https://hortonworks.com/support
https://hortonworks.com/training/
https://hortonworks.com/about-us/contact-us/
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode
http://creativecommons.org/licenses/by-sa/4.0/legalcode

Hortonworks Cybersecurity
Package

August 18, 2017

iii

Table of Contents
1. Overview ... 1
2. Creating Profiles .. 2

2.1. Installing Profiler ... 2
2.2. Getting Started ... 3
2.3. Configuring the Profiler .. 5
2.4. Starting the Profiler .. 6
2.5. Testing .. 6
2.6. Profile Examples .. 7
2.7. Accessing Profiles .. 10

2.7.1. Selecting Profile Measurements .. 10
2.7.2. Specifying Profile Time and Duration .. 12
2.7.3. Client Profile Example ... 19

3. Creating Models ... 21
3.1. Installing the YARN Application .. 21
3.2. Deploying Models ... 24
3.3. Adding the MaaS Stellar Function to the Sensor Configuration 26
3.4. Starting Topologies and Sending Data ... 27
3.5. Modifying a Model ... 28

4. Analyzing Enriched Data Using Apache Zeppelin .. 29
4.1. Setting up Zeppelin to Run with HCP .. 29

4.1.1. Using Zeppelin Interpreters .. 30
4.1.2. Loading Telemetry Information into Zeppelin 30
4.1.3. Working with Zeppelin ... 30

4.2. Using Zeppelin to Analyze Data .. 31
4.2.1. Next Steps .. 40

5. Creating Runbooks Using Apache Zeppelin .. 41
5.1. Setting up Zeppelin to Run with HCP .. 41

5.1.1. Using Zeppelin Interpreters .. 42
5.1.2. Loading Telemetry Information into Zeppelin 42
5.1.3. Working with Zeppelin ... 42

5.2. Using Zeppelin to Create Runbooks ... 43
6. Analyzing Data Using Statistical and Mathematical Functions 46

6.1. Approximation Statistics .. 46
6.2. Mathematical Functions .. 47
6.3. Distributional Statistics .. 47
6.4. Statistical Outlier Detection ... 49
6.5. Outlier Analysis ... 50

6.5.1. Median Absolution Deviation ... 50
6.5.2. Example ... 50

Hortonworks Cybersecurity
Package

August 18, 2017

iv

List of Figures
4.1. Zeppelin Settings Toolbar .. 31
4.2. Bro Protocols .. 32
4.3. Bro Telemetry Received ... 33
4.4. Most Active Hosts ... 34
4.5. DNS Servers ... 35
4.6. Mime Types .. 35
4.7. Exploded HTTP Records ... 36
4.8. Suspicious xdosexc ... 37
4.9. x-dosexc Requests ... 38
4.10. When Interactions Occur ... 39
5.1. Zeppelin Settings Toolbar .. 44
5.2. Zeppelin Top Talkers ... 45
5.3. Zeppelin Flows By Hour ... 45

Hortonworks Cybersecurity
Package

August 18, 2017

v

List of Tables
2.1. Profile Elements .. 4
2.2. Profiler Properties ... 6
2.3. Profiler Client Configuration Parameters .. 12
6.1. Approximation Statistics .. 46
6.2. Mathematical Functions .. 47
6.3. Distributional Statistics .. 47
6.4. Statistical Outlier Detection ... 49

Hortonworks Cybersecurity
Package

August 18, 2017

1

1. Overview
This guide is intended for Data Scientists responsible for performing data science life
cycle activities, including training, evaluating, and scoring analytical models. This guide
will continue to grow in upcoming releases of Hortonworks Cybersecurity Package (HCP)
powered by Metron. Currently, this guide contains the following sections:

• Creating Profiles [2]

• Creating Models [21]

• Analyzing Enriched Data Using Apache Zeppelin [29]

• Creating Runbooks Using Apache Zeppelin [41]

• Analyzing Data Using Statistical and Mathematical Functions [46]

Hortonworks Cybersecurity
Package

August 18, 2017

2

2. Creating Profiles
A profile describes the behavior of an entity on a network. An entity can be a server, user,
subnet, or application. Once you generate a profile defining what normal behavior looks
like, you can build models that identify anomalous behavior.

Any field contained within a message can be used to generate a profile. A profile can
even be produced by combining fields that originate in different data sources. You can
transform the data used in a profile by leveraging the Stellar language.

The chapter provides the following information on creating profiles:

• Installing Profiler [2]

• Getting Started [3]

• Configuring the Profiler [5]

• Starting the Profiler [6]

• Testing [6]

• Profile Examples [7]

• Accessing Profiles [10]

2.1. Installing Profiler
Follow these instructions to install the Profiler. This assumes that HCP has already been
installed and validated.

1. Build the Metron RPMs (see Building the RPMs).

You may have already built the Metron RPMs when core Metron was installed.

$ find metron-deployment/ -name "metron-profiler*.rpm"
metron-deployment//packaging/docker/rpm-docker/RPMS/noarch/metron-
profiler-0.4.1-201707131420.noarch.rpm

2. Copy the Profiler RPM to the installation host.

The installation host must be the same host on which HCP was installed. Depending on
how you installed HCP, the Profiler RPM might have already been copied to this host
with the other HCP RPMs.

[root@$METRON_HOME ~]# find /localrepo/ -name "metron-profiler*.rpm"
/localrepo/metron-profiler-0.4.0-201707112313.noarch.rpm

3. Install the RPM.

[root@$METRON_HOME ~]# rpm -ivh metron-profiler-*.noarch.rpm
Preparing... ###
 [100%]
 1:metron-profiler ###
 [100%]

https://github.com/apache/metron/blob/master/metron-deployment#rpms

Hortonworks Cybersecurity
Package

August 18, 2017

3

[root@$METRON_HOME ~]# rpm -ql metron-profiler
/usr/metron
/usr/metron/0.4.1
/usr/metron/0.4.1/bin
/usr/metron/0.4.1/bin/start_profiler_topology.sh
/usr/metron/0.4.1/config
/usr/metron/0.4.1/config/profiler.properties
/usr/metron/0.4.1/flux
/usr/metron/0.4.1/flux/profiler
/usr/metron/0.4.1/flux/profiler/remote.yaml
/usr/metron/0.4.1/lib
/usr/metron/0.4.1/lib/metron-profiler-0.4.0-uber.jar

4. Create a table within HBase that will store the profile data. By default, the table is
named profiler with a column family P. The table name and column family must
match the Profiler's configuration (see Configuring the Profiler).

$ /usr/hdp/current/hbase-client/bin/hbase shell
hbase(main):001:0> create 'profiler', 'P'

5. Edit the configuration file located at $METRON_HOME/config/
profiler.properties.

kafka.zk=node1:2181
kafka.broker=node1:6667

Change kafka.zk to refer to ZooKeeper in your environment.

Change kafka.broker to refer to a Kafka Broker in your environment.

6. Start the Profiler topology.

$ cd $METRON_HOME
$ bin/start_profiler_topology.sh

At this point the Profiler is running and consuming telemetry messages. We have not
defined any profiles yet, so it is not doing anything very useful. The next section walks you
through the steps to create your very first "Hello, World!" profile.

2.2. Getting Started
To create a profile, complete the following steps:

1. Create a table within HBase that will store the profile data.

The table name and column family must match the Profiler's configuration.

$ /usr/hdp/current/hbase-client/bin/hbase shell
hbase(main):001:0> create 'profiler', 'P'

2. Define the profile in a file located at $METRON_HOME/config/zookeeper/
profiler.json.

The following example JSON creates a profile that simply counts the number of
messages per ip_src_addr during each sampling interval.

{

https://github.com/apache/metron/tree/master/metron-analytics/metron-profiler#configuring-the-profiler

Hortonworks Cybersecurity
Package

August 18, 2017

4

 "profiles": [
 {
 "profile": "test",
 "foreach": "ip_src_addr",
 "init": { "count": 0 },
 "update": { "count": "count + 1" },
 "result": "count"
 }
]
}

Table 2.1. Profile Elements

Name Description

profile Required A unique name identifying the profile. The field is treated as
a string.

foreach Required A separate profile is maintained 'for each' of these. This is
effectively the entity that the profile is describing. The field
is expected to contain a Stellar expression whose result is
the entity name.

For example, if ip_src_addr then a separate profile
would be maintained for each unique IP source address in
the data; 10.0.0.1, 10.0.0.2, etc.

onlyif Optional An expression that determines if a message should be
applied to the profile. A Stellar expression that returns a
Boolean is expected. A message is only applied to a profile
if this expression is true. This allows a profile to filter the
messages that get applied to it.

groupBy Optional One or more Stellar expressions used to group the profile
measurements when persisted. This is intended to sort the
Profile data to allow for a contiguous scan when accessing
subsets of the data.

The 'groupBy' expressions can refer to any field within a
org.apache.metron.profiler.ProfileMeasurement.
A common use case would be grouping by day of week.
This allows a contiguous scan to access all profile data for
Mondays only. Using the following definition would achieve
this.

"groupBy": ["DAY_OF_WEEK()"]

init Optional One or more expressions executed at the start of a window
period. A map is expected where the key is the variable
name and the value is a Stellar expression. The map can
contain 0 or more variables/expressions. At the start of each
window period the expression is executed once and stored
in a variable with the given name.

"init": {
 "var1": "0",
 "var2": "1"
}

update Required One or more expressions executed when a message is
applied to the profile. A map is expected where the key is
the variable name and the value is a Stellar expression. The
map can include 0 or more variables/expressions. When
each message is applied to the profile, the expression is
executed and stored in a variable with the given name.

"update": {
 "var1": "var1 + 1",
 "var2": "var2 + 1"
}

Hortonworks Cybersecurity
Package

August 18, 2017

5

result Required A Stellar expression that is executed when the window
period expires. The expression is expected to summarize the
messages that were applied to the profile over the window
period. The expression must result in a numeric value such as
a Double, Long, Float, Short, or Integer.

For more advanced use cases, a profile can generate two
types of results. A profile can define one or both of these
result types at the same time.

• profile: A required expression that defines a value that
is persisted for later retrieval.

• triage: An optional expression that defines values that
are accessible within the Threat Triage process.

expires Optional A numeric value that defines how many days the profile
data is retained. After this time, the data expires and is no
longer accessible. If no value is defined, the data does not
expire.

3. Upload the profile definition to ZooKeeper:

$ cd /usr/metron/0.3.0/
$ bin/zk_load_configs.sh -m PUSH -i config/zookeeper/ -z node1:2181

4. Start the Profiler topology:

$ bin/start_profiler_topology.sh

5. Ensure that test messages are being sent to the Profiler's input topic in Kafka.

The Profiler will consume messages from the inputTopic defined in the Profiler's
configuration.

6. Check the HBase table to validate that the Profiler is writing the profile.

Remember that the Profiler is flushing the profile every 15 minutes. You will need to
wait at least this long to start seeing profile data in HBase.

$ /usr/hdp/current/hbase-client/bin/hbase shell
hbase(main):001:0> count 'profiler'

7. Use the Profiler Client to read the profile data.

The following example PROFILE_GET command reads data written by the sample
profile given above, if 10.0.0.1 is one of the input values for ip_src_addr. For more
information on using the API client, refer to Accessing Profiles.

$ bin/stellar -z node1:2181

[Stellar]>>> PROFILE_GET("test", "10.0.0.1", PROFILE_FIXED(30, "MINUTES"))
[451, 448]

2.3. Configuring the Profiler
The Profiler is installed in the HCP install and runs as an independent Storm topology.
The configuration for the Profiler topology is stored in ZooKeeper at /metron/
topology/profiler. These properties also exist in the default installation of HCP
at $METRON_HOME/config/zookeeper/profiler.json. The values can be

Hortonworks Cybersecurity
Package

August 18, 2017

6

changed on disk and then uploaded to ZooKeeper using $METRON_HOME/bin/
zk_load_configs.sh.

You might need to work with your Platform Engineer to modify Profiler values.

Note

The Profiler can persist any serializable object, not just numeric values.

Table 2.2. Profiler Properties

Settings. Description

profiler.workers The number of worker processes to create for the
topology.

profiler.executors The number of executors to spawn per component.

profiler.input.topic The name of the Kafka topic from which to consume data.

profiler.output.topic The name of the Kafka topic to which profile data is
written. Only used with profiles that use the triage result
field.

profiler.period.duration The duration of each profile period.
This value should be define along with
profiler.period.duration.units.

profiler.period.duration.units The units used to specify the profile period
duration. This value should be defined along with
profiler.period.duration.

profiler.ttl If a message has not been applied to a Profile in this
period of time, the Profile will be forgotten and its
resources will be cleaned up. This value should be defined
along with profiler.ttl.units.

profiler.ttl.units The units used to specify the profiler.ttl.

profiler.hbase.salt.divisor A salt is prepended to the row key to help prevent
hotspotting. This constant is used to generate the sale.
Ideally, this constant should be roughly equal to the
number of nodes in the HBase cluster.

profiler.hbase.table The name of the HBase table that profiles are written to.

profiler.hbase.column.family The column family used to store profiles.

profiler.hbase.batch The number of puts that are written in a single batch.

profiler.hbase.flush.interval.seconds The maximum number of seconds between batch writes
to HBase.

2.4. Starting the Profiler
After altering the configuration, start the profiler using the following command:

$ /usr/metron/0.3.0/start_profiler_topology.sh

2.5. Testing
To validate that everything is working, login to the server hosting Metron. We use the
Stellar Shell to replicate the execution environment of Stellar running in a Storm topology,
like Metron's Parser or Enrichment topology. Replace 'node1:2181' with the URL to a
ZooKeeper Broker.

Hortonworks Cybersecurity
Package

August 18, 2017

7

[root@node1 0.3.0]# bin/stellar -z node1:2181
Stellar, Go!
Please note that functions are loading lazily in the background and will be
 unavailable until loaded fully.
{es.clustername=metron, es.ip=node1, es.port=9300, es.date.format=yyyy.MM.dd.
HH}

[Stellar]>>> ?PROFILE_GET
Functions loaded, you may refer to functions now...
PROFILE_GET
Description: Retrieves a series of values from a stored profile.

Arguments:
 profile - The name of the profile.
 entity - The name of the entity.
 durationAgo - How long ago should values be retrieved from?
 units - The units of 'durationAgo'.
 groups - Optional - The groups used to sort the profile.

Returns: The profile measurements.

[Stellar]>>> PROFILE_GET('test','192.168.138.158', 1, 'HOURS')
[12078.0, 8921.0, 12131.0]

The client API call above has retrieved the past hour of the 'test' profile for the entity
'192.168.138.158'.

2.6. Profile Examples
The following examples are intended to highlight the functionality provided by the Profiler.
Each shows the configuration that would be required to generate the profile.

These examples assume a fictitious input message stream that looks something like the
following:

{
 "ip_src_addr": "10.0.0.1",
 "protocol": "HTTPS",
 "length": "10",
 "bytes_in": "234"
},
{
 "ip_src_addr": "10.0.0.2",
 "protocol": "HTTP",
 "length": "20",
 "bytes_in": "390"
},
{
 "ip_src_addr": "10.0.0.3",
 "protocol": "DNS",
 "length": "30",
 "bytes_in": "560"
}

Example 1

The total number of bytes of HTTP data for each host. The following configuration would
be used to generate this profile.

Hortonworks Cybersecurity
Package

August 18, 2017

8

{
 "profiles": [
 {
 "profile": "example1",
 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'HTTP'",
 "init": {
 "total_bytes": 0.0
 },
 "update": {
 "total_bytes": "total_bytes + bytes_in"
 },
 "result": "total_bytes",
 "expires": 30
 }
]
}

This creates a profile with the following parameters:

• Named ‘example1’

• That for each IP source address

• Only if the 'protocol' field equals 'HTTP'

• Initializes a counter ‘total_bytes’ to zero

• Adds to ‘total_bytes’ the value of the message's ‘bytes_in’ field

• Returns ‘total_bytes’ as the result

• The profile data will expire in 30 days

Example 2

The ratio of DNS traffic to HTTP traffic for each host. The following configuration would be
used to generate this profile.

{
 "profiles": [
 {
 "profile": "example2",
 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'DNS' or protocol == 'HTTP'",
 "init": {
 "num_dns": 1.0,
 "num_http": 1.0
 },
 "update": {
 "num_dns": "num_dns + (if protocol == 'DNS' then 1 else 0)",
 "num_http": "num_http + (if protocol == 'HTTP' then 1 else 0)"
 },
 "result": "num_dns / num_http"
 }
]
}

This creates a profile with the following parameters:

Hortonworks Cybersecurity
Package

August 18, 2017

9

• Named ‘example2’

• That for each IP source address

• Only if the 'protocol' field equals 'HTTP' or 'DNS'

• Accumulates the number of DNS requests

• Accumulates the number of HTTP requests

• Returns the ratio of these as the result

Example 3

The average of the length field of HTTP traffic. The following configuration would be
used to generate this profile.

{
 "profiles": [
 {
 "profile": "example3",
 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'HTTP'",
 "update": { "s": "STATS_ADD(s, length)" },
 "result": "STATS_MEAN(s)"
 }
]
}

This creates a profile with the following parameters:

• Named ‘example3’

• That for each IP source address

• Only if the 'protocol' field is 'HTTP'

• Adds the length field from each message

• Calculates the average as the result

Example 4

It is important to note that the Profiler can persist any serializable Object, not just numeric
values. An alternative to the previous example could take advantage of this.

Instead of storing the mean of the length, the profile could store a more generic summary
of the length. This summary can then be used at a later time to calculate the mean, min,
max, percentiles, or any other sensible metric. This provides a much greater degree of
flexibility.

{
 "profiles": [
 {
 "profile": "example4",

Hortonworks Cybersecurity
Package

August 18, 2017

10

 "foreach": "ip_src_addr",
 "onlyif": "protocol == 'HTTP'",
 "update": { "s": "STATS_ADD(s, length)" },
 "result": "s"
 }
]
}

The following Stellar REPL session shows how you might use this summary to calculate
different metrics with the same underlying profile data.

Retrieve the last 30 minutes of profile measurements for a specific host.

$ bin/stellar -z node1:2181

[Stellar]>>> stats := PROFILE_GET("example4", "10.0.0.1", PROFILE_FIXED(30,
 "MINUTES"))
[Stellar]>>> stats
[org.apache.metron.common.math.stats.OnlineStatisticsProvider@79fe4ab9, ...]

Calculate different metrics with the same profile data.

[Stellar]>>> STATS_MEAN(GET_FIRST(stats))
15979.0625

[Stellar]>>> STATS_PERCENTILE(GET_FIRST(stats), 90)
30310.958

Merge all of the profile measurements over the past 30 minutes into a single summary and
calculate the 90th percentile.

[Stellar]>>> merged := STATS_MERGE(stats)
[Stellar]>>> STATS_PERCENTILE(merged, 90)
29810.992

2.7. Accessing Profiles
You can use a client API to access the profiles generated by the HCP Profiler to use for
model scoring. HCP provides a Stellar API to access the profile data but this section provides
only instructions for using the Stellar client API. You can use this API in conjunction
with other Stellar functions such as MAAS_MODEL_APPLY to perform model scoring on
streaming data.

To use the Profiler, see Getting Started.

2.7.1. Selecting Profile Measurements

The PROFILE_GET command allows you to select all of the profile measurements written.
This command takes the following arguments:

REQUIRED::

profile The name of the profile

entity The name of the entity

Hortonworks Cybersecurity
Package

August 18, 2017

11

periods The list of profile periods to grab. These are ProfilePeriod objects. This field
is generally the output of another Stellar function which defines the times to
include. For more information about the periods argument, see Specifying
Profile Time and Duration

OPTIONAL:

groups_list List (in square brackets) of groupBy values used to filter the profile.
Default is an empty list, which means that groupBy was not
used when creating the profile. This list must correspond to the
'groupBy' list used in profile creation.

The groups_list argument in the client must exactly correspond
to the groupBy configuration in the profile definition. If groupBy
was not used in the profile, groups_list must be empty in
the client. If groupBy was used in the profile, then the client
groups_list is not optional; it must be the same length as the
groupBy list, and specify exactly one selected group value for each
groupBy criterion, in the same order. For example:

If in Profile, the groupBy criteria are:
 [“DAY_OF_WEEK()”, “URL_TO_PORT()”]
Then in PROFILE_GET, an allowed groups value would be:
 [“3”, “8080”]
which will select only records from Tuesdays with port
 number 8080.

config_overrides Map (in curly braces) of name:value pairs, each overriding the
global config parameter of the same name. Default is the empty
Map, meaning no overrides.

Note

There is an older calling format where groups_list
is specified as a sequence of group names, "varargs"
style, instead of a List object. This format is still
supported for backward compatibility, but it is
deprecated, and it is disallowed if the optional
config_overrides argument is used.

By default, the Profiler creates profiles with a period duration of
15 minutes. This means that data is accumulated, summarized, and
flushed every 15 minutes. The Client API must also have knowledge
of this duration to correctly retrieve the profile data. If the Client
is expecting 15 minute periods, it will not be able to read data
generated by a Profiler that was configured for 1 hour periods, and
will return zero results.

Similarly, all six Client configuration parameters listed in the
table below must match the Profiler configuration parameter
settings from the time the profile was created. The period duration
and other configuration parameters from the Profiler topology
are stored in a local file system at $METRON_HOME/config/
profiler.properties. The Stellar Client API can be configured

https://github.com/apache/incubator-metron/blob/master/metron-analytics/metron-profiler#groupby

Hortonworks Cybersecurity
Package

August 18, 2017

12

correspondingly by setting the following properties in HCP's global
configuration, on a local file system at $METRON_HOME/config/
zookeeper/global.json, then uploaded to ZooKeeper (at /
metron/topology/global) by using zk_load_configs.sh:

```
$ cd $METRON_HOME
$ bin/zk_load_configs.sh -m PUSH -i config/zookeeper/ -z
 node1:2181
```

Any of these six Client configuration parameters may be
overridden at run time using the config_overrides Map
argument in PROFILE_GET. The primary use case for overriding
the client configuration parameters is when historical profiles
have been created with a different Profiler configuration than is
currently configured, and the analyst, needing to access them,
does not want to change the global Client configuration so as not
to disrupt the work of other analysts working with current profiles.

Table 2.3. Profiler Client Configuration Parameters

Key Description Required Default

profiler.client.period.durationThe duration of
each profile period.
This value should be
defined along with
profiler.client.period.duration.units.

Optional 15

profiler.client.period.duration.unitsThe units used to
specify the profile
period duration.
This value should be
defined along with
profiler.client.period.duration.

Optional MINUTES

profiler.client.hbase.tableThe name of the
HBase table used to
store profile data.

Optional profiler

profiler.client.hbase.column.familyThe name of the
HBase column family
used to store profile
data.

Optional P

profiler.client.salt.divisorThe salt divisor used
to store profile data.

Optional 1000

hbase.provider.impl The name of the
HBaseTableProvider
implementation
class.

Optional

2.7.2. Specifying Profile Time and Duration

The third required argument for PROFILE_GET is a list of ProfilePeriod objects. These
objects allow you to specify the timing, frequency, and duration of the PROFILE_GET.
This list is produced by another Stellar function. There are two options available:
PROFILE_FIXED and PROFILE_WINDOW.

PROFILE_FIXED

Hortonworks Cybersecurity
Package

August 18, 2017

13

PROFILE_FIXED specifies a fixed period to look back at the profiler data starting from
now. These are ProfilePeriod objects.

REQUIRED:

durationAgo How long ago should values be retrieved from?

units The units of 'durationAgo'.

OPTIONAL:

config_overrides Map (in curly braces) of name:value pairs, each overriding the
global config parameter of the same name. Default is the empty
Map, meaning no overrides.

For example, to retrieve all the profiles for the last 5 hours:
PROFILE_GET('profile', 'entity', PROFILE_FIXED(5, 'HOURS'))

Note

Note that the config_overrides parameter operates exactly as the
config_overrides argument in PROFILE_GET. The only available
parameters for override are:

• profiler.client.period.duration

• profiler.client.period.duration.units

PROFILE_WINDOW

PROFILE_WINDOW provides a finer-level of control over selecting windows for profiles. This
profile selector allows you to specify the exact time, duration, and frequency for the profile.
It does this by a domain specific language that mimics natural language that defines the
excluded windows. You can use PROFILE_WINDOW to specify:

• Windows relative to the data timestamp (see the optional now parameter below)

• Non-contiguous windows to better handle seasonal data (for example, the last hour for
every day for the last month)

• Profile output excluding holidays

• Only profile output on a specific day of the week

REQUIRED:

windowSelector The statement specifying the window to select.

now Optional - The timestamp to use for now.

OPTIONAL:

config_overrides Map (in curly braces) of name:value pairs, each overriding the
global config parameter of the same name. Default is the empty
Map, meaning no overrides.

Hortonworks Cybersecurity
Package

August 18, 2017

14

For example, to retrieve all the measurements written for 'profile' and 'entity' for the last
hour on the same weekday excluding weekends and US holidays across the last 14 days:

PROFILE_GET('profile', 'entity', PROFILE_WINDOW('1 hour window every 24 hours
 starting from 14 days ago including the current day of the week excluding
 weekends, holidays:us'))

Note that the config_overrides parameter operates exactly as the
config_overrides argument in PROFILE_GET. The only available parameters for
override are:

• profiler.client.period.duration

• profiler.client.period.duration.units

2.7.2.1. Profile Selector Language

The domain specific language for the profile selector can be broken into a series of clauses,
some of which are optional:

Total Temporal Duration The total range of time in which windows may be
specified

Temporal Window Width The size of each temporal window

Skip distance (optional) How far to skip between when one window
starts and when the next begins

Inclusion/Exclusion specifiers (optional) The set of specifiers to further filter the
window

You must specify either a total temporal duration or a temporal window width. The
remaining clauses are optional.

From a high level, the domain specific language fits the following three forms, which are
composed of the clauses above:

• time_interval Window (INCLUDING specifier list) (EXCLUDING specifier list)

temporal window width inclusion specifiers exclusion specifier

• time_interval WINDOW EVERY time_interval FROM time_interval (TO time_interval)
(INCLUDING specifier_list) (EXCLUDING specifier list)

temporal window width skip distance total temporal duration inclusion specifiers
exclusion specifier

• FROM time_interval (TO time_interval)

total temporal duration total temporal duration

Total Temporal Duration

Total temporal duration is specified by a phrase: FROM time_interval AGO TO
time_interval AGO. This indicates the beginning and ending of a time interval. This is
an inclusive duration.

Hortonworks Cybersecurity
Package

August 18, 2017

15

FROM Can be the words "from" or "starting from".

time_interval A time amount followed by a unit (for example, 1 hour). Fractional
amounts are not supported. The unit may be "minute", "day", "hour"
with any pluralization.

TO Can be the words "until" or "to".

AGO (optional) The word "ago"

The TO time_interval AGO portion is optional. If this portion is unspecified then it is
expected that the time interval ends now.

Due to the vagaries of the English language, the from and the to portions, if both are
specified, are interchangeable with regard to which one specifies the start and which
specifies the end. In other words "starting from 1 hour ago to 30 minutes ago" and "starting
from 30 minutes ago to 1 hour ago" specify the same temporal duration.

Total Temporal Duration Examples

The domain specific language allows for some flexibility on how to specify a duration. The
following are examples of various ways you can specify the same duration.

• A duration starting 1 hour ago and ending now:

• from 1 hour ago

• from 1 hour

• starting from 1 hour ago

• starting from 1 hour

• A duration starting 1 hour ago and ending 30 minutes ago:

• from 1 hour ago until 30 minutes ago

• from 30 minutes ago until 1 hour ago

• starting from 1 hour ago to 30 minutes ago

• starting from 1 hour to 30 minutes

Temporal Window Width

Temporal window width is the specification of a window. A window may either repeat
within a total temporal duration or it may fill the total temporal duration. This is an
inclusive window. A temporal window width is specified by the phrase: time_interval
WINDOW.

time_interval A time amount followed by a unit (for example, 1 hour). Fractional
amounts are not supported. The unit may be "minute", day", or "hour"
with any pluralization.

WINDOW (optional) The word "window".

Hortonworks Cybersecurity
Package

August 18, 2017

16

Temporal Window Width Examples

• A fixed window starting 2 hours ago and going until now

• 2 hour

• 2 hours

• 2 hours window

• A repeating 30 minute window starting 2 hours ago and repeating every hour until now.
This would result in 2 30-minute wide windows: 2 hours ago and 1 hour ago

• 30 minute window every 1 hour starting from 2 hours ago

temporal window width skip distance total temporal duration

• 30 minute windows every 1 hour from 2 hours ago

temporal window width skip distance total temporal duration

Skip Distance

Skip distance is the amount of time between when one temporal window begins and the
next window starts. It is, in effect, the window period. It is specified by the phrase EVERY
time_interval.

time_interval A time amount followed by a unit (for example, 1 hour). Fractional
amounts are not supported. The unit may be "minute", "day", or "hour"
with any pluralization.

EVERY The word/phrase "every" or "for every".

Skip Distance Examples

• A repeating 30 minute window starting 2 hours ago and repeating every hour until now.
This would result in 2 30-minute wide windows: 2 hours ago and 1 hour ago

• 30 minute window every 1 hour starting from 2 hours ago

temporal window width skip distance total temporal duration

• 30 minutes window every 1 hour from 2 hours ago

temporal window width skip distance total temporal duration

• A repeating 30 minute window starting 2 hours ago and repeating every hour until 30
minutes ago. This would result in 2 30-minute wide windows: 2 hours ago and 1 hour ago

• 30 minute window every 1 hour starting from 2 hours ago until 30 minutes ago

temporal window width skip distance total temporal duration

• 30 minutes window every 1 hour from 2 hours ago to 30 minutes ago

temporal window width skip distance total temporal duration

Hortonworks Cybersecurity
Package

August 18, 2017

17

• 30 minutes window for every 1 hour from 30 minutes ago to 2 hours ago

temporal window width skip distance total temporal duration

Inclusion/Exclusion Specifiers

Inclusion and Exclusion specifiers operate as filters on the set of windows. They operate on
the window beginning timestamp.

For inclusion specifiers, windows that are passed by any of the set of inclusion specifiers
are included. Similarly, windows that are passed by any of the set of exclusion specifiers are
excluded. Exclusion specifiers trump inclusion specifiers.

Specifiers follow one of the following formats depending on if it is an inclusion or exclusion
specifier:

• INCLUSION specifier, specifier, ...

INCLUSION can be "include", "includes" or "including"

• EXCLUSION specifier, specifier, ...

EXCLUSION can be "exclude", "excludes" or "excluding"

The specifiers are a set of fixed specifiers available as part of the language:

• Fixed day of week-based specifiers - includes or excludes if the window is on the specified
day of the week

• "monday" or "mondays"

• "tuesday" or "tuesdays"

• "wednesday" or "wednesdays"

• "thursday" or "thursdays"

• "friday" or "fridays"

• "saturday" or "saturdays"

• "sunday" or "sundays"

• "weekday" or "weekdays"

• "weekend" or ""weekends"

• Relative day of week-based specifiers - includes or excludes based on the day of week
relative to now

• "current day of the week"

• "current day of week"

• "this day of the week"

Hortonworks Cybersecurity
Package

August 18, 2017

18

• "this day of week"

• Specified date - includes or excludes based on the specified date

• "date" - Takes up to 2 arguments

• The day in yyyy/MM/dd format if no second argument is provided

Example: date:2017/12/25 would include or exclude December 25, 2017

• (optional) The format in which to specify the first argument

Example: date:20171225:yyyyMMdd would include or exclude December 25,
2017

• Holidays - includes or excludes based on if the window starts during a holiday

• "holiday" or "holidays"

• Arguments form the jollyday hierarchy of holidays. For example, "us:nyc" would be
holidays for New York City, USA.

Countries supported are those supported in jollyday

Example: holiday:us:nyc would be the holidays of New York City, USA

• If none is specified, it will choose based on locale.

Example: holiday:hu would be the holidays of Hungary

Inclusion/Exclusion Specifiers Examples

The following are inclusion/exclusion specifier examples and identify the various clauses
used in these examples.

Assume the following examples are executed at noon.

• A 1 hour window for the past 8 'current day of the week'

• 1 hour window every 24 hours from 56 days ago including this day of the week

temporal window width skip distance total temporal duration inclusion/exclusion
specifiers

• A 1 hour window for the past 8 tuesdays

• 1 hour window every 24 hours from 56 days ago including tuesdays

temporal window width skip distance total temporal duration inclusion/exclusion
specifiers

• A 30 minute window every tuesday at noon starting 14 days ago until now

• 30 minute window every 24 hours from 14 days ago including tuesdays

https://github.com/svendiedrichsen/jollyday/tree/master/src/main/resources/holidays
https://github.com/svendiedrichsen/jollyday/tree/master/src/main/resources/holidays

Hortonworks Cybersecurity
Package

August 18, 2017

19

temporal window width skip distance total temporal duration inclusion/exclusion
specifiers

• A 30 minute window every day except holidays and weekends at noon starting 14 days
ago until now

• 30 minutes every 24 hours from 14 days ago excluding holidays:us, weekends

30 minutes every 24 hours from 14 days ago including weekdays excluding holidays:us,
weekends

temporal window width skip distance total temporal duration inclusion/exclusion
specifiers

• A 30 minute window at noon every day from 7 days ago including saturdays and
excluding weekends. Because exclusions trump inclusions, the following will never yield
any windows

• 30 minute window every 24 hours from 7 days ago including saturdays excluding
weekends

temporal window width skip distance total temporal duration inclusion/exclusion
specifiers

2.7.3. Client Profile Example

The following are usage examples that show how the Stellar API can be used to read
profiles generated by the Metron Profiler. This API would be used in conjunction with other
Stellar functions like MAAS_MODEL_APPLY to perform model scoring on streaming data.

These examples assume a profile has been defined called ‘snort-alerts’ that tracks the
number of Snort alerts associated with an IP address over time. The profile definition might
look similar to the following.

{
 "profiles": [
 {
 "profile": "snort-alerts",
 "foreach": "ip_src_addr",
 "onlyif": "source.type == 'snort'",
 "update": { "s": "STATS_ADD(s, 1)" },
 "result": "STATS_MEAN(s)"
 }
]
}

During model scoring, the entity being scored, in this case a particular IP address, will be
known. The following examples shows how this profile data might be retrieved. Retrieve all
values of ‘snort-alerts’ from ‘10.0.0.1’ over the past 4 hours.

PROFILE_GET('snort-alerts', '10.0.0.1', PROFILE_FIXED(4, 'HOURS'))

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ over the past 2 days.

PROFILE_GET('snort-alerts', '10.0.0.1', PROFILE_FIXED(2, 'DAYS'))

Hortonworks Cybersecurity
Package

August 18, 2017

20

If the profile had been defined to group the data by weekday versus weekend, then the
following example would apply:

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ that occurred on ‘weekdays’ over the past
30 days.

PROFILE_GET('snort-alerts', '10.0.0.1', PROFILE_FIXED(30, 'DAYS'),
 ['weekdays'])

The client may need to use a configuration different from the current Client configuration
settings. For example, perhaps you are on a cluster shared with other analysts, and need to
access a profile that was constructed 2 months ago using different period duration, while
they are accessing more recent profiles constructed with the currently configured period
duration. For this situation, you may use the config_overrides argument:

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ over the past 2 days, with no groupBy,
and overriding the usual global client configuration parameters for window duration.

PROFILE_GET('profile1', 'entity1', PROFILE_FIXED(2, 'DAYS', {'profiler.client.
period.duration' : '2', 'profiler.client.period.duration.units' : 'MINUTES'}),
 [])

Retrieve all values of ‘snort-alerts’ from ‘10.0.0.1’ that occurred on ‘weekdays’ over the past
30 days, overriding the usual global client configuration parameters for window duration.

PROFILE_GET('profile1', 'entity1', PROFILE_FIXED(30, 'DAYS', {'profiler.
client.period.duration' : '2', 'profiler.client.period.duration.units' :
 'MINUTES'}), ['weekdays'])

Hortonworks Cybersecurity
Package

August 18, 2017

21

3. Creating Models
One of the enhancements to cybersecurity most frequently requested is the ability
to augment the threat intelligence and enrichment processes with insights derived
from machine learning and statistical models. While valuable, this model management
infrastructure has the following significant challenges:

• Applying the model management infrastructure might be both computationally and
resource intensive and could require load balancing and multiple versions of models.

• Models require frequent training or updating to react to growing threats and new
patterns that emerge.

• Models should be language and environment agnostic as much as possible. So, models
should include small-data and big-data libraries and languages.

To support these requirements, Hortonworks Cybersecurity Package (HCP) powered by
Metron provides the following components:

• A YARN application that listens for model deployment requests and upon execution,
registers their endpoints in ZooKeeper.

• A command line deployment client that localizes the model payload onto HDFS and
submits a model request.

• A Java client that interacts with ZooKeeper and receives updates about model state
changes (for example, new deployments and removals).

• A series of Stellar functions for interacting with models deployed by the Model as a
Service infrastructure.

To set up and use the Model as a Service (MaaS) infrastructure, you need to complete the
following high-level tasks:

• Installing the YARN Application [21]

• Deploying Models [24]

• Adding the MaaS Stellar Function to the Sensor Configuration [26]

• Starting Topologies and Sending Data [27]

• Modifying a Model [28]

3.1. Installing the YARN Application
The YARN application listens for model deployment requests. Models are exposed as REST
microservices that expose your model application as an endpoint. The YARN application
takes the submitted request that specifies the model payload that includes a shell script and
other model collateral which will start the microservice. Upon execution of the shell script
that starts the model, the YARN application registers the endpoints in ZooKeeper.

Hortonworks Cybersecurity
Package

August 18, 2017

22

Important

If you are using or depending an API library in your model such as Flask and
Jinja2, the library must be installed on every data node. This is because the
model is executed by a shell script which must be able to run successfully on
every node.

In order to know on which port that the REST service is listening, the model
must create a file in the current working directory which indicates the URL for
the model. Because you might have more than one copy of the model, it is a
good idea to find an open port and bind to that. An example of how to do that
in Python is as follows:

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(('localhost', 0))
port = sock.getsockname()[1]
sock.close()
with open("endpoint.dat", "w") as text_file:
 text_file.write("{\"url\" : \"http://0.0.0.0:%d\"}" % port)

Install the YARN application by completing the following steps:

1. As root, log into the host from which you run Metron.

2. Create a directory called "sample" in the root user's home directory where you will put a
very simple model.

3. Now, you can create a simple shell script that will expose a REST endpoint called "echo"
that will echo back the arguments passed to it. Create a file in the "sample" directory
named "echo.sh", and copy the following information into the file.

Note that in this simple REST service, we are always binding to port 1500. In a real REST
service which would expose your model, we would be more intelligent about the choice
of the port.

#!/bin/bash
rm -f out
mkfifo out
trap "rm -f out" EXIT
echo "{ \"url\" : \"http://localhost:1500\", \"functions\" : { \"apply\" : \
"echo\" } }" > endpoint.dat
while true
do
 cat out | nc -l 0.0.0.0 1500 > >(# parse the netcat output, to build the
 answer redirected to the pipe "out".
 export REQUEST=
 while read line
 do
 line=$(echo "$line" | tr -d '[\r\n]')

 if echo "$line" | grep -qE '^GET /' # if line starts with "GET /"
 then
 REQUEST=$(echo "$line" | cut -d ' ' -f2) # extract the request
 elif ["x$line" = x] # empty line / end of request
 then
 HTTP_200="HTTP/1.1 200 OK"
 HTTP_LOCATION="Location:"

Hortonworks Cybersecurity
Package

August 18, 2017

23

 HTTP_404="HTTP/1.1 404 Not Found"
 # call a script here
 # Note: REQUEST is exported, so the script can parse it (to answer
 200/403/404 status code + content)
 if echo $REQUEST | grep -qE '^/echo/'
 then
 printf "%s\n%s %s\n\n%s\n" "$HTTP_200" "$HTTP_LOCATION" $REQUEST
 ${REQUEST#"/echo/"} > out
 else
 printf "%s\n%s %s\n\n%s\n" "$HTTP_404" "$HTTP_LOCATION" $REQUEST
 "Resource $REQUEST NOT FOUND!" > out
 fi
 fi
 done
)
done

4. Change directories to $METRON_HOME.

cd $METRON_HOME

5. Start the MaaS service in bin/maas_service.sh -zq node1:2181.

bash bin/maas_service.sh -zq node1:2181

where

-c, --create Flag to indicate whether to create the domain
specified with -domain.

-d,--domain <arg> ID of the time line domain where the time line
entities will be put

-e,--shell_env <arg> Environment for shell script. Specified as
env_key=env_val pairs.

-h,--help The help screen

-j,--jar <arg> Jar file containing the application master

-l,--log4j <arg> The log4j properties file to load

-ma,--modify_acls <arg> Users and groups that allowed to modify the time
line entities in the given domain

-ma,--master_vcores <arg> Amount of virtual cores to be requested to run the
application master

-mm,--master_memory Amount of memory in MB to be requested to run the
application master

-nle,--node_label_expression
<arg>

Node label expression to determine the nodes
where all the containers of this application will be
allocated, "" means containers can be allocated
anywhere, if you don't specify the option, default
node_label_expression of queue will be used.

Hortonworks Cybersecurity
Package

August 18, 2017

24

-q,--queue <arg> RM Queue in which this application is to be
submitted

-t,--timeout <arg> Application timeout in milliseconds

-va,--view_acls <arg> Users and groups that allowed to view the time line
entities in the given domain

-zq,--zk_quorum <arg> ZooKeeper Quorum

-zr,--zk_root <arg> ZooKeeper Root

6. Test the configuration to ensure that the MaaS service is running correctly.

For example, you would enter the following:

a. Start one instance of a sample echo service (named 'sample' version '1.0') in a
container of 500m:

bin/maas_deploy.sh -lmp ~/sample -hmp /user/root/maas/sample -m 500 -mo
 ADD -n sample -ni 1 -v 1.0 -zq node1:2181

b. Wait a couple seconds and then ensure that the service started by running the
following command:

curl -i http://localhost:1500/echo/foobar

You should see a response foobar.

c. List the active models and ensure that you see the sample model in the output.

bin/maas_deploy.sh -mo LIST -n sample -zq node1:2181

d. Remove one instance of the sample model.

bin/maas_deploy.sh -mo REMOVE -n sample -ni 1 -v 1.0 -zq node1:2181

e. After a couple seconds ensure that you cannot access the sample model any longer:

curl -i http://localhost:1500/echo/foobar

3.2. Deploying Models
After creating a model, you need to deploy the model onto HDFS and submit a request for
one or more instances of the model.

1. Create a simple sample python model.

Let's say that you have a model, exposed as a REST microservice called "mock_dga"
that takes as an input argument "host" which represents an internet domain name
and returns a field called "is_malicious" which is either "malicious" if the domain is
thought to be malicious or "legit" if the domain is not thought to be malicious. The
following is a very simple example service that thinks that the only legitimate domains
are "yahoo.com" and "amazon.com":

Hortonworks Cybersecurity
Package

August 18, 2017

25

from flask import Flask
from flask import request,jsonify
import socket
app = Flask(__name__)

@app.route("/apply", methods=['GET'])
def predict():
 h = request.args.get('host')
 r = {}
 if h == 'yahoo.com' or h == 'amazon.com':
 r['is_malicious'] = 'legit'
 else:
 r['is_malicious'] = 'malicious'
 return jsonify(r)

if __name__ == "__main__":
 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 sock.bind(('localhost', 0))
 port = sock.getsockname()[1]
 sock.close()
 with open("endpoint.dat", "w") as text_file:
 text_file.write("{\"url\" : \"http://0.0.0.0:%d\"}" % port)
 app.run(threaded=True, host="0.0.0.0", port=port)

2. Store this python model in a directory called /root/mock_dga as mock_dga.py and
an accompanying shell script called rest.sh which starts the model:

#!/bin/bash
python dga.py

3. If you have not already done so, start MaaS:

$METRON_HOME/bin/maas_service.sh -zq node1:2181

4. Start one or more instances of the model, calling it "dga" and assigning an amount of
memory to each instance:

Because you have placed the model in the /root/mock_dga directory, enter the
following:

$METRON_HOME/bin/maas_deploy.sh -zq node1:2181 -lmp /root/mock_dga -hmp /
user/root/models -mo ADD -m 512 -n dga -v 1.0 -ni 1

where

-h, --h A list of functions for maas_deploy.sh

-hmp, --hdfs_model_path <arg> Model path (HDFS)

-lmp, --local_model_path <arg> Model path (local)

-m, --memory <arg> Memory for container

-mo, --mode <arg> ADD, LIST, or REMOVE

-n, --name <arg> Model name

Hortonworks Cybersecurity
Package

August 18, 2017

26

-ni, --num_instances <arg> Number of model instances

-v, --version <arg> Model version

-zq, --zk_quorum <arg> ZooKeeper quorum

-zr, --zk_root <arg> ZooKeeper root

3.3. Adding the MaaS Stellar Function to the
Sensor Configuration

After deploying a model, you need to add the Stellar function for MaaS to the
configuration file for the sensor on which you want to run the model.

To do this, complete the following steps:

1. Edit the sensor configuration at $METRON_HOME/config/zookeeper/parsers/
$PARSER.json to include a new FieldTransformation to indicate a threat alert based
on the model.

{
 "parserClassName": "org.apache.metron.parsers.GrokParser",
 "sensorTopic": "squid",
 "parserConfig": {
 "grokPath": "/patterns/squid",
 "patternLabel": "SQUID_DELIMITED",
 "timestampField": "timestamp"
 },
 "fieldTransformations" : [
 {
 "transformation" : "STELLAR"
 ,"output" : ["full_hostname", "domain_without_subdomains",
 "is_malicious", "is_alert"]
 ,"config" : {
 "full_hostname" : "URL_TO_HOST(url)"
 ,"domain_without_subdomains" :
 "DOMAIN_REMOVE_SUBDOMAINS(full_hostname)"
 ,"is_malicious" : "MAP_GET('is_malicious',
 MAAS_MODEL_APPLY(MAAS_GET_ENDPOINT('dga'), {'host' :
 domain_without_subdomains}))"
 ,"is_alert" : "if is_malicious == 'malicious' then 'true' else null"
 }
 }
]
}

where

transformation Enter 'STELLAR' to indicate this is a Stellar field
transformation.

output The information the transformation will
output. This typically contains full_host,
domain_without_subdomains, is_malicious,
and is_alert.

Hortonworks Cybersecurity
Package

August 18, 2017

27

full_hostname The domain component of the "url" field.

domain_without_subdomains The domain of the "url" field without subdomains.

is_malicious The output of the "mock_dga" model as deployed
earlier. In this case, it will be "malicious" or "legit",
because those are the values that our model returns.

is_alert Set to "true" if and only if the model indicates the
hostname is malicious.

2. Edit the sensor enrichment configuration at $METRON_HOME/config/zookeeper/
parsers/PARSER.json to adjust the threat triage level of risk based on the model
output:

{
 "index": "$PARSER_NAME",
 "batchSize": 1,
 "enrichment" : {
 "fieldMap": {}
 },
 "threatIntel" : {
 "fieldMap":{},
 "triageConfig" : {
 "riskLevelRules" : {
 "is_malicious == 'malicious'" : 100
 },
 "aggregator" : "MAX"
 }
 }
}

3. Upload the new configurations to $METRON_HOME/bin/zk_load_configs.sh --
mode PUSH -i $METRON_HOME/config/zookeeper -z node1:2181.

4. If this is a new sensor and it does not have a Kafka topic associated with it, then we must
create a new sensor topic in Kafka.

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --zookeeper node1:2181 --
create --topic $PARSER_NAME --partitions 1 --replication-factor 1

3.4. Starting Topologies and Sending Data
The final step in setting up Model as a Service, is to start the topologies and send some
data to test the model.

1. Start the sensor upon which the Model as a Service will run:

$METRON_HOME/bin/start_parser_topology.sh -k node1:6667 -z node1:2181 -s
 $PARSER_NAME

2. Generate some legitimate data and some malicious data on the sensor.

For example:

#Legitimate example:

Hortonworks Cybersecurity
Package

August 18, 2017

28

squidclient http://yahoo.com
#Malicious example:
squidclient http://cnn.com

3. Send the data to Kafka:

cat /var/log/squid/access.log | /usr/hdp/current/kafka-broker/bin/kafka-
console-producer.sh --broker-list node1:6667 --topic squid

4. Browse the data in Elasticsearch at http://node1:9100/_plugin/head to verify
that it contains the appropriate documents. For the current example, you would see the
following:

• One from yahoo.com which does not have is_alert set and does have
is_malicious set to legit.

• One from cnn.com which does have is_alert set to true, is_malicious set to
malicious, and threat:triage:level set to 100.

3.5. Modifying a Model
You can remove a number of instances of the model by executing maax_deploy.sh with
remove as the -mo argument. For example, the following removes one instance of the dga
model, version 1.0:

$METRON_HOME/bin/maas_deploy.sh -zq node1:2181 -mo REMOVE -m 512 -n dga -v 1.0
 -ni 1

If you need to modify a model, you need to modify the model itself and deploy a new
version, then remove the old version instances afterward.

Hortonworks Cybersecurity
Package

August 18, 2017

29

4. Analyzing Enriched Data Using Apache
Zeppelin

Apache Zeppelin is a web-based notebook that supports interactive data exploration,
visualization, sharing and collaboration. HCP users will use Zeppelin at two levels:

• Senior analysts and data scientists can use Zeppelin to produce workbooks to analyze
data and to create recreatable investigations or runbooks for junior analysts.

• Junior analysts can use recreatable investigations or runbooks in Zeppelin to discover
cybersecurity issues much like they do with the Metron Dashboard. However, Zeppelin
can perform more complex calculations and handle larger groups of data.

This chapter describes how to analyze enriched data from HCP using the Zeppelin
dashboard. This chapter contains the following sections:

• Setting up Zeppelin to Run with HCP [29]

• Using Zeppelin to Analyze Data [31]

4.1. Setting up Zeppelin to Run with HCP
To install Zeppelin with HCP, see the following sections:

• Importing Zeppelin Notebook Using Ambari

• Importing Zeppelin Notebook Manually

Setting up Zeppelin is very simple. To access Zeppelin, go to http://
$ZEPPELIN_HOST:9995. To complete your set up, see the following sections:

• Using Zeppelin Interpreters [30]

• Loading Telemetry Information into Zeppelin [30]

In addition to this documentation, there are three other sources for Zeppelin information.

• The Zeppelin installation for HCP provides a couple sample notes including tutorials
specific to Metron. These notes are listed on the left side of the Welcome screen and in
the Notebook menu.

• Zeppelin documentation provides information on launching and using Zeppelin, and you
can refer to the following links for this information:

• Launching Zeppelin

• Working with Notes

• Apache Zeppelin documentation provides information on Zeppelin basic features,
supported interpreters, and more. To view the Apache Zeppelin documentation, see
Apache Zeppelin 0.7.0.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.2.2/bk_installation/content/importing_zeppelin_notebook_using_ambari.html
https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.2.2/bk_installation/content/importing_zeppelin_notebook_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.1/bk_zeppelin-component-guide/content/launch-zepp.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.1/bk_zeppelin-component-guide/content/create-note.html
https://zeppelin.apache.org/docs/0.7.0/

Hortonworks Cybersecurity
Package

August 18, 2017

30

4.1.1. Using Zeppelin Interpreters

When you install Zeppelin on HCP the installation includes the interpreter for Spark. Spark
is the main backend processing engine for Zeppelin. Spark is also a front end for Python,
Scale, and SQL and you can use any of these languages to analyze the telemetry data.

4.1.2. Loading Telemetry Information into Zeppelin

Before you can analyze telemetry information in Zeppelin, you must first download it from
Metron. Metron archives the fully parsed, enriched, and triaged telemetry for each sensor
in HDFS. This archived telemetry information is simply raw JSON files which makes it simple
to parse and analyze the information with Zeppelin. The following is an example of some
Bro telemetry information.

%sh

hdfs dfs -ls -C -R /apps/metron/indexing/indexed/bro
/apps/metron/indexing/indexed/bro/enrichment-null-0-0-1484124296101.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-0-1484128332104.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-0-1484131460758.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-1-1484217861096.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-10-1484995461039.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-11-1485081861043.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-12-1485168261040.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-13-1485254661040.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-14-1485341061047.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-15-1485427461040.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-16-1485513861039.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-17-1485600261045.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-18-1485686661035.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-19-1485773061037.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-2-1484304261042.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-20-1485859461037.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-21-1485945861039.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-22-1486032261036.json

You can use Spark to load the archived information from HDFS into Zeppelin.

For example if you are loading information received from Bro, your command would look
like the following:

%spark
sqlContext.read.json("hdfs:///apps/metron/indexing/indexed/bro").cache().
registerTempTable("bro")

4.1.3. Working with Zeppelin

The Zeppelin user interface consists of notes that are divided into paragraphs. Each
paragraph consists of two sections: the code section where you put your source code and
the result section where you can see the result of the code execution.

To use the Spark interpreter, you must specify the interpreter directive at the beginning
of each paragraph, using the format % [INTERPRETER_NAME}. When you use the Spark
interpreter, you can enter source code in Python, Scala, or SQL. So, the interpreter directive
could be: %spark.sql.

Hortonworks Cybersecurity
Package

August 18, 2017

31

When you run the code, Zeppelin sends the code to a backend processor such as Spark. The
processor or service then returns results; you can then use Zeppelin to review and visualize
results in the browser using the Settings toolbar:

Figure 4.1. Zeppelin Settings Toolbar

For more information on using notes, see Working with Notes.

4.2. Using Zeppelin to Analyze Data
Zeppelin enables you to analyze the enriched telemetry information Metron archives in
HDFS.

Zeppelin includes tutorials that can help you learn how to use Zeppelin and start analyzing
data:

• Getting Started With Apache Zeppelin

• Learning Spark SQL With Zeppelin

• Setting up a Spark Development Environment with Python

In addition to creating your own notebooks, HCP provides several notebooks that you can
use to analyze data and produce reports:

• Metron - Connection Report

This notebook enables you to determine the number of connections made between IPs.
This notebook can be set up for Yaf, Bro, or Spark.

• Metron - Connection Volume Report

This notebook enables you to determine the number of connections filtered by a CIDR
block. This notebook is set up for YAF.

• Metron - YAF Telemetry

This notebook enables you to obtain flow telemetry information for YAF, including:

• Top talkers - internal and external

• Flows by hour - internal and external

• Top locations

• Flow duration internal and external

• Metron IP report

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.1/bk_zeppelin-component-guide/content/create-note.html
https://hortonworks.com/hadoop-tutorial/getting-started-apache-zeppelin/
https://hortonworks.com/hadoop-tutorial/learning-spark-zeppelin/
https://hortonworks.com/hadoop-tutorial/setting-spark-development-environment-python/

Hortonworks Cybersecurity
Package

August 18, 2017

32

This notebook enables you to produce a report for a given address that includes the
following:

• Most frequent connections (YAF, defaults to 24 hours)

• Recent connections (YAF, defaults to 1 hour)

• Top DNS queries (Bro, defaults to 24 hours)

• All ports used (YAF, defaults to 24 hours)

• HTTP user agents (Bro, defaults to 24 hours)

The following example guides you through using Zeppelin and the notebooks provided by
HCP to perform different types of analyses on the Bro telemetry information to discover a
potential issue.

1. Bro produces data about a number of different network protocols. View which types of
protocols exist in the data.

Figure 4.2. Bro Protocols

2. View when Bro telemetry information was received.

You can check for any odd gaps and fluctuating periods of high and low activity.

Note

If there is not enough data for this visualization to be interesting, let Metron
consume more data before continuing.

Hortonworks Cybersecurity
Package

August 18, 2017

33

Figure 4.3. Bro Telemetry Received

3. List the most active Bro hosts.

Hortonworks Cybersecurity
Package

August 18, 2017

34

Figure 4.4. Most Active Hosts

4. List any DNS servers running on non-standard ports.

Hortonworks Cybersecurity
Package

August 18, 2017

35

Figure 4.5. DNS Servers

5. List any mime types that could be concerning.

Figure 4.6. Mime Types

6. Explode the HTTP records.

Each HTTP record can contain multiple mime types. These need to be 'exploded' to work
with them properly.

Hortonworks Cybersecurity
Package

August 18, 2017

36

Figure 4.7. Exploded HTTP Records

7. Determine where application/x-dosexec originated.

Hortonworks Cybersecurity
Package

August 18, 2017

37

Figure 4.8. Suspicious xdosexc

8. Take a look at the requests for x-dosexc.

Hortonworks Cybersecurity
Package

August 18, 2017

38

Figure 4.9. x-dosexc Requests

9. Determine when the interactions with the suspicious host are occurring.

Hortonworks Cybersecurity
Package

August 18, 2017

39

Figure 4.10. When Interactions Occur

10.Create an IP report in Zeppelin using the Metron IP Report notebook.

For a given IP address, this notebook produces a report of:

• Most frequent connections (YAF defaults to 24 hours)

• Recent connections (Yaf, defaults to 1 hours)

• Top DNS queries (Bro, defaults to 24 hours)

• All ports used (Yaf, defaults to 24 hours)

• HTTP user agents (Bro, defaults to 24 hours)

Hortonworks Cybersecurity
Package

August 18, 2017

40

11.Create traffic connection request report using the Connection Volume Report notebook.

This notebook lets the user get connection counts filtered by a CIDR block. This
notebook can be used for Bro, Yaf, and Snort.

4.2.1. Next Steps

Through this brief analysis we uncovered something that looks suspicious. So far we have
leveraged only the geo-enriched Bro telemetry. From here, we can start to explore other
sources of telemetry to better understand the scope and overall exposure. Continue to
investigate our suspicions with the other sources of telemetry available in Metron.

• Try loading the Snort data and see if any alerts were triggered.

• Load the flow telemetry and see what other internal assets have been exposed to this
suspicious actor.

• If an internal asset has been compromised, investigate the compromised asset's activity
to uncover signs of internal reconnaissance or lateral movement.

Hortonworks Cybersecurity
Package

August 18, 2017

41

5. Creating Runbooks Using Apache
Zeppelin

Apache Zeppelin is a web-based notebook that supports interactive data exploration,
visualization, sharing and collaboration. HCP users will use Zeppelin at two levels:

• Senior analysts and data scientists can use Zeppelin to produce notebooks to analyze
data and to create recreatable investigations or runbooks for junior analysts.

• Junior analysts can use recreatable investigations or runbooks in Zeppelin to discover
cybersecurity issues much like they do with the Metron Dashboard. However, Zeppelin
can handle larger groups of data.

This chapter describes how to create runbooks for junior analysts using the Zeppelin
dashboard. This chapter contains the following sections:

• Setting up Zeppelin to Run with HCP [41]

• Using Zeppelin to Create Runbooks [43]

5.1. Setting up Zeppelin to Run with HCP
To install Zeppelin with HCP, see the following sections:

• Importing Zeppelin Notebook Using Ambari

• Importing the Apache Zeppelin Notebook Using CLI

Setting up Zeppelin is very simple. To access Zeppelin, go to http://
$ZEPPELIN_HOST:9995. To complete your set up, see the following sections:

• Using Zeppelin Interpreters [42]

• Loading Telemetry Information into Zeppelin [42]

In addition to this documentation, there are three other sources for Zeppelin information.

• The Zeppelin installation for HCP provides a couple sample notes including tutorials
specific to Metron. These notes are listed on the left side of the Welcome screen and in
the Notebook menu.

• Zeppelin documentation provides information on launching and using Zeppelin, and you
can refer to the following links for this information:

• Launching Zeppelin

• Working with Notes

• Apache Zeppelin documentation provides information on Zeppelin basic features,
supported interpreters, and more. To view the Apache Zeppelin documentation, see
Apache Zeppelin 0.7.0.

https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.2.2/bk_installation/content/importing_zeppelin_notebook_manually.html
https://docs.hortonworks.com/HDPDocuments/HCP1/HCP-1.2.2/bk_installation/content/importing_zeppelin_notebook_manually.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.1/bk_zeppelin-component-guide/content/launch-zepp.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.1/bk_zeppelin-component-guide/content/create-note.html
https://zeppelin.apache.org/docs/0.7.0/

Hortonworks Cybersecurity
Package

August 18, 2017

42

5.1.1. Using Zeppelin Interpreters

When you install Zeppelin on HCP the installation includes the interpreter for Spark. Spark
is the main backend processing engine for Zeppelin. Spark is also a front end for Python,
Scala, and SQL and you can use any of these languages to analyze the telemetry data.

5.1.2. Loading Telemetry Information into Zeppelin

Before you can analyze telemetry information in Zeppelin, you must first download it from
Metron. Metron archives the fully parsed, enriched, and triaged telemetry for each sensor
in HDFS. This archived telemetry information is simply raw JSON files which makes it simple
to parse and analyze the information with Zeppelin. The following is an example of some
Bro telemetry information.

%sh

hdfs dfs -ls -C -R /apps/metron/indexing/indexed/bro
/apps/metron/indexing/indexed/bro/enrichment-null-0-0-1484124296101.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-0-1484128332104.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-0-1484131460758.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-1-1484217861096.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-10-1484995461039.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-11-1485081861043.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-12-1485168261040.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-13-1485254661040.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-14-1485341061047.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-15-1485427461040.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-16-1485513861039.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-17-1485600261045.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-18-1485686661035.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-19-1485773061037.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-2-1484304261042.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-20-1485859461037.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-21-1485945861039.json
/apps/metron/indexing/indexed/bro/enrichment-null-0-22-1486032261036.json

You can use Spark to load the archived information from HDFS into Zeppelin.

For example if you are loading information received from Bro, your command would like
the following:

%spark
sqlContext.read.json("hdfs:///apps/metron/indexing/indexed/bro").cache().
registerTempTable("bro")

5.1.3. Working with Zeppelin

The Zeppelin user interface consists of notes that are divided into paragraphs. Each
paragraph consists of two sections: the code section where you put your source code and
the result section where you can see the result of the code execution. When you use the
Spark interpreter, you can enter source code in Python, Scala, or SQL. When you run the
code from the browser, Zeppelin sends the code to a backend processor such as Spark. The
processor or service then returns results; you can then use Zeppelin to review and visualize
results in the browser. For more information on using notes, see Working with Notes.

https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.6.1/bk_zeppelin-component-guide/content/create-note.html

Hortonworks Cybersecurity
Package

August 18, 2017

43

5.2. Using Zeppelin to Create Runbooks
Zeppelin enables data scientists and senior analysts to create workbooks for junior analysts
that can be used as runbooks for recreatable investigations. These runbooks can be static,
which require no input from the junior analyst, or dynamic, which require the junior analyst
to enter or choose information. You can see an example of a static type of notebook in the
Metron - YAF Telemetry note. This section provides instructions for creating both kinds of
runbooks.

To create a runbook, complete the following steps:

1. Click Create new note on the welcome page, or click the Notebook menu and choose +
Create new note.

2. Type your commands into the blank paragraph in the new note.

To make your runbook dynamic, use one or more of the dynamic forms that Zeppelin
supports:

• Text input form

• Text input form with default value

• Select form

Hortonworks Cybersecurity
Package

August 18, 2017

44

• Checkbox form

For more information about dynamic forms, see the Apache Zeppelin documentation.

When you create a note, it appears in the list of notes on the left side of the home page
and in the Notebook menu. By default, Zeppelin stores notes in the $ZEPPELIN_HOME/
notebook folder.

3. Run your new code by clicking the triangle button in the cell that contains your code.

Zeppelin attempts to run the code and displays the status near the triangle button:
PENDING, RUNNING, ERROR, or FINISHED. Zeppelin also displays another empty
paragraph so you can add another command.

4. Choose the appropriate type of visualization for your code results from the settings
toolbar below the code section of the paragraph.

Figure 5.1. Zeppelin Settings Toolbar

5. Continue adding commands until you've completed the runbook.

https://zeppelin.apache.org/docs/0.8.0-SNAPSHOT/manual/dynamicform.html#using-form-templates

Hortonworks Cybersecurity
Package

August 18, 2017

45

6. If appropriate, notify the junior analyst about the runbook that he can clone and use.

Examples

The following examples provide sample paragraphs you might want to include in a
runbook:

• Top Talkers - Internal

This paragraph is static and requires no input from the user.

Figure 5.2. Zeppelin Top Talkers

• Flows by hour

This paragraph is static and requires no input from the user.

Figure 5.3. Zeppelin Flows By Hour

Hortonworks Cybersecurity
Package

August 18, 2017

46

6. Analyzing Data Using Statistical and
Mathematical Functions

HCP provides a variety of advanced analytics that use statistics and advanced mathematical
functions. Capturing the statistical snapshots in a scalable way can open up doors for more
advanced analytics such as outlier analysis. These analytics provide a robust set of statistical
functions and statistical-based algorithms in the form of Stellar functions. These functions
can be used from everywhere where Stellar is used.

This chapter provides the following information:

• Approximation Statistics [46]

• Mathematical Functions [47]

• Distributional Statistics [47]

• Statistical Outlier Detection [49]

• Outlier Analysis [50]

6.1. Approximation Statistics

Table 6.1. Approximation Statistics

Function Description Input Returns

HLLP_ADD Add value to the
HyperLogLogPlus estimator
set. See HLLP README.

• hyperLogLogPlus - The
hllp estimator to add a
value to

• value+ - Value to add to
the set. Takes a single
item or a list.

The HyperLogLogPlus set
with a new value added

HLLP_CARDINALITY Returns HyperLogLogPlus-
estimated cardinality for this
set. See HLLP README.

• hyperLogLogPlus - The
hllp set

Long value representing the
cardinality for this set

HLLP_INIT Initializes the
HyperLogLogPlus estimator
set. p must be a value
between 4 and sp and sp
must be less than 32 and
greater than 4. See HLLP
README.

• p - The precision value for
the normal set

• sp - The precision value
for the sparse set. If p
is set, but sp is 0 or not
specified, the sparse set
will be disabled.

A new HyperLogLogPlus set

HLLP_MERGE Merge hllp sets together.
The resulting estimator is
initialized with p and sp
precision values from the
first provided hllp estimator
set. See HLLP README.

• hllp - List of hllp
estimators to merge.
Takes a single hllp set or a
list.

True if the filter might
contain the value and false
otherwise

https://github.com/apache/incubator-metron/blob/master/metron-analytics/metron-statistics/HLLP.md
https://github.com/apache/incubator-metron/blob/master/metron-analytics/metron-statistics/HLLP.md
https://github.com/apache/incubator-metron/blob/master/metron-analytics/metron-statistics/HLLP.md
https://github.com/apache/incubator-metron/blob/master/metron-analytics/metron-statistics/HLLP.md
https://github.com/apache/incubator-metron/blob/master/metron-analytics/metron-statistics/HLLP.md

Hortonworks Cybersecurity
Package

August 18, 2017

47

6.2. Mathematical Functions
Table 6.2. Mathematical Functions

Function Description Input Returns

ABS Returns the absolute value
of a number.

• number - The number to
take the absolute value of

The absolute value of the
number passed in

BIN Computes the bin that the
value is in given a set of
bounds

• value -the value to bin

• bounds - A list of value
bounds (excluding min
and max) in sorted order

Which bin N the value falls
in such that bound(N-1)
< value <= bound(N). No
min and max bounds are
provided, so values smaller
than the 0'th bound go
in the 0'th bin, and values
greater than the last bound
go in the M'th bin.

6.3. Distributional Statistics
Table 6.3. Distributional Statistics

Function Description Input Returns

STATS_ADD Adds one or more input
values to those that are
used to calculate the
summary statistics.

• stats - The Stellar statistics
object. If null, then a new
one is initialized.

• value+ - One or more
numbers to add

A Stellar statistics object

STATS_BIN Computes the bin that the
value is in based on the
statistical distribution.

• stats - The Stellar statistics
object

• value - The value to bin

• bounds? - A list of
percentile bin bounds
(excluding min and max)
or a string representing a
known and common set
of bins. For convenience,
we have provided
QUARTILE, QUINTILE,
and DECILE which you
can pass in as a string
arg. If this argument is
omitted, then we assume
a Quartile bin split.

Which bin N the value falls
in such that bound(N-1)
< value <= bound(N). No
min and max bounds are
provided, so values smaller
than the 0'th bound go
in the 0'th bin, and values
greater than the last bound
go in the M'th bin.

STATS_COUNT Calculates the count of the
values accumulated (or in
the window if a window is
used).

• stats - The Stellar statistics
object

The count of the values in
the window or NaN if the
statistics object is null

STATS_GEOMETRIC_MEAN Calculates the geometric
mean of the accumulated
values (or in the window if a
window is used). See http://
commons.apache.org/
proper/commons-
math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The geometric mean of the
values in the window or
NaN if the statistics object is
null.

STATS_INIT Initializes a statistics object • window size - The number
of input data values to

A Stellar statistics object

http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics

Hortonworks Cybersecurity
Package

August 18, 2017

48

Function Description Input Returns

maintain in a rolling
window in memory. If
window_size is equal to
0, then no rolling window
is maintained. Using no
rolling window is less
memory intensive, but
cannot calculate certain
statistics like percentiles
and kurtosis.

STATS_KURTOSIS Calculates the kurtosis of
the accumulated values
(or in the window if a
window is used). See http://
commons.apache.org/
proper/commons-
math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The kurtosis of the values in
the window or NaN if the
statistics object is null

STATS_MAX Calculates the maximum of
the accumulated values (or
in the window if a window is
used).

• stats - The Stellar statistics
object

The maximum of the
accumulated values in
the window or NaN if the
statistics object is null.

STATS_MEAN Calculates the mean of the
accumulated values (or in
the window if a window is
used).

• stats - The Stellar statistics
object

The mean of the values in
the window or NaN if the
statistics object is null.

STATS_MERGE Merges statistics objects • statistics -A list of statistics
objects

A Stellar statistics object

STATS_MIN Calculates the minimum of
the accumulated values (or
in the window if a window is
used).

• stats - The Stellar statistics
object

The minimum of the
accumulated values in
the window or NaN if the
statistics object is null.

STATS_PERCENTILE Computes the p'th
percentile of the
accumulated values (or in
the window if a window is
used).

• stats - The Stellar statistics
object

• p - A double where 0 <=
p < 1 representing the
percentile

The p'th percentile of the
data or NaN if the statistics
object is null

STATS_POPULATION_VARIANCECalculates the population
variance of the accumulated
values (or in the window if a
window is used). See http://
commons.apache.org/
proper/commons-
math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The population variance of
the values in the window or
NaN if the statistics object is
null.

STATS_QUADRATIC_MEAN Calculates the quadratic
mean of the accumulated
values (or in the window if a
window is used). See http://
commons.apache.org/
proper/commons-
math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The quadratic mean of the
values in the window or
NaN if the statistics object is
null.

STATS_SD Calculates the standard
deviation of the
accumulated values (or in
the window if a window
is used). See http://
commons.apache.org/
proper/commons-

• stats - The Stellar statistics
object

The standard deviation of
the values in the window or
NaN if the statistics object is
null.

http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics

Hortonworks Cybersecurity
Package

August 18, 2017

49

Function Description Input Returns

math/userguide/
stat.html#a1.2_Descriptive_statistics

STATS_SKEWNESS Calculates the skewness
of the accumulated values
(or in the window if a
window is used). See http://
commons.apache.org/
proper/commons-
math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The skewness of the values
in the window or NaN if the
statistics object is null.

STATS_SUM Calculates the sum of the
accumulated values (or in
the window if a window is
used).

• stats - The Stellar statistics
object

The sum of the values in
the window or NaN if the
statistics object is null.

STATS_SUM_LOGS Calculates the sum of
the (natural) log of the
accumulated values (or in
the window if a window
is used). See http://
commons.apache.org/
proper/commons-
math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The sum of the (natural) log
of the values in the window
or NaN if the statistics object
is null.

STATS_SUM_SQUARES Calculates the sum of the
squares of the accumulated
values (or in the window if a
window is used).

• stats - The Stellar statistics
object

The sum of the squares of
the values in the window or
NaN if the statistics object is
null.

STATS_VARIANCE Calculates the variance of
the accumulated values
(or in the window if a
window is used). See http://
commons.apache.org/
proper/commons-
math/userguide/
stat.html#a1.2_Descriptive_statistics

• stats - The Stellar statistics
object

The variance of the values
in the window or NaN if the
statistics object is null.

6.4. Statistical Outlier Detection
Table 6.4. Statistical Outlier Detection

Function Description Input Returns

OUTLIER_MAD_STATE_MERGEUpdate the statistical state
required to compute the
Median Absolute Deviation.

• state - A list of Median
Absolute Deviation States
to merge. Generally these
are states across time.

• currentState? - The
current state (optional)

The Median Absolute
Deviation state

OUTLIER_MAD_ADD Add a piece of data to the
state

• state -The MAD state

• value - The numeric value
to add

The MAD state

OUTLIER_MAD_SCORE Get the modified z-
score normalized by
the MAD: scale * | x_i -
median(X) | / MAD. See
the first page of http://
web.ipac.caltech.edu/staff/
fmasci/home/astro_refs/
BetterThanMAD.pdf

• state - The MAD state

• value - The numeric value
to score

• scale? -Optionally the
scale to use when
computing the modified

The modified z-score

http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://commons.apache.org/proper/commons-math/userguide/stat.html#a1.2_Descriptive_statistics
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf

Hortonworks Cybersecurity
Package

August 18, 2017

50

Function Description Input Returns

z-score. Default is
0.6745, see the
first page of http://
web.ipac.caltech.edu/
staff/fmasci/
home/astro_refs/
BetterThanMAD.pdf

6.5. Outlier Analysis
Data scientists frequently want to find anomalies in numerical data. To that end, HCP has
some simple statistical anomaly detectors.

This section contains the following information:

• Median Absolution Deviation [50]

• Example [50]

6.5.1. Median Absolution Deviation

Much has been written about this robust estimator. See the first page of http://
web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf for coverage of
the good and the bad of median absolution deviation (MAD). The usage, however is fairly
straightforward:

• Gather the statistical state required to compute the MAD.

• • The distribution of the values of a univariate random variable over time.

• The distribution of the absolute deviations of the values from the median.

• • Use this statistical state to score unseen values. The higher the score, the more unlike
the previously seen data the value is.

There are a couple of issues which make MAD hard to compute. First, the statistical state
requires computing median, which can be computationally expensive to compute exactly.
To get around this, we use the OnlineStatisticalProvider to compute a sketch rather than
the exact median. Secondly, the statistical state for seasonal data should be limited to a
fixed, trailing window. We do this by ensuring that the MAD state is mergeable and able to
be queried from within the Profiler.

6.5.2. Example

We will create a dummy data stream of Gaussian noise to illustrate how to use the MAD
functionality along with the profiler to tag messages as outliers or not.

To do this, we will create:

• Data Generator [51]

• The Parser [52]

http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/BetterThanMAD.pdf

Hortonworks Cybersecurity
Package

August 18, 2017

51

• Enrichment and Threat Intelligence [52]

• The Profiler [53]

• Execute the Flow [54]

6.5.2.1. Data Generator

We can create a simple python script to generate a stream of Gaussian noise at the
frequency of one message per second as a python script which should be saved at ~/
rand_gen.py:

#!/usr/bin/python
import random
import sys
import time
def main():
 mu = float(sys.argv[1])
 sigma = float(sys.argv[2])
 freq_s = int(sys.argv[3])
 while True:
 print str(random.gauss(mu, sigma))
 sys.stdout.flush()
 time.sleep(freq_s)

if __name__ == '__main__':
 main()

This script will take the following as arguments:

• The mean of the data generated

• The standard deviation of the data generated

• The frequency (in seconds) of the data generated

If, however, you'd like to test a longer tailed distribution, like the student t-distribution and
have numpy installed, you can use the following as ~/rand_gen.py:

#!/usr/bin/python
import random
import sys
import time
import numpy as np

def main():
 df = float(sys.argv[1])
 freq_s = int(sys.argv[2])
 while True:
 print str(np.random.standard_t(df))
 sys.stdout.flush()
 time.sleep(freq_s)

if __name__ == '__main__':
 main()

This script will take the following as arguments:

• The degrees of freedom for the distribution

Hortonworks Cybersecurity
Package

August 18, 2017

52

• The frequency (in seconds of the data generated

6.5.2.2. The Parser

We will create a parser that will take the single numbers in and create a message with a
field called value in them using the CSVParser.

Add the following file to $METRON_HOME/config/zookeeper/parsers/mad.json:

{
 "parserClassName" : "org.apache.metron.parsers.csv.CSVParser"
 ,"sensorTopic" : "mad"
 ,"parserConfig" : {
 "columns" : {
 "value_str" : 0
 }
 }
 ,"fieldTransformations" : [
 {
 "transformation" : "STELLAR"
 ,"output" : ["value"]
 ,"config" : {
 "value" : "TO_DOUBLE(value_str)"
 }
 }
]
}

6.5.2.3. Enrichment and Threat Intelligence

We will set a threat triage level of 10 if a message generates a outlier score of more than
3.5. This cutoff will depend on your data and should be adjusted based on the assumed
underlying distribution. Note that under the assumptions of normality, MAD will act as a
robust estimator of the standard deviation, so the cutoff should be considered the number
of standard deviations away. For other distributions, there are other interpretations
which will make sense in the context of measuring the "degree different". See http://
eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/ for a brief
discussion of this.

Create the following in $METRON_HOME/config/zookeeper/enrichments/
mad.json:

{
 "enrichment": {
 "fieldMap": {
 "stellar" : {
 "config" : {
 "parser_score" : "OUTLIER_MAD_SCORE(OUTLIER_MAD_STATE_MERGE(
PROFILE_GET('sketchy_mad', 'global', PROFILE_FIXED(10, 'MINUTES'))), value)"
 ,"is_alert" : "if parser_score > 3.5 then true else is_alert"
 }
 }
 }
 ,"fieldToTypeMap": { }
 },
 "threatIntel": {
 "fieldMap": { },

http://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/
http://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/

Hortonworks Cybersecurity
Package

August 18, 2017

53

 "fieldToTypeMap": { },
 "triageConfig" : {
 "riskLevelRules" : [
 {
 "rule" : "parser_score > 3.5",
 "score" : 10
 }
],
 "aggregator" : "MAX"
 }
 }
}

6.5.2.4. Index

We also need an indexing configuration.

Create the following in $METRON_HOME/config/zookeeper/enrichments/
mad.json:

{
 "hdfs" : {
 "index": "mad",
 "batchSize": 1,
 "enabled" : true
 },
 "elasticsearch" : {
 "index": "mad",
 "batchSize": 1,
 "enabled" : true
 }
}

6.5.2.5. The Profiler

We can set up the profiler to track the MAD statistical state required to compute MAD. For
the purposes of this demonstration, we will configure the profiler to capture statistics on
the minute mark. We will capture a global statistical state for the value field and we will
look back for a 5 minute window when computing the median.

Create the following file at $METRON_HOME/config/zookeeper/profiler.json:

{
 "profiles": [
 {
 "profile": "sketchy_mad",
 "foreach": "'global'",
 "onlyif": "true",
 "init" : {
 "s": "OUTLIER_MAD_STATE_MERGE(PROFILE_GET('sketchy_mad',
'global', PROFILE_FIXED(5, 'MINUTES')))"
 },
 "update": {
 "s": "OUTLIER_MAD_ADD(s, value)"
 },
 "result": "s"
 }
]

Hortonworks Cybersecurity
Package

August 18, 2017

54

}

Adjust $METRON_HOME/config/zookeeper/global.json to adjust the capture
duration:

 "profiler.client.period.duration" : "1",
 "profiler.client.period.duration.units" : "MINUTES"

Adjust $METRON_HOME/config/profiler.properties to adjust the capture duration
by changing profiler.period.duration=15to profiler.period.duration=1

6.5.2.6. Execute the Flow

1. Install the elasticsearch head plugin by executing: /usr/share/elasticsearch/
bin/plugin install mobz/elasticsearch-head.

2. Stop all other parser topologies via monit.

3. Create the mad Kafka topic by executing: /usr/hdp/current/kafka-broker/bin/
kafka-topics.sh --zookeeper node1:2181 --create --topic mad --
partitions 1 --replication-factor 1.

4. Push the modified configs by executing: $METRON_HOME/bin/zk_load_configs.sh
--mode PUSH -z node1:2181 -i $METRON_HOME/config/zookeeper/.

5. Start the profiler by executing: $METRON_HOME/bin/
start_profiler_topology.sh.

6. Start the parser topology by executing: $METRON_HOME/bin/
start_parser_topology.sh -k node1:6667 -z node1:2181 -s mad.

7. Ensure that the enrichment and indexing topologies are started. If not, then start those
via monit or by hand.

8. Generate data into kafka by executing the following for at least 10 minutes: ~/
rand_gen.py 0 1 1 | /usr/hdp/current/kafka-broker/bin/kafka-
console-producer.sh --broker-list node1:6667 --topic mad. Note: If
you chose to use the t-distribution script above, you would adjust the parameters of the
rand_gen.py script accordingly.

9. Stop the above with ctrl-c and send an obvious outlier into kafka: echo "1000" | /
usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --
broker-list node1:6667 --topic mad.

You should be able to find the outlier via the elasticsearch head plugin by searching for the
messages where is_alert is true.

	Hortonworks Cybersecurity Package
	Table of Contents
	1. Overview
	2. Creating Profiles
	2.1. Installing Profiler
	2.2. Getting Started
	2.3. Configuring the Profiler
	2.4. Starting the Profiler
	2.5. Testing
	2.6. Profile Examples
	2.7. Accessing Profiles
	2.7.1. Selecting Profile Measurements
	2.7.2. Specifying Profile Time and Duration
	2.7.2.1. Profile Selector Language

	2.7.3. Client Profile Example

	3. Creating Models
	3.1. Installing the YARN Application
	3.2. Deploying Models
	3.3. Adding the MaaS Stellar Function to the Sensor Configuration
	3.4. Starting Topologies and Sending Data
	3.5. Modifying a Model

	4. Analyzing Enriched Data Using Apache Zeppelin
	4.1. Setting up Zeppelin to Run with HCP
	4.1.1. Using Zeppelin Interpreters
	4.1.2. Loading Telemetry Information into Zeppelin
	4.1.3. Working with Zeppelin

	4.2. Using Zeppelin to Analyze Data
	4.2.1. Next Steps

	5. Creating Runbooks Using Apache Zeppelin
	5.1. Setting up Zeppelin to Run with HCP
	5.1.1. Using Zeppelin Interpreters
	5.1.2. Loading Telemetry Information into Zeppelin
	5.1.3. Working with Zeppelin

	5.2. Using Zeppelin to Create Runbooks

	6. Analyzing Data Using Statistical and Mathematical Functions
	6.1. Approximation Statistics
	6.2. Mathematical Functions
	6.3. Distributional Statistics
	6.4. Statistical Outlier Detection
	6.5. Outlier Analysis
	6.5.1. Median Absolution Deviation
	6.5.2. Example
	6.5.2.1. Data Generator
	6.5.2.2. The Parser
	6.5.2.3. Enrichment and Threat Intelligence
	6.5.2.4. Index
	6.5.2.5. The Profiler
	6.5.2.6. Execute the Flow

